Current Treatments and Innovations in Diabetic Retinopathy and Diabetic Macular Edema
Abstract
:1. Introduction
2. Methods
3. Treatment Options
3.1. Anti-Vascular Endothelial Growth Factor
3.1.1. Bevacizumab
3.1.2. Ranibizumab
3.1.3. Aflibercept
3.1.4. Brolucizumab
3.1.5. Conbercept
3.1.6. Faricimab
3.1.7. Other Anti-VEGF Therapies
3.2. Steroids
3.2.1. Triamcinolone Acetonide
3.2.2. Dexamethasone
3.2.3. Fluocinolone Acetonide Implant
3.2.4. Other Steroid Therapies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zaccardi, F.; Webb, D.R.; Yates, T.; Davies, M.J. Pathophysiology of type 1 and type 2 diabetes mellitus: A 90-year perspective. Postgrad. Med. J. 2016, 92, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Aiello, L.M. Perspectives on diabetic retinopathy. Am. J. Ophthalmol. 2003, 136, 122–135. [Google Scholar] [CrossRef] [PubMed]
- Klaassen, I.; Van Noorden, C.J.; Schlingemann, R.O. Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog. Retin. Eye Res. 2013, 34, 19–48. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Lin, W.V.; Rodriguez, S.M.; Chen, A.; Loya, A.; Weng, C.Y. Treatment of Diabetic Macular Edema. Curr. Diabetes Rep. 2019, 19, 68. [Google Scholar] [CrossRef]
- Shams, N.; Ianchulev, T. Role of vascular endothelial growth factor in ocular angiogenesis. Ophthalmol. Clin. N. Am. 2006, 19, 335–344. [Google Scholar]
- Funatsu, H.; Yamashita, H.; Noma, H.; Mimura, T.; Yamashita, T.; Hori, S. Increased levels of vascular endothelial growth factor and interleukin-6 in the aqueous humor of diabetics with macular edema. Am. J. Ophthalmol. 2002, 133, 70–77. [Google Scholar] [CrossRef]
- Tang, J.; Kern, T.S. Inflammation in diabetic retinopathy. Prog. Retin. Eye Res. 2011, 30, 343–358. [Google Scholar] [CrossRef] [Green Version]
- Dejana, E.; Spagnuolo, R.; Bazzoni, G. Interendothelial Junctions and their Role in the Control of Angiogenesis, Vascular Permeability and Leukocyte Transmigration. Thromb. Haemost. 2001, 86, 308–315. [Google Scholar] [CrossRef]
- Early Treatment Diabetic Retinopathy Study Research Group. Photocoagulation for diabetic macular edema. Early treatment diabetic retinopathy study report number 1. Arch. Ophthalmol. 1985, 103, 1796–1806. [Google Scholar] [CrossRef]
- The Diabetic Retinopathy Study Research Group. Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of Diabetic Retinopathy Study (DRS) findings, DRS Report Number 8. Ophthalmology 1981, 88, 583–600. [Google Scholar]
- Michaelides, M.; Kaines, A.; Hamilton, R.D.; Fraser-Bell, S.; Rajendram, R.; Quhill, F.; Boos, C.J.; Xing, W.; Egan, C.; Peto, T.; et al. A Prospective Randomized Trial of Intravitreal Bevacizumab or Laser Therapy in the Management of Diabetic Macular Edema (BOLT Study): 12-Month Data: Report 2. Ophthalmology 2010, 117, 1078–1086.e1072. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, E.T.; Adamis, A.P.; Altaweel, M.; Aiello, L.P.; Bressler, N.M.; D’Amico, D.J.; Goldbaum, M.; Guyer, D.R.; Katz, B.; Patel, M.; et al. A Phase II Randomized Double-Masked Trial of Pegaptanib, an Anti–Vascular Endothelial Growth Factor Aptamer, for Diabetic Macular Edema. Ophthalmology 2005, 112, 1747–1757. [Google Scholar] [CrossRef] [PubMed]
- Goyal, S.; LaValley, M.; Subramanian, M. Meta-analysis and review on the effect of bevacizumab in diabetic macular edema. Graefe’s Arch. Clin. Exp. Ophthalmol. 2010, 249, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Glassman, A.R.; Wells, J.A.; Josic, K.; Maguire, M.G.; Antoszyk, A.N.; Baker, C.; Beaulieu, W.T.; Elman, M.J.; Jampol, L.M.; Sun, J.K. Five-Year Outcomes after Initial Aflibercept, Bevacizumab, or Ranibizumab Treatment for Diabetic Macular Edema (Protocol T Extension Study). Ophthalmology 2020, 127, 1201–1210. [Google Scholar] [CrossRef]
