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Abstract: The synthesis of titania-based composite materials with anticancer potential under visible-
light irradiation is the aim of this study. In specific, titanium dioxide (TiO2) nanoparticles (NPs)
chemically modified with silver were embedded in a stimuli-responsive microgel (a crosslinked
interpenetrating network (IP) network that was synthesized by poly (N-Isopropylacrylamide) and
linear chains of polyacrylic acid sodium salt, forming composite particles. The ultimate goal of
this research, and for our future plans, is to develop a drug-delivery system that uses optical fibers
that could efficiently photoactivate NPs, targeting cancer cells. The produced Ag-TiO2 NPs, the
microgel and the composite materials were characterized through X-ray diffraction (XRD), Fourier
transform infrared spectroscopy (FT-IR), micro-Raman spectroscopy, ultraviolet-visible spectroscopy
(UV-Vis), dynamic light scattering (DLS) and transmission electron microscopy (TEM). Our results
indicated that Ag-TiO2 NPs were successfully embedded within the thermoresponsive microgel.
Either Ag-TiO2 NPs or the composite materials exhibited high photocatalytic degradation efficiency
on the pollutant rhodamine B and significant anticancer potential under visible-light irradiation.

Keywords: composite materials; Ag-TiO2; sol-gel; visible light; photocatalysis; PNIPAM; microgel;
anticancer activity; nanoarchitectonics

1. Introduction

The bioactivity of photoinduced titanium dioxide (TiO2) has been studied in recent
years in order to propose an alternative therapeutic approach, minimizing the side effects
caused by conventional cancer treatments [1]. Pure TiO2 can induce cyto- and genotoxic-
ity through programmed cell death, eradicating cancer cells thanks to its photocatalytic
properties [2,3]. TiO2 is widely used in photocatalysis because it is considered the most
suitable photocatalyst thanks to its high photocatalytic efficiency, physicochemical stability,
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nontoxicity and chemical inertness [4]. The wide energy band gap (Eg) of TiO2 (Eg = 3.2 eV)
allows photon absorbance, mainly in the UV (ultraviolet) range of the spectrum of electro-
magnetic radiation, resulting in the electron-hole-pair production that participates in redox
reactions, degrading organic species [5–9]. It is well known that Ag NPs are widely used in
medical applications thanks to their antibacterial activity [10]. Thus, TiO2 and Ag together
led researchers to focus on the development of silver-doped titania biomedical devices,
coated surfaces for food preparation, filters for air conditioning and other applications [11].

Silver is able to trap the excited electrons from TiO2, leaving the holes available for the
degradation of organic species [12,13]. Silver also permits the extension of TiO2 responses,
including the visible region of the electromagnetic radiation spectrum [14]. Composite
materials that consist of semiconductors and noble metals are considered surface plasmon
resonance (SPR) active under visible light, thanks to the presence of the noble metal [15].
Photoactivated Ag-TiO2 NPs with visible-light exhibit catalytic redox reactions; thus, they
are widely known as plasmonic photocatalysts [9,13]. Furthermore, the need for the
chemical modification of TiO2 by noble metals was based on using a wider range of solar
radiation, including visible light [5,9,13,16].

Plasmonic photocatalysts have attracted significant scientific attention in order to be
used in the catalytic degradation of several organic pollutants or dyes through visible-
light photocatalysis [13,17]. In order to recycle the catalysts and reduce the toxicity that
is related to the nano-size of the particles, the point is to immobilize the selected photo-
catalyst on various substrates, such as silica and polymeric materials [18,19]. An ideal
photocatalytic system must possess the following characteristics [20]: (a) it should facilitate
strong interactions between the supporting material and the photocatalyst, preventing
them from leaching during various experimental processes; (b) independent of the tech-
nique that is selected in anchoring the photocatalyst on the support, it is important for a
photocatalyst to be reactive, providing a large surface area; (c) the resulting photocatalyst
on a support should also be stable over a given time period; and (d) the support must be
resistant to the degradation caused by the produced reactive oxygen species during the
photocatalysis process.

A specific category, that of stimuli-responsive sensitive polymers, especially with a
gel structure, offers a cost-effective alternative to conventional processes for medical and
industrial applications [21–24]. Stimuli-responsive polymers are very sensitive even to
slight changes that are observed in an environmental condition, such as temperature, salt
concentration or pH, showing a sharp change in their properties and behavior [25]. This
different performance can be used in the preparation of so-called smart gel (microgels),
which are crosslinked polymeric particles. These polymeric materials can be considered as
hydrogels if they consist of water-soluble/swellable polymer chains [26].

