Development of an Antibody Delivery Method for Cancer Treatment by Combining Ultrasound with Therapeutic Antibody-Modified Nanobubbles Using Fc-Binding Polypeptide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Fc-Binding Polypeptides, His-Fc-G67
2.3. Preparation and Characterization of Herceptin-Modified NBs (Her-NBs)
2.4. Cell Cultures
2.5. Fluorescent Microscope Analysis
2.6. Evaluation of Ultrasound-Responsive Ability In Vitro
2.7. Analysis of ADCC Activity of Her-NBs
2.8. Tumor Model
2.9. Evaluation of Ultrasound Responsive Ability in Tumor Model Mice
2.10. Evaluation of Tumor Inhibitory Activity
2.11. Statistical Analysis
3. Results
3.1. Characterization of Her-NBs
3.2. Antibody Activity of Herceptin on Her-NBs
3.3. Evaluation of Responsive of Her-NBs to Therapeutic Ultrasound In Vivo
3.4. Anti-Tumor Effect of the Combination Treatment of Her-NBs and TUS Exposure
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaplon, H.; Chenoweth, A.; Crescioli, S.; Reichert, J.M. Antibodies to Watch in 2022. MAbs 2022, 14, 2014296. [Google Scholar] [CrossRef] [PubMed]
- Darvin, P.; Toor, S.M.; Sasidharan Nair, V.; Elkord, E. Immune Checkpoint Inhibitors: Recent Progress and Potential Biomarkers. Exp. Mol. Med. 2018, 50, 12. [Google Scholar] [CrossRef] [Green Version]
- Hafeez, U.; Parakh, S.; Gan, H.K.; Scott, A.M. Antibody–Drug Conjugates for Cancer Therapy. Molecules 2020, 25, 4764. [Google Scholar] [CrossRef] [PubMed]
- Glassman, P.M.; Balthasar, J.P. Mechanistic Considerations for the Use of Monoclonal Antibodies for Cancer Therapy. Cancer Biol. Med. 2014, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.M.; Lee, F.T.; Jones, R.; Hopkins, W.; MacGregor, D.; Cebon, J.S.; Hannah, A.; Chong, G.; U, P.; Papenfuss, A.; et al. A Phase I Trial of Humanized Monoclonal Antibody A33 in Patients with Colorectal Carcinoma: Biodistribution, Pharmacokinetics, and Quantitative Tumor Uptake. Clin. Cancer Res. 2005, 11, 4810–4817. [Google Scholar] [CrossRef] [Green Version]
- Erickson, H.K.; Lambert, J.M. ADME of Antibody-Maytansinoid Conjugates. AAPS J. 2012, 14, 799–805. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.K. Vascular and Interstitial Barriers to Delivery of Therapeutic Agents in Tumors. Cancer Metastasis Rev. 1990, 9, 253–266. [Google Scholar] [CrossRef]
- Bordeau, B.M.; Balthasar, J.P. Strategies to Enhance Monoclonal Antibody Uptake and Distribution in Solid Tumors. Cancer Biol. Med. 2021, 18, 649–664. [Google Scholar] [CrossRef]
- Whatcott, C.J.; Han, H.; Posner, R.G.; Hostetter, G.; von Hoff, D.D. Targeting the Tumor Microenvironment in Cancer: Why Hyaluronidase Deserves a Second Look. Cancer Discov. 2011, 1, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Ye, N.; Liu, S.; Guan, J.; Deng, Q.; Zhang, Z.; Xiao, C.; Ding, Z.; Zhang, B.; Chen, X.; et al. Hyperbaric Oxygen Boosts PD-1 Antibody Delivery and T Cell Infiltration for Augmented Immune Responses Against Solid Tumors. Adv. Sci. 2021, 8, e2100233. [Google Scholar] [CrossRef]