- Elman, M.J.; Aiello, L.P.; Beck, R.W.; Bressler, N.M.; Bressler, S.B.; Edwards, A.R.; Ferris, F.L., 3rd; Friedman, S.M.; Glassman, A.R.; Miller, K.M.; et al. Diabetic Retinopathy Clinical Research Network. Randomized Trial Evaluating Ranibizumab Plus Prompt or Deferred Laser or Triamcinolone Plus Prompt Laser for Diabetic Macular Edema. Ophthalmology 2010, 117, 1064–1077.e1035. [Google Scholar] [CrossRef] [Green Version]
- Korobelnik, J.-F.; Do, D.V.; Schmidt-Erfurth, U.; Boyer, D.S.; Holz, F.G.; Heier, J.S.; Midena, E.; Kaiser, P.K.; Terasaki, H.; Marcus, D.M.; et al. Intravitreal Aflibercept for Diabetic Macular Edema. Ophthalmology 2014, 121, 2247–2254. [Google Scholar] [CrossRef]
- Diabetic Retinopathy Clinical Research Network; Brucker, A.J.; Qin, H.; Antoszyk, A.N.; Beck, R.W.; Bressler, N.M.; Browning, D.J.; Elman, M.J.; Glassman, A.R.; Gross, J.G.; et al. Observational Study of the Development of Diabetic Macular Edema Following Panretinal (Scatter) Photocoagulation Given in 1 or 4 Sittings. JAMA Ophthalmol. 2009, 127, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Sultan, M.B.; Zhou, D.; Loftus, J.; Dombi, T.; Ice, K.S.; Macugen 1013 Study Group. A Phase 2/3, Multicenter, Randomized, Double-Masked, 2-Year Trial of Pegaptanib Sodium for the Treatment of Diabetic Macular Edema. Ophthalmology 2011, 118, 1107–1118. [Google Scholar] [CrossRef]
- Starita, C.; Patel, M.; Katz, B.; Adamis, A.P. Vascular Endothelial Growth Factor and the Potential Therapeutic Use of Pegaptanib (Macugen®) in Diabetic Retinopathy. Dev. Ophthalmol. 2007, 39, 122–148. [Google Scholar] [CrossRef]
- Wells, J.A.; Glassman, A.R.; Ayala, A.R.; Jampol, L.M.; Bressler, N.M.; Bressler, S.B.; Diabetic Retinopathy Clinical Research Network. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema: Two-year results from a comparative effectiveness randomized clinical trial. Ophthalmology 2016, 123, 1351–1359. [Google Scholar] [CrossRef] [Green Version]
- Holash, J.; Davis, S.; Papadopoulos, N.; Croll, S.D.; Ho, L.; Russell, M.; Boland, P.; Leidich, R.; Hylton, D.; Burova, E.; et al. VEGF-Trap: A VEGF blocker with potent antitumor effects. Proc. Natl. Acad. Sci. USA 2002, 99, 11393–11398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do, D.V.; Nguyen, Q.D.; Boyer, D.; Schmidt-Erfurth, U.; Brown, D.M.; Vitti, R.; Berliner, A.J.; Gao, B.; Zeitz, O.; Ruckert, R.; et al. One-Year Outcomes of the DA VINCI Study of VEGF Trap-Eye in Eyes with Diabetic Macular Edema. Ophthalmology 2012, 119, 1658–1665. [Google Scholar] [CrossRef] [PubMed]
- Heier, J.S.; Korobelnik, J.-F.; Brown, D.M.; Schmidt-Erfurth, U.; Do, D.V.; Midena, E.; Boyer, D.S.; Terasaki, H.; Kaiser, P.K.; Marcus, D.M.; et al. Intravitreal Aflibercept for Diabetic Macular Edema: 148-Week Results from the VISTA and VIVID Studies. Ophthalmology 2016, 123, 2376–2385. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Wang, H.; He, W.; Ye, J.; Song, Y.; Wang, Y.; Liu, X.; Wu, Z.; Chen, S.; Fan, K.; et al. Intravitreal conbercept for diabetic macular oedema: 2-year results from a randomised controlled trial and open-label extension study. Br. J. Ophthalmol. 2021, 106, 1436–1443. [Google Scholar] [CrossRef]
- Brown, D.M.; Emanuelli, A.; Bandello, F.; Barranco, J.J.E.; Figueira, J.; Souied, E.; Wolf, S.; Gupta, V.; Ngah, N.F.; Liew, G.; et al. KESTREL and KITE: 52-Week Results from Two Phase III Pivotal Trials of Brolucizumab for Diabetic Macular Edema. Am. J. Ophthalmol. 2022, 238, 157–172. [Google Scholar] [CrossRef]
- Wykoff, C.C.; Abreu, F.; Adamis, A.P.; Basu, K.; A Eichenbaum, D.; Haskova, Z.; Lin, H.; Loewenstein, A.; Mohan, S.; Pearce, I.A.; et al. Efficacy, durability, and safety of intravitreal faricimab with extended dosing up to every 16 weeks in patients with diabetic macular oedema (YOSEMITE and RHINE): Two randomised, double-masked, phase 3 trials. Lancet 2022, 399, 741–755. [Google Scholar] [CrossRef]