Moreover, pH-responsive polymeric materials that are composed of acrylic acid deriva-
tives were introduced by M. Palasis [27] because they can attract negatively charged ther-
apeutic agents. When these materials are found at pH values that are above their pKa,
then they become mainly uncharged and thus can controllably release the embedded
therapeutic factors [28]. Dual-sensitive microgels are sensitive to both temperature and
pH and can be prepared through the combination of a polyelectrolyte comonomer and a
thermosensitive monomer, such as NIPAM. Additionally, multiresponsive microgels can be
developed with the proper combinations of the monopolymers that are used [29], and these
materials that can simultaneously respond to more than one stimulus are very promising
in biomedical applications [30]. Using polymers that are responsive to various stimuli and
creating efficient drug-delivery systems contribute to the increased therapeutic effect. Thus,
dual-stimuli-responsive polymers are suitable for theragnostic approaches (a combination
of diagnostics and therapeutics) [31].

Among several synthetic thermosensitive hydrogels, the PNIPAM (poly (N-isopropyl-
-acrylamide)) hydrogel is widely studied with a lower critical solution temperature (LCST)
of ~32 ◦C [32–34]. Below LCST, PNIPAM hydrogel is able to absorb a high amount of water
in a transparent swollen state. Because the temperature increases to temperatures above
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LCST, PNIPAM hydrogel would transition to the collapsed volume state following a drastic,
discontinuous process [35–39]. To prepare aqueous microgel PNIPAM particles with ideal
properties, the precipitation polymerization method is commonly applied [40]. This method
allows the development of PNIPAM microgel particles with a controlled size, a narrow
hydrodynamic diameter distribution and enhanced colloidal stability [41]. Postpolymer-
ization modification reactions can achieve the encapsulation of small organic molecules,
inorganic NPs, biopolymers or synthetic polymers inside the microgel network [42].

Previous studies conducted by our research group have shown that TiO2 [43,44],
N/TiO2 [3] and Ag/TiO2 NPs [45] may occasionally induce apoptosis on highly metastatic
breast cancer cells, after photoactivation with UV-A light. Additionally, we have already
shown that among the common crystal forms of TiO2, which are anatase, rutile and brookite,
pure anatase (100%) was more bioactive, inducing apoptotic cell death on breast cancer cells,
than a combination of anatase and rutile (75% anatase/25% rutile) [43]. Recently, we tried
to estimate the biological effect of polymerically embedded TiO2 NPs under visible-light
irradiation, resulting in the development of efficient pNipam-co-PAA/Ag-TiO2 composite
materials (using nitrogen and iron as dopants), acting as a thermoresponsive drug plat-
form and operating under similar conditions to those that are found in the human body.
We noticed a significant cytotoxic effect on highly metastatic breast cancer cells, which
are associated with oxidative stress [32]. According to our previous systematic and very
promising results, we chose a different combination of the well-studied materials that we
used, in order to optimize the properties of the produced composite. Thus, focusing on
the present study, we aimed for the development of an innovative drug-delivery system
that was designed in order to possess anticancer activity under visible light. Therefore,
thermoresponsive Ag-TiO2-based composite materials were prepared according to the
sol-gel method. The ultimate goal of this research, and for our future plans, was to develop
a system using optical fibers that could efficiently photoactivate nanoparticles—targeting
cancer cells, avoiding the undesirable effect of the conventional therapeutic approaches
and reducing the cost for the health system, thereby supporting those treatments. Hence,
in order to embed the Ag-TiO2 NPs, we synthesized a stimuli-responsive polymer microgel
by using a NIPAM monomer with interpenetrating linear chains of polyacrylic acid sodium
salt to stabilize the Ag-TiO2 NPs. Interpenetrating polymer networks (IPNs) are a category
of polymer blends that are formed as a network, provided that one of the components
is polymerized and/or crosslinked in the presence of the other [22,27,34,38]. IPNs are
composed of multiple polymers in a network form. They are bound by permanent entan-
glements, and only a few accidentally formed covalent bonds between the chains of the
two polymers [32]. Techniques such as X-ray diffraction (XRD), Fourier transform infrared
(FT-IR), micro-Raman, ultraviolet-visible (UV-Vis) spectroscopy, dynamic light scattering
(DLS) and transmission electron microscopy (TEM) were applied in order to confirm that
the produced NPs and composite materials have the proper physicochemical characteristics
and morphology. Furthermore, the degradation of the rhodamine B (RhB) pollutant was
evaluated for the produced nanopowder and the composite materials by using visible-light
irradiation. For the analysis of their anticancer behavior, two breast cancer epithelial cell
lines (MCF-7 and MDA-MB-231) and normal human embryonic kidney cells (HEK 293)
were cultured and treated with the produced materials by using irradiation with visible
light, and cell proliferation and cytotoxicity assays were employed.