- Singha, N.C.; Nekoroski, T.; Zhao, C.; Symons, R.; Jiang, P.; Frost, G.I.; Huang, Z.; Shepard, H.M. Tumor-Associated Hyaluronan Limits Efficacy of Monoclonal Antibody Therapy. Mol. Cancer Ther. 2015, 14, 523–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, K.M.; Horton, K.J.; Coveler, A.L.; Hingorani, S.R.; Harris, W.P. Targeting the Tumor Stroma: The Biology and Clinical Development of Pegylated Recombinant Human Hyaluronidase (PEGPH20). Curr. Oncol. Rep. 2017, 19, 47. [Google Scholar] [CrossRef] [PubMed]
- Dolor, A.; Szoka, F.C. Digesting a Path Forward: The Utility of Collagenase Tumor Treatment for Improved Drug Delivery. Mol. Pharm. 2018, 15, 2069–2083. [Google Scholar] [CrossRef]
- Zinger, A.; Koren, L.; Adir, O.; Poley, M.; Alyan, M.; Yaari, Z.; Noor, N.; Krinsky, N.; Simon, A.; Gibori, H.; et al. Collagenase Nanoparticles Enhance the Penetration of Drugs into Pancreatic Tumors. ACS Nano 2019, 13, 11008–11021. [Google Scholar] [CrossRef] [PubMed]
- Queme, L.F.; Dourson, A.J.; Hofmann, M.C.; Butterfield, A.; Paladini, R.D.; Jankowski, M.P. Disruption of Hyaluronic Acid in Skeletal Muscle Induces Decreased Voluntary Activity via Chemosensitive Muscle Afferent Sensitization in Male Mice. eNeuro 2022, 9. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Hattori, Y.; Kubo, M.; Maitani, Y. Collagenase-1 Injection Improved Tumor Distribution and Gene Expression of Cationic Lipoplex. Int. J. Pharm. 2012, 423, 428–434. [Google Scholar] [CrossRef]
- Dimcevski, G.; Kotopoulis, S.; Bjånes, T.; Hoem, D.; Schjøt, J.; Gjertsen, B.T.; Biermann, M.; Molven, A.; Sorbye, H.; McCormack, E.; et al. A Human Clinical Trial Using Ultrasound and Microbubbles to Enhance Gemcitabine Treatment of Inoperable Pancreatic Cancer. J. Control. Release 2016, 243, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Reilly, R.M.; Pezo, R.C.; Trudeau, M.; Sahgal, A.; Singnurkar, A.; Perry, J.; Myrehaug, S.; Pople, C.B.; Davidson, B.; et al. MR-Guided Focused Ultrasound Enhances Delivery of Trastuzumab to Her2-Positive Brain Metastases. Sci. Transl. Med. 2021, 13, 4011. [Google Scholar] [CrossRef]
- Fan, X.; Wang, L.; Guo, Y.; Xiong, X.; Zhu, L.; Fang, K. Inhibition of Prostate Cancer Growth Using Doxorubicin Assisted by Ultrasound-Targeted Nanobubble Destruction. Int. J. Nanomed. 2016, 11, 3585–3596. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Li, R.K. Ultrasound-Targeted Microbubble Destruction in Gene Therapy: A New Tool to Cure Human Diseases. Genes Dis. 2017, 4, 64–74. [Google Scholar] [CrossRef]
- Lentacker, I.; de Smedt, S.C.; Sanders, N.N. Drug Loaded Microbubble Design for Ultrasound Triggered Delivery. Soft. Matter. 2009, 5, 2161–2170. [Google Scholar] [CrossRef]