- Jhaveri, C.D.; Glassman, A.R.; Ferris, F.L., 3rd; Liu, D.; Maguire, M.G.; Allen, J.B.; Baker, C.W.; Browning, D.; Cunningham, M.A.; Friedman, S.M.; et al. Aflibercept Monotherapy or Bevacizumab First for Diabetic Macular Edema. N. Engl. J. Med. 2022, 387, 692–703. [Google Scholar] [CrossRef]
- Avery, R.L.; Castellarin, A.A.; Steinle, N.C.; Dhoot, D.S.; Pieramici, D.J.; See, R.; Couvillion, S.; Nasir, M.A.; Rabena, M.D.; Maia, M.; et al. Systemic pharmacokinetics and pharmacodynamics of intravitreal aflibercept, bevacizumab, and ranibizumab. Retina 2017, 37, 1847–1858. [Google Scholar] [CrossRef] [Green Version]
- Krohne, T.U.; Eter, N.; Holz, F.G.; Meyer, C.H. Intraocular Pharmacokinetics of Bevacizumab After a Single Intravitreal Injection in Humans. Am. J. Ophthalmol. 2008, 146, 508–512. [Google Scholar] [CrossRef]
- Wang, Y.; Fei, D.; Vanderlaan, M.; Song, A. Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis 2004, 7, 335–345. [Google Scholar] [CrossRef]
- Rajendram, R.; Fraser-Bell, S.; Kaines, A.; Michaelides, M.; Hamilton, R.D.; Degli Esposti, S.; Peto, T.; Egan, C.; Bunce, C.; Leslie, R.D.; et al. A 2-Year Prospective Randomized Controlled Trial of Intravitreal Bevacizumab or Laser Therapy (BOLT) in the Management of Diabetic Macular Edema: 24-month data: Report 3. JAMA Ophthalmol. 2012, 130, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Writing Committee for the Diabetic Retinopathy Clinical Research Network; Gross, J.G.; Glassman, A.R.; Jampol, L.M.; Inusah, S.; Aiello, L.P.; Antoszyk, A.N.; Baker, C.W.; Berger, B.B.; Bressler, N.M.; et al. Panretinal Photocoagulation vs Intravitreous Ranibizumab for Proliferative Diabetic Retinopathy: A Randomized Clinical Trial. JAMA 2015, 314, 2137–2146. [Google Scholar] [CrossRef]
- Xu, L.; Lu, T.; Tuomi, L.; Jumbe, N.; Lu, J.; Eppler, S.; Kuebler, P.; Damico-Beyer, L.A.; Joshi, A. Pharmacokinetics of Ranibizumab in Patients with Neovascular Age-Related Macular Degeneration: A Population Approach. Investig. Opthalmol. Vis. Sci. 2013, 54, 1616–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, Q.D.; Brown, D.M.; Marcus, D.M.; Boyer, D.S.; Patel, S.; Feiner, L.; Gibson, A.; Sy, J.; Rundle, A.C.; Hopkins, J.J.; et al. Ranibizumab for Diabetic Macular Edema: Results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology 2012, 119, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Nirmal, J.; Radhakrishnan, K.; Moreno, M.; Natarajan, J.V.; Laude, A.; Lim, T.H.; Venkatraman, S.; Agrawal, R. Drug, delivery and devices for diabetic retinopathy (3Ds in DR). Expert Opin. Drug Deliv. 2016, 13, 1625–1637. [Google Scholar] [CrossRef]
- Monés, J.; Srivastava, S.K.; Jaffe, G.J.; Tadayoni, R.; Albini, T.A.; Kaiser, P.K.; Holz, F.G.; Korobelnik, J.-F.; Kim, I.K.; Pruente, C.; et al. Risk of Inflammation, Retinal Vasculitis, and Retinal Occlusion–Related Events with Brolucizumab. Ophthalmology 2020, 128, 1050–1059. [Google Scholar] [CrossRef]
- Bilgic, A.; Kodjikian, L.; de Ribot, F.M.; Vasavada, V.; Gonzalez-Cortes, J.; Abukashabah, A.; Sudhalkar, A.; Mathis, T. Real-World Experience with Brolucizumab in Wet Age-Related Macular Degeneration: The REBA Study. J. Clin. Med. 2021, 10, 2758. [Google Scholar] [CrossRef]
- Kansteiner, F. Roche Recalls New Eye Therapy Susvimo on Leakage Fears, Aims for Market Return ‘Within a Year or So’. Fierce Pharma. 2022. Available online: https://www.fiercepharma.com/manufacturing/roche-recalls-susvimo-implant-lucentis-leakage-fears-return-market-expected-within (accessed on 11 November 2022).