2. Materials and Methods
2.1. Preparation and Synthesis
2.1.1. Microgel

The PNIPAM/PAA microgel was formed by surfactant-free precipitation polymeriza-
tion. A monomer of NIPAM (9 × 10−2 mol, N-Isopropylacrylamide > 98%, TCI, Chennai,
India) was adequately purified and then recrystallized using hexane, polyacrylic acid
sodium salt (1.6 × 10−2 mol, MW 15,000 g/mol, Sigma-Aldrich, Darmstadt, Germany)
and MBA (2.6 × 10−4 mol N,N-Methylenebisacrylamide > 99%, Alfa Aesar, Ward Hill,
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MA, USA), which was dissolved in an aqueous solution (final volume at 200 mL). Acting
as a cross-linker for this synthesis, MBA was selected. The reaction mixture was then
purged for 1 h with pure N2 (99.99999%) and afterward heated to 70 ◦C. After this step, KPS
(7 × 10−5 mol potassium persulfate > 99%, Fisher Chemicals, Hampton, NY, USA) was also
added and the polymerization process, starting at a duration of 6 h, under vigorous stirring
(Figure 1). The size behavior of the microgels was estimated by dynamic light scattering
(DLS) at 173◦ optics (Zeta Sizer nano S, Malvern Inst., Malvern, UK).
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Figure 1. Schematic representation of the synthesis of PNIPAM/PAA microgel by surfactant-free
precipitation polymerization.

2.1.2. Inorganic Ag-TiO2 NPs

Employing the bottom-up sol-gel procedure, the synthesis of the TiO2 nanoparticles,
chemically modified with silver, was realized. Thus, 25 mL of titanium isopropoxide (97%,
Sigma-Aldrich, Darmstadt, Germany) was added to acetic acid (48 mL) (99–100%, Chem-
Lab NV, Zedelgem, Belgium) under stirring. Deionized water (150 mL), including 5 mol of
99.8% silver nitrate (Fisher Scientific Chemical, Loughborough, UK), was then added to the
solution, drop-wise under vigorous stirring. After 5 h of stirring, the solution was a clear
sol (titanium isopropoxide, acetic acid and water were used according to 1:10:100 molar
ratio). The new solution was then heated until the solvent had been completely evaporated.
Afterward, the prepared gel was consequently calcinated at 600 ◦C for 2 h. The resulting
nanopowder was triturated, then purified via rinsing and centrifuged in order to remove
any remaining impurities. In the end, it had a gray color (Figure 2).

2.1.3. Composite Nanoparticles

To form the encapsulated NPs, a suspension of chemically modified Ag-TiO2 na-
nopowder was prepared. Specifically, 50 mg of Ag-TiO2 NPs was suspended in 20 mL of
deionized water. The pH value of this suspension was adjusted to 3, using an HCL (1 M)
solution to positively charge them. The first solution was added to 20 mL of microgel
solution. After that, the pH was adjusted to ~6 by using a NaOH (1 M) solution, and the
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composite materials were collapsed. The composites were then cleaned by washing them
three times and finally dried at 70 ◦C (Figure 3).
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2.1.4. Rhodamine B Solution

Rhodamine B (RhB) of an analytical reagent grade was purchased from Penta chemicals
(Prague, Czech Republic); hence, there was no need for further purification. In addition,
1 L of RhB solution was prepared by using deionized water.
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2.2. Characterization Techniques

The physicochemical properties of the produced materials and their structure was stud-
ied through various characterization techniques, particularly XRD, infrared spectroscopy
and micro-Raman spectroscopy. X-ray diffraction (XRD) experiments were realized by
using an angle 2-theta configuration, at a scan rate of 0.1◦/min, in an ancle range of 20◦–80◦,
applying Cu-Kα radiation (30 kV, 15 mA) (λ = 1.5418 Å) (XRD by Bruker D8 Advance, Yoko-
hama, Japan). To perform Fourier transform infrared spectroscopy (FT-IR), a Brucker alpha
II, platinum ATR was used, and 16 scans were performed to obtain each spectrum. The
resolution was 4 cm−1. An ultraviolet-visible (UV-Vis) spectrometer (Jasco UV/Vis/NIR
Model name V-770, Tokyo, Japan), equipped with an integrating sphere, allowing diffuse
reflectance measurements, was used to measure the energy band gap of the produced
particles. The InVia model from Renishaw was the micro-Raman device that was used (Ren-
ishaw, InVia, Wotton-under-Edge, Gloucestershire, UK). A solid-state laser (λ = 532 nm)
as well as a high-power near-infrared (NIR) diode laser (λ = 785 nm) were utilized as
excitation sources. The measurements were acquired at room temperature (RT) and in
backscattering configuration. In order to avoid heating the samples, low excitation power
was applied. Additionally, the beam of the laser was directed, and in order to be focused
on the samples, an 50-times short-distance magnification lens was used. An internal SI
reference was used for the calibration of the frequency shifts. For each sample that was
exposed for 10 s, a number of 2–3 spots were acquired, with 2–10 accumulations.