- Helfield, B. A Review of Phospholipid Encapsulated Ultrasound Contrast Agent Microbubble Physics. Ultrasound Med. Biol. 2019, 45, 282–300. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.M.; Lee, T.; Willmann, J.K. Ultrasound-Guided Drug Delivery in Cancer. Ultrasonography 2017, 36, 171–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Wamel, A.; Kooiman, K.; Harteveld, M.; Emmer, M.; ten Cate, F.J.; Versluis, M.; de Jong, N. Vibrating Microbubbles Poking Individual Cells: Drug Transfer into Cells via Sonoporation. J. Control. Release 2006, 112, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Helfield, B.; Chen, X.; Watkins, S.C.; Villanueva, F.S. Biophysical Insight into Mechanisms of Sonoporation. Proc. Natl. Acad. Sci. USA 2016, 113, 9983–9988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endo-Takahashi, Y.; Negishi, Y. Microbubbles and Nanobubbles with Ultrasound for Systemic Gene Delivery. Pharmaceutics 2020, 12, 964. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; Wang, P.; Zheng, R.; Zheng, B.; Cheng, D.; Zhang, X.; Shuai, X. Nanobubbles for Enhanced Ultrasound Imaging of Tumors. Int. J. Nanomed. 2012, 7, 895–904. [Google Scholar] [CrossRef] [Green Version]
- Son, S.; Min, H.S.; You, D.G.; Kim, B.S.; Kwon, I.C. Echogenic Nanoparticles for Ultrasound Technologies: Evolution from Diagnostic Imaging Modality to Multimodal Theranostic Agent. Nano Today 2014, 9, 525–540. [Google Scholar] [CrossRef]
- Suzuki, R.; Takizawa, T.; Negishi, Y.; Hagisawa, K.; Tanaka, K.; Sawamura, K.; Utoguchi, N.; Nishioka, T.; Maruyama, K. Gene Delivery by Combination of Novel Liposomal Bubbles with Perfluoropropane and Ultrasound. J. Control. Release 2007, 117, 130–136. [Google Scholar] [CrossRef]
- Endo-Takahashi, Y.; Negishi, Y.; Nakamura, A.; Ukai, S.; Ooaku, K.; Oda, Y.; Sugimoto, K.; Moriyasu, F.; Takagi, N.; Suzuki, R.; et al. Systemic Delivery of MiR-126 by MiRNA-Loaded Bubble Liposomes for the Treatment of Hindlimb Ischemia. Sci. Rep. 2014, 4, 3883. [Google Scholar] [CrossRef] [Green Version]
- Negishi, Y.; Ishii, Y.; Shiono, H.; Akiyama, S.; Sekine, S.; Kojima, T.; Mayama, S.; Kikuchi, T.; Hamano, N.; Endo-Takahashi, Y.; et al. Bubble Liposomes and Ultrasound Exposure Improve Localized Morpholino Oligomer Delivery into the Skeletal Muscles of Dystrophic Mdx Mice. Mol. Pharm. 2014, 11, 1053–1061. [Google Scholar] [CrossRef] [PubMed]
- Negishi, Y.; Yamane, M.; Kurihara, N.; Endo-Takahashi, Y.; Sashida, S.; Takagi, N.; Suzuki, R.; Maruyama, K. Enhancement of Blood–Brain Barrier Permeability and Delivery of Antisense Oligonucleotides or Plasmid DNA to the Brain by the Combination of Bubble Liposomes and High-Intensity Focused Ultrasound. Pharmaceutics 2015, 7, 344–362. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Huang, C.W.; Wu, J.; Chen, K.J.; Li, S.H.; Weisel, R.D.; Rakowski, H.; Sung, H.W.; Li, R.K. The Use of Cationic Microbubbles to Improve Ultrasound-Targeted Gene Delivery to the Ischemic Myocardium. Biomaterials 2013, 34, 2107–2116. [Google Scholar] [CrossRef] [PubMed]