- Avery, R.L.; Castellarin, A.A.; Steinle, N.C.; Dhoot, D.S.; Pieramici, D.J.; See, R.; Couvillion, S.; Nasir, M.A.; Rabena, M.D.; Le, K.; et al. Systemic pharmacokinetics following intravitreal injections of ranibizumab, bevacizumab or aflibercept in patients with neovascular AMD. Br. J. Ophthalmol. 2014, 98, 1636–1641. [Google Scholar] [CrossRef]
- Maturi, R.K.; Glassman, A.R.; Josic, K.; Antoszyk, A.N.; Blodi, B.A.; Jampol, L.M.; Marcus, D.M.; Martin, D.F.; Melia, M.; Salehi-Had, H.; et al. Effect of Intravitreous Anti–Vascular Endothelial Growth Factor vs Sham Treatment for Prevention of Vision-Threatening Complications of Diabetic Retinopathy: The Protocol W Randomized Clinical Trial. JAMA Ophthalmol. 2021, 139, 701–712. [Google Scholar] [CrossRef]
- Brown, D.M.; Wykoff, C.C.; Boyer, D.; Heier, J.S.; Clark, W.L.; Emanuelli, A.; Higgins, P.M.; Singer, M.; Weinreich, D.M.; Yancopoulos, G.D.; et al. Evaluation of Intravitreal Aflibercept for the Treatment of Severe Nonproliferative Diabetic Retinopathy: Results From the PANORAMA Randomized Clinical Trial. JAMA Ophthalmol. 2021, 139, 946–955. [Google Scholar] [CrossRef]
- Antoszyk, A.N.; Glassman, A.R.; Beaulieu, W.T.; Jampol, L.M.; Jhaveri, C.D.; Punjabi, O.S.; Salehi-Had, H.; Wells, J.A.; Maguire, M.G.; Stockdale, C.R.; et al. Effect of Intravitreous Aflibercept vs Vitrectomy with Panretinal Photocoagulation on Visual Acuity in Patients with Vitreous Hemorrhage from Proliferative Diabetic Retinopathy: A Randomized Clinical Trial. JAMA 2020, 324, 2383–2395. [Google Scholar] [CrossRef] [PubMed]
- Study of a High-Dose Aflibercept in Participants with Diabetic Eye Disease (PHOTON). Available online: clinicaltrials.gov/ct2/show/NCT04429503 (accessed on 19 October 2022).
- Dugel, P.U.; Koh, A.; Ogura, Y.; Jaffe, G.J.; Schmidt-Erfurth, U.; Brown, D.M.; Gomes, A.V.; Warburton, J.; Weichselberger, A.; Holz, F.G. HAWK and HARRIER: Phase 3, Multicenter, Randomized, Double-Masked Trials of Brolucizumab for Neovascular Age-Related Macular Degeneration. Ophthalmology 2020, 127, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liang, Y.; Xie, J.; Li, D.; Hu, Q.; Li, X.; Zheng, W.; He, R. Conbercept for patients with age-related macular degeneration: A systematic review. BMC Ophthalmol. 2018, 18, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Zhou, P.; Li, X.; Wang, H.; Luo, D.; Qiao, H.; Ke, X.; Huang, J. Structural Characterization of a Recombinant Fusion Protein by Instrumental Analysis and Molecular Modeling. PLoS ONE 2013, 8, e57642. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.N.; Tozawa, Y.; Deutsch, U.; Wolburg-Buchholz, K.; Fujiwara, Y.; Gendron-Maguire, M.; Gridley, T.; Wolburg, H.; Risau, W.; Qin, Y. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995, 376, 70–74. [Google Scholar] [CrossRef]
- Saharinen, P.; Eklund, L.; Alitalo, K. Therapeutic targeting of the angiopoietin–TIE pathway. Nat. Rev. Drug Discov. 2017, 16, 635–661. [Google Scholar] [CrossRef]
- Regula, J.T.; von Leithner, P.L.; Foxton, R.; Barathi, V.A.; Cheung, C.M.G.; Tun, S.B.B.; Wey, Y.S.; Iwata, D.; Dostalek, M.; Moelleken, J.; et al. Targeting key angiogenic pathways with a bispecific Cross MA b optimized for neovascular eye diseases. EMBO Mol. Med. 2016, 8, 1265–1288. [Google Scholar] [CrossRef]
- Sahni, J.; Patel, S.S.; Dugel, P.U.; Khanani, A.M.; Jhaveri, C.D.; Wykoff, C.C.; Hershberger, V.S.; Pauly-Evers, M.; Sadikhov, S.; Szczesny, P.; et al. Simultaneous Inhibition of Angiopoietin-2 and Vascular Endothelial Growth Factor-A with Faricimab in Diabetic Macular Edema: BOULEVARD Phase 2 Randomized Trial. Ophthalmology 2019, 126, 1155–1170. [Google Scholar] [CrossRef] [Green Version]
- Al-Khersan, H.; Hussain, R.M.; Ciulla, T.A.; Dugel, P.U. Innovative therapies for neovascular age-related macular degeneration. Expert Opin. Pharmacother. 2019, 20, 1879–1891. [Google Scholar] [CrossRef]
- Patel, S.S.; Naor, J.; Qudrat, A.; Do, D.V.; Buetelspacher, D.; Perlroth, D.V. Phase 1 firstin-human study of KSI-301: A novel anti-VEGF antibody biopolymer conjugate with extended durability. Investig. Ophthalmol. Vis. Sci. 2019, 60, 3670. [Google Scholar]
- Khanani, A.M. Extended Durability in Exudative Retinal Diseases Using the Novel Intravitreal antiVEGF Antibody Biopolymer Conjugate KSI-301, Update from Phase 1b Study in Patients with wAMD, DME and RVO. In Retina Society 2020 and AAO Virtual Meeting. KODIAK Sciences. Available online: https://avenue.live/retina-society/presentations/khanani-arshad-updated-resultsof-phase-1b-study-of-ksi-301-an-anti-vegfantibody-biopolymer-conjugate-with-extendeddurability-in-wamd-dme-and-rvoberrocal-audinaretinoschisis-in-coats-disease.pdf (accessed on 12 October 2022).
- Boyer, D.S. Phase 1b/2a DME study results of OPT-302 to block VEGF-C/-D in combination with aflibercept. In Proceedings of the American Academy of Ophthalmology Annual Meeting, Las Vegas, NV, USA, 14–17 November 2020. [Google Scholar]
- Kodjikian, L.; Bellocq, D.; Mathis, T. Pharmacological Management of Diabetic Macular Edema in Real-Life Observational Studies. BioMed Res. Int. 2018, 2018, 8289253. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.S.; Wadhwa, S.; Gulati, K.M.; Ramanunny, A.K.; Awasthi, A.; Singh, S.K.; Khursheed, R.; Corrie, L.; Chitranshi, N.; Gupta, V.K.; et al. Recent advances in intraocular and novel drug delivery systems for the treatment of diabetic retinopathy. Expert Opin. Drug Deliv. 2020, 18, 553–576. [Google Scholar] [CrossRef]
- Amoaku, W.M.; Ghanchi, F.; Bailey, C.; Banerjee, S.; Banerjee, S.; Downey, L.; Gale, R.; Hamilton, R.; Khunti, K.; Posner, E.; et al. Diabetic retinopathy and diabetic macular oedema pathways and management: UK Consensus Working Group. Eye 2020, 34 (Suppl. S1), 1–51. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Erfurth, U.; Garcia-Arumi, J.; Bandello, F.; Berg, K.; Chakravarthy, U.; Gerendas, B.S.; Jonas, J.; Larsen, M.; Tadayoni, R.; Loewenstein, A. Guidelines for the Management of Diabetic Macular Edema by the European Society of Retina Specialists (EURETINA). Ophthalmologica 2017, 237, 185–222. [Google Scholar] [CrossRef] [PubMed]
- Funatsu, H.; Noma, H.; Mimura, T.; Eguchi, S.; Hori, S. Association of Vitreous Inflammatory Factors with Diabetic Macular Edema. Ophthalmology 2009, 116, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Zur, D.; Iglicki, M.; Loewenstein, A. The Role of Steroids in the Management of Diabetic Macular Edema. Ophthalmic Res. 2019, 62, 231–236. [Google Scholar] [CrossRef]
- Nauck, M.; Karakiulakis, G.; Perruchoud, A.P.; Papakonstantinou, E.; Roth, M. Corticosteroids inhibit the expression of the vascular endothelial growth factor gene in human vascular smooth muscle cells. Eur. J. Pharmacol. 1998, 341, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Kompella, U.B.; Bandi, N.; Ayalasomayajula, S. Subconjunctival Nano- and Microparticles Sustain Retinal Delivery of Budesonide, a Corticosteroid Capable of Inhibiting VEGF Expression. Investig. Opthalmol. Vis. Sci. 2003, 44, 1192–1201. [Google Scholar] [CrossRef] [Green Version]
- Jeon, S.; Lee, W.K. Effect of intravitreal triamcinolone in diabetic macular edema unresponsive to intravitreal bevacizumab. Retina 2014, 34, 1606–1611. [Google Scholar] [CrossRef]
- Qi, H.-P.; Bi, S.; Wei, S.-Q.; Cui, H.; Zhao, J.-B. Intravitreal Versus Subtenon Triamcinolone Acetonide Injection for Diabetic Macular Edema: A Systematic Review and Meta-analysis. Curr. Eye Res. 2012, 37, 1136–1147. [Google Scholar] [CrossRef]
- Tomita, Y.; Lee, D.; Tsubota, K.; Negishi, K.; Kurihara, T. Updates on the Current Treatments for Diabetic Retinopathy and Possibility of Future Oral Therapy. J. Clin. Med. 2021, 10, 4666. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Ren, X.-J.; Hu, B.-J.; Lam, W.-C.; Li, X.-R. A meta-analysis of the effect of a dexamethasone intravitreal implant versus intravitreal anti-vascular endothelial growth factor treatment for diabetic macular edema. BMC Ophthalmol. 2018, 18, 121. [Google Scholar] [CrossRef] [PubMed]
- Haller, J.A.; Bandello, F.; Belfort, R., Jr.; Blumenkranz, M.S.; Gillies, M.; Heier, J.; Loewenstein, A.; Yoon, Y.-H.; Jacques, M.-L.; Jiao, J.; et al. Randomized, Sham-Controlled Trial of Dexamethasone Intravitreal Implant in Patients with Macular Edema Due to Retinal Vein Occlusion. Ophthalmology 2010, 117, 1134–1146.e3. [Google Scholar] [CrossRef] [PubMed]