- Nittayacharn, P.; Yuan, H.X.; Hernandez, C.; Bielecki, P.; Zhou, H.; Exner, A.A. Enhancing Tumor Drug Distribution With Ultrasound-Triggered Nanobubbles. J. Pharm. Sci. 2019, 108, 3091–3098. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.-N.; Wang, Y.; Shen, S.; Xu, C.-F.; Wang, J.; Ye, Q.-N.; Wang, Y.; Shen, S.; Xu, C.-F.; Wang, J. Biomaterials-Based Delivery of Therapeutic Antibodies for Cancer Therapy. Adv. Healthc Mater. 2021, 10, 2002139. [Google Scholar] [CrossRef] [PubMed]
- Hamano, N.; Kamoshida, S.; Kikkawa, Y.; Yano, Y.; Kobayashi, T.; Endo-Takahashi, Y.; Suzuki, R.; Maruyama, K.; Ito, Y.; Nomizu, M.; et al. Development of Antibody-Modified Nanobubbles Using Fc-Region-Binding Polypeptides for Ultrasound Imaging. Pharmaceutics 2019, 11, 283. [Google Scholar] [CrossRef] [Green Version]
- Zarrineh, M.; Mashhadi, I.S.; Farhadpour, M.; Ghassempour, A. Mechanism of Antibodies Purification by Protein A. Anal. Biochem. 2020, 609, 113909. [Google Scholar] [CrossRef]
- Akerstrom, B.; Bjorck, L. A Physicochemical Study of Protein G, a Molecule with Unique Immunoglobulin G-Binding Properties. J. Biol. Chem. 1986, 261, 10240–10247. [Google Scholar] [CrossRef]
- Hamano, N.; Negishi, Y.; Takatori, K.; Endo-Takahashi, Y.; Suzuki, R.; Maruyama, K.; Niidome, T.; Aramaki, Y. Combination of Bubble Liposomes and High-Intensity Focused Ultrasound (HIFU) Enhanced Antitumor Effect by Tumor Ablation. Biol. Pharm. Bull. 2014, 37, 174–177. [Google Scholar] [CrossRef] [Green Version]
- Uster, P.S.; Allen, T.M.; Daniel, B.E.; Mendez, C.J.; Newman, M.S.; Zhu, G.Z. Insertion of Poly(Ethylene Glycol) Derivatized Phospholipid into Pre-Formed Liposomes Results in Prolonged in Vivo Circulation Time. FEBS Lett. 1996, 386, 243–246. [Google Scholar] [CrossRef]
- Ishida, T.; Iden, D.L.; Allen, T.M. A Combinatorial Approach to Producing Sterically Stabilized (Stealth) Immunoliposomal Drugs. FEBS Lett. 1999, 460, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.J.; Garvin, D.; Paguio, A.; Moravec, R.; Engel, L.; Fan, F.; Surowy, T. Development of a Robust Reporter-Based ADCC Assay with Frozen, Thaw-and-Use Cells to Measure Fc Effector Function of Therapeutic Antibodies. J. Immunol. Methods 2014, 414, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Garvin, D.; Stecha, P.; Gilden, J.; Wang, J.; Grailer, J.; Hartnett, J.; Fan, F.; Cong, M.; Cheng, Z.J. Determining ADCC Activity of Antibody-Based Therapeutic Molecules Using Two Bioluminescent Reporter-Based Bioassays. Curr. Protoc. 2021, 1, e296. [Google Scholar] [CrossRef]
- Rapoport, N.Y.; Nam, K.H.; Gao, Z.; Kennedy, A. Application of Ultrasound for Targeted Nanotherapy of Malignant Tumors. Acoust. Phys. 2009, 55, 594–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, H.; Bharate, G.Y.; Daruwalla, J. Polymeric Drugs for Efficient Tumor-Targeted Drug Delivery Based on EPR-Effect. Eur. J. Pharm. Biopharm. 2009, 71, 409–419. [Google Scholar] [CrossRef]
- Gergely, J.; Sarmay, G. The Two Binding-Site Models of Human IgG Binding Fcγ Receptors. FASEB J. 1990, 4, 3275–3283. [Google Scholar] [CrossRef]