- Kodjikian, L.; Bellocq, D.; Bandello, F.; Loewenstein, A.; Chakravarthy, U.; Koh, A.; Augustin, A.; de Smet, M.D.; Chhablani, J.; Tufail, A.; et al. First-line treatment algorithm and guidelines in center-involving diabetic macular edema. Eur. J. Ophthalmol. 2018, 29, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Mello Filho, P.; Andrade, G.; Maia, A.; Maia, M.; Biccas Neto, L.; Muralha Neto, A.; Moura Brasil, O.; Minelli, E.; Dalloul, C.; Iglicki, M. Effectiveness and Safety of Intravitreal Dexamethasone Implant (Ozurdex) in Patients with Diabetic Macular Edema: A Real-World Experience. Ophthalmologica 2018, 241, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Mathis, T.; Lereuil, T.; Abukashabah, A.; Voirin, N.; Sudhalkar, A.; Bilgic, A.; Denis, P.; Dot, C.; Kodjikian, L. Long-term follow-up of diabetic macular edema treated with dexamethasone implant: A real-life study. Acta Diabetol. 2020, 57, 1413–1421. [Google Scholar] [CrossRef]
- Boyer, D.S.; Yoon, Y.H.; Belfort, R., Jr.; Bandello, F.; Maturi, R.K.; Augustin, A.J.; Li, X.-Y.; Cui, H.; Hashad, Y.; Whitcup, S.M. Three-Year, Randomized, Sham-Controlled Trial of Dexamethasone Intravitreal Implant in Patients with Diabetic Macular Edema. Ophthalmology 2014, 121, 1904–1914. [Google Scholar] [CrossRef]
- Rezkallah, A.; Kodjikian, L.; Barbarroux, A.; Laventure, C.; Motreff, A.; Chacun, S.; Matonti, F.; Denis, P.; Mathis, T. Intra-Ocular Pressure Response to Dexamethasone Implant Injections in Patients with a History of Filtering Surgery: The TRABEX Study. Pharmaceutics 2022, 14, 1756. [Google Scholar] [CrossRef]
- Rezkallah, A.; Mathis, T.; Abukhashabah, A.; Voirin, N.; Malclès, A.; Agard, É.; Lereuil, T.; Denis, P.; Dot, C.; Kodjikian, L. Long-term incidence and risk factors of ocular hypertension following dexamethasone-implant injections: The safodex-2 study. Retina 2020, 41, 1438–1445. [Google Scholar] [CrossRef]
- Cunha-Vaz, J.; Ashton, P.; Iezzi, R.; Campochiaro, P.; Dugel, P.U.; Holz, F.G.; Weber, M.; Danis, R.P.; Kuppermann, B.D.; Bailey, C.; et al. Sustained Delivery Fluocinolone Acetonide Vitreous Implants: Long-term benefit in patients with chronic diabetic macular edema. Ophthalmology 2014, 121, 1892–1903.e3. [Google Scholar] [CrossRef] [Green Version]
- Iglicki, M.; Zur, D.; Busch, C.; Okada, M.; Loewenstein, A. Progression of diabetic retinopathy severity after treatment with dexamethasone implant: A 24-month cohort study the ‘DR-Pro-DEX Study’. Acta Diabetol. 2018, 55, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Matias, I.; Dinah, Z.; Adrian, F.; Pierre-Henry, G.; Marco, L.; Rodrigo, S.; Catharina, B.; Matus, R.; Zafer, C.; Martin, C.; et al. TRActional DIabetic reTInal detachment surgery with co-adjuvant intravitreal dexamethasONe implant: The tradition study. Acta Diabetol. 2019, 56, 1141–1147. [Google Scholar] [CrossRef]
- Oculis Announces Presentation of Positive Results from Phase 2 Trial of OCS-01 in Patients with Diabetic Macular Edema (DME) at Euretina 2020 Virtual [Press Release]. Available online: https://oculis.com/2020/10/05/oculis-announces-presentation-of-positive-results-from-phase-2-trial-of-ocs-01-in-patients-with-diabetic-macular-edema-dme-at-euretina-2020-virtual/ (accessed on 5 October 2020).
- Kopczynski, C. Print Drug Delivery Technology: Bringing Small Molecule Chemistry to Retinal Disease. Aerie. Available online: Investors.aeriepharma.com/static-files/9c4317ec-0924-4602-95e7-4c0bfa0cab97 (accessed on 15 November 2022).
- Oxular Limited Pipeline. Available online: https://oxular.com/pipeline/ (accessed on 2 November 2022).
- Massa, H.; Nagar, A.M.; Vergados, A.; Dadoukis, P.; Patra, S.; Panos, G.D. Intravitreal fluocinolone acetonide implant (ILUVIEN®) for diabetic macular oedema: A literature review. J. Int. Med. Res. 2018, 47, 31–43. [Google Scholar] [CrossRef] [PubMed]
- El-Ghrably, I.; Steel, D.H.; Habib, M.; Vaideanu-Collins, D.; Manvikar, S.; Hillier, R.J. Diabetic Macular Edema Outcomes in Eyes Treated with Fluocinolone Acetonide 0.2 µg/d Intravitreal Implant: Real-World UK Experience. Eur. J. Ophthalmol. 2017, 27, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Alfaqawi, F.; Lip, P.L.; Elsherbiny, S.; Chavan, R.; Mitra, A.; Mushtaq, B. Report of 12-months efficacy and safety of intravitreal fluocinolone acetonide implant for the treatment of chronic diabetic macular oedema: A real-world result in the United Kingdom. Eye 2017, 31, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Kodjikian, L.; Baillif, S.; Creuzot-Garcher, C.; Delyfer, M.-N.; Matonti, F.; Weber, M.; Mathis, T. Real-World Efficacy and Safety of Fluocinolone Acetonide Implant for Diabetic Macular Edema: A Systematic Review. Pharmaceutics 2021, 13, 72. [Google Scholar] [CrossRef]
- Mathis, T.; Papegaey, M.; Ricard, C.; Rezkallah, A.; Matonti, F.; Sudhalkar, A.; Vartin, C.; Dot, C.; Kodjikian, L. Efficacy and Safety of Intravitreal Fluocinolone Acetonide Implant for Chronic Diabetic Macular Edema Previously Treated in Real-Life Practice: The REALFAc Study. Pharmaceutics 2022, 14, 723. [Google Scholar] [CrossRef]
- Kodjikian, L.; Bandello, F.; de Smet, M.; Dot, C.; Zarranz-Ventura, J.; Loewenstein, A.; Sudhalkar, A.; Bilgic, A.; Cunha-Vaz, J.; Dirven, W.; et al. Fluocinolone acetonide implant in diabetic macular edema: International experts’ panel consensus guidelines and treatment algorithm. Eur. J. Ophthalmol. 2022, 32, 1890–1899. [Google Scholar] [CrossRef]
- Safety, Tolerability and Evidence of Activity Study of UBX1325 in Patients with Diabetic Macular Edema (DME). Available online: clinicaltrials.gov/ct2/show/NCT04857996 (accessed on 18 October 2022).
- A Study to Evaluate THR-149 Treatment for Diabetic Macular Oedema (KALAHARI). Available online: clinicaltrials.gov/ct2/show/NCT04527107 (accessed on 18 October 2022).
- Tao, D.; Ni, N.; Zhang, T.; Li, C.; Sun, Q.; Wang, L.; Mei, Y. Accumulation of advanced glycation end products potentiate human retinal capillary endothelial cells mediated diabetic retinopathy. Mol. Med. Rep. 2019, 20, 3719–3727. [Google Scholar] [CrossRef]
- Karimi, R.; Bakhshi, A.; Dayati, P.; Abazari, O.; Shahidi, M.; Savaee, M.; Kafi, E.; Rahmanian, M.; Naghib, S.M. Silymarin reduces retinal microvascular damage in streptozotocin-induced diabetic rats. Sci. Rep. 2022, 12, 15872. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, H.; Zhou, M. Fangchinoline Ameliorates Diabetic Retinopathy by Inhibiting Receptor for Advanced Glycation End-Products (RAGE)-Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells (NF-κB) Pathway in Streptozotocin (STZ)-Induced Diabetic Rats. Med. Sci. Monit. 2019, 25, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Hu, M.; Zhang, Y.; Machibya, F.; Zhang, Y.; Jiang, H.; Yu, D. Effect of fangchinoline on root resorption during rat orthodontic tooth movement. Korean J. Orthod. 2012, 42, 138–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahaling, B.; Low, S.W.Y.; Beck, M.; Kumar, D.; Ahmed, S.; Connor, T.B.; Ahmad, B.; Chaurasia, S.S. Damage-Associated Molecular Patterns (DAMPs) in Retinal Disorders. Int. J. Mol. Sci. 2022, 23, 2591. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, M.T.; Carducci, M.A. From Bevacizumab to Tasquinimod: Angiogenesis as a therapeutic target in prostate cancer. Cancer J. 2013, 19, 99–106. [Google Scholar] [CrossRef]