- Choe, W.; Durgannavar, T.A.; Chung, S.J. Fc-Binding Ligands of Immunoglobulin G: An Overview of High Affinity Proteins and Peptides. Materials 2016, 9, 994. [Google Scholar] [CrossRef] [Green Version]
- Shiravi, F.; Mohammadi, M.; Golsaz-Shirazi, F.; Bahadori, T.; Judaki, M.A.; Fatemi, F.; Zare, H.A.; Haghighat, F.N.; Mobini, M.; Jeddi-Tehrani, M.; et al. Potent Synergistic Anti-Tumor Activity of a Novel Humanized Anti-HER2 Antibody Hersintuzumab in Combination with Trastuzumab in Xenograft Models. Investig. New Drugs 2021, 39, 697–704. [Google Scholar] [CrossRef]
- Nersesian, S.; Williams, R.; Newsted, D.; Shah, K.; Young, S.; Evans, P.A.; Allingham, J.S.; Craig, A.W. Effects of Modulating Actin Dynamics on HER2 Cancer Cell Motility and Metastasis. Sci. Rep. 2018, 8, 17243. [Google Scholar] [CrossRef]
- Matsumura, Y. Cancer Stromal Targeting Therapy to Overcome the Pitfall of EPR Effect. Adv. Drug Deliv. Rev. 2020, 154, 142–150. [Google Scholar] [CrossRef]
- Nakano, K.; Nishizawa, T.; Komura, D.; Fujii, E.; Monnai, M.; Kato, A.; Funahashi, S.I.; Ishikawa, S.; Suzuki, M. Difference in Morphology and Interactome Profiles between Orthotopic and Subcutaneous Gastric Cancer Xenograft Models. J. Toxicol. Pathol. 2018, 31, 293–300. [Google Scholar] [CrossRef] [PubMed]
Nanobubbles | Size (nm) | Zeta Potential (mV) |
---|---|---|
PEG-NBs | 165.7 ± 4.6 | −24.0 ± 2.6 |
Her-NBs | 172.3 ± 1.5 | −21.6 ± 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yano, Y.; Hamano, N.; Haruta, K.; Kobayashi, T.; Sato, M.; Kikkawa, Y.; Endo-Takahashi, Y.; Tada, R.; Suzuki, R.; Maruyama, K.; et al. Development of an Antibody Delivery Method for Cancer Treatment by Combining Ultrasound with Therapeutic Antibody-Modified Nanobubbles Using Fc-Binding Polypeptide. Pharmaceutics 2023, 15, 130. https://doi.org/10.3390/pharmaceutics15010130
Yano Y, Hamano N, Haruta K, Kobayashi T, Sato M, Kikkawa Y, Endo-Takahashi Y, Tada R, Suzuki R, Maruyama K, et al. Development of an Antibody Delivery Method for Cancer Treatment by Combining Ultrasound with Therapeutic Antibody-Modified Nanobubbles Using Fc-Binding Polypeptide. Pharmaceutics. 2023; 15(1):130. https://doi.org/10.3390/pharmaceutics15010130
Chicago/Turabian StyleYano, Yusuke, Nobuhito Hamano, Kenshin Haruta, Tomomi Kobayashi, Masahiro Sato, Yamato Kikkawa, Yoko Endo-Takahashi, Rui Tada, Ryo Suzuki, Kazuo Maruyama, and et al. 2023. "Development of an Antibody Delivery Method for Cancer Treatment by Combining Ultrasound with Therapeutic Antibody-Modified Nanobubbles Using Fc-Binding Polypeptide" Pharmaceutics 15, no. 1: 130. https://doi.org/10.3390/pharmaceutics15010130
APA StyleYano, Y., Hamano, N., Haruta, K., Kobayashi, T., Sato, M., Kikkawa, Y., Endo-Takahashi, Y., Tada, R., Suzuki, R., Maruyama, K., Nomizu, M., & Negishi, Y. (2023). Development of an Antibody Delivery Method for Cancer Treatment by Combining Ultrasound with Therapeutic Antibody-Modified Nanobubbles Using Fc-Binding Polypeptide. Pharmaceutics, 15(1), 130. https://doi.org/10.3390/pharmaceutics15010130