- Taurone, S.; De Ponte, C.; Rotili, D.; De Santis, E.; Mai, A.; Fiorentino, F.; Scarpa, S.; Artico, M.; Micera, A. Biochemical Functions and Clinical Characterizations of the Sirtuins in Diabetes-Induced Retinal Pathologies. Int. J. Mol. Sci. 2022, 23, 4048. [Google Scholar] [CrossRef]
- Karbasforooshan, H.; Karimi, G. The role of SIRT1 in diabetic retinopathy. Biomed. Pharmacother. 2018, 97, 190–194. [Google Scholar] [CrossRef]
- Gonzalez-Cortes, J.H.; Gonzalez-Cantu, J.E.; Sudhalkar, A.; Mota, S.E.H.-D.; Bilgic, A.; Garza-Chavarria, J.A.; Mohamed-Hamsho, J. Treatment Algorithm in Proliferative Diabetic Retinopathy—From Protocols to the Real World; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
Drug | Mechanism of Action | Dose | Gain in Letters in DME | Change in DR | Studies |
---|---|---|---|---|---|
Pegaptanib | Pegylated oligoribonucleotide (aptamer), binds to VEGF165 | 0.3 mg q6 | 1 year: +5.2 2 year: +6.1 | Reduction of NV in eight out of 19 patients | [18,19] |
Bevacizumab | Humanized murine full-length mAb, binds VEGF-A alone | 1.25 mg | 1 year (20/32–20/40): +7.5 1 year (20/50–20/320): +11.8 2 year (20/32–20/40): +6.8 2 year (20/50–20/320): +13.3 | 2 years: 30% improvement * | [20] |
Ranibizumab | Humanized murine mAb fragment, binds VEGF-A, higher affinity | 0.3 mg 0.5 mg | 1 year (20/32–20/40): +8.3 1 year (20/50–20/320): +14.2 2 year (20/32–20/40): +8.6 2 year (20/50–20/320): +16.1 | 2 years: 38% improvement * Less visual field lost at 5 years vs PRP | [14,20] |
Aflibercept | Human fusion protein of the IgG Fc region, binds VEGF-A, VEGF-B, PlGF-1 and PlGF-2 | 2.0 mg q8 | 1 year (20/32–20/40): +8.0 1 year (20/50–20/320): +18.9 2 year (20/32–20/40): +7.8 2 year (20/50–20/320): +18.1 | 2 years: 70% improvement 2 years: 62% improvement 33% need of vitrectomy | [20,21,22,23] |
Conbercept | Recombinant fusion protein, Binds VEGF-A, -B, and PlGF | 0.5 mg | 1 year: +8.6 Laser crossover | No RCT Improvement in NV severity | [24] |
Brolucizumab | Single-chain antibody fragment (scFv) with high affinity for VEGF | 6 mg q6-q12 dosing 50–55% • | 1 year: +9.2 and +10.6 | 29.6% improvement * | [25] |
Faricimab | Bispecific antibody Inhibit Ang-2 and VEGF-A | 6 mg >70% achieved q12 in T&E | YOSEMITE 1 year: +10.7 q8 +11.8 PTI RHINE 1 year: +11.8 q8 +10.8 PTI | YOSEMITE 1 year: 46% q8 42.5% PTI RHINE 1 year: 44.2% q8 43.7% PTI | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Cortes, J.H.; Martinez-Pacheco, V.A.; Gonzalez-Cantu, J.E.; Bilgic, A.; de Ribot, F.M.; Sudhalkar, A.; Mohamed-Hamsho, J.; Kodjikian, L.; Mathis, T. Current Treatments and Innovations in Diabetic Retinopathy and Diabetic Macular Edema. Pharmaceutics 2023, 15, 122. https://doi.org/10.3390/pharmaceutics15010122
Gonzalez-Cortes JH, Martinez-Pacheco VA, Gonzalez-Cantu JE, Bilgic A, de Ribot FM, Sudhalkar A, Mohamed-Hamsho J, Kodjikian L, Mathis T. Current Treatments and Innovations in Diabetic Retinopathy and Diabetic Macular Edema. Pharmaceutics. 2023; 15(1):122. https://doi.org/10.3390/pharmaceutics15010122
Chicago/Turabian StyleGonzalez-Cortes, Jesus H., Victor A. Martinez-Pacheco, Jesus E. Gonzalez-Cantu, Alper Bilgic, Francesc March de Ribot, Aditya Sudhalkar, Jesus Mohamed-Hamsho, Laurent Kodjikian, and Thibaud Mathis. 2023. "Current Treatments and Innovations in Diabetic Retinopathy and Diabetic Macular Edema" Pharmaceutics 15, no. 1: 122. https://doi.org/10.3390/pharmaceutics15010122
APA StyleGonzalez-Cortes, J. H., Martinez-Pacheco, V. A., Gonzalez-Cantu, J. E., Bilgic, A., de Ribot, F. M., Sudhalkar, A., Mohamed-Hamsho, J., Kodjikian, L., & Mathis, T. (2023). Current Treatments and Innovations in Diabetic Retinopathy and Diabetic Macular Edema. Pharmaceutics, 15(1), 122. https://doi.org/10.3390/pharmaceutics15010122