The hydrodynamic diameter of the produced composite particles and the correspond-
ing zeta potential of particles suspended in deionized water zeta potential were evaluated
through dynamic light scattering (DLS) using a Zeta Sizer nano S (Zeta Sizer nano S,
Malvern Inst., Malvern, UK). Finally, the morphology of the composite materials was
studied via TEM (TEM-FEI Talos F200i field-emission (scanning) ThermoFisher Scientific
Inc., Waltham, MA, USA), which was operating at 200 kV. The device was equipped with
a windowless energy-dispersive spectroscopy microanalyzer (6T/100 Bruker, Hamburg,
Germany) [32].

2.3. Photocatalytic Test

Evaluating the photocatalytic efficiency of the Ag-TiO2 NPs and the composite ma-
terials by using illumination with visible light, a series of experiments was conducted.
Visible irradiation was emitted by a system of four parallel daylight lamps (15 W, Sylvania,
Wilmington, NC, USA) (3 mW·cm−2, 350–750 nm) that were placed in a lab-made photore-
actor. The samples were placed in glass containers, in a stand at distance of 10 cm from the
lamps. RhB was the pollutant that was studied, testing its photocatalytic degradation when
irradiated with visible light. A standard procedure was applied before each photocatalytic
run, including the saturation of the solution in oxygen, by bubbling O2 gas through it for
2 h and maintenance in the dark for 24 h, in order to achieve an equilibrium between ad-
sorption and desorption. Then, 5 mg of the Ag-TiO2 NPs or the composites were placed in
the appropriate glass containers with the addition of 5 mL of RhB solution (0.01 M). All this
experimental procedure was held under continuous stirring. During the photocatalytic test
that lasted for 150 min, every 30 min, an amount of RhB was taken in order to measure its
concentration. The ratio of C/C0 pollutant concentrations was obtained by the evaluation
of the ratio of the absorption that was measured at each time point (A) to the initial (Ainitial)
absorption [32,46]. A statistical analysis was conducted by applying the nonparametric
Kruskal–Wallis statistical analysis; p < 0.05 was considered statistically significant.

2.4. Biological Anticancer Effect
2.4.1. Cell Cultures

Three cell lines, HEK293 (ATCC, LGC Standards GmbH, Wesel, Germany (ACRL-
1573), human epithelial kidney embryonic cells, normal), MDA-MB-231 (ATCC, HTB26),
highly invasive, human epithelial breast adenocarcinoma) and MCF-7 (ATCC, HTB-22),
Michigan Cancer Foundation (MCF)-7 (epithelial breast adenocarcinoma, low metastatic),
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were cultured in cell-culture dishes, using the appropriate media (Dulbecco’s modified
Eagle’s medium (DMEM) (Gibco BRL, Life Technologies, ThermoScientific, Paisley, UK)),
which were supplemented with 10% fetal bovine serum (FBS), 1% L-glutamine, 1% sodium
pyruvate and antibiotics (Gibco, Paisley, UK). The cell cultures were maintained through
incubation at 37 ◦C, 99% humidity, in a 5% CO2 incubator. For the trypsinization of cells, a
mixture of trypsin–EDTA at 0.05%/0.02% (w/v) (Gibco, UK) was used [45].

2.4.2. Estimation of Cell Proliferation Rate

The effect of all the produced materials on the proliferation of the cell population of
the cultured cells was studied. Hence, for the needs of cell counting, ~100,000 cells/well
were needed to be cultured in 6-well plates and incubated for 24 h. The day after plat-
ing, increasing concentrations of Ag/TiO2 NPs, PNIPAM/PAA salt and PNIPAM/PAA
microgel/Ag-TiO2 were added. Then, the samples were photoactivated with visible light
for 30 min using an incorporating venting system to avoid any thermal effects. It was crucial
to select the minimal time of illumination of the NPs and the composite materials, as well
as the optimal concentrations. Hence, the experiment needed to be repeated several times,
under different conditions. When, finally, the ideal conditions were chosen, the experiment
was conducted three times in triplicate. Staining with Trypan Blue and counting via a
hemocytometer (Neubauer, Corning, the Netherlands) through optical observation (OLYM-
PUS IM, Olympus Deutschland GmbH, Hamburg, Germany) was performed every 24 h,
to create growth-rate graphs [47]. A statistical analysis was implemented employing the
nonparametric Kruskal–Wallis method; p < 0.05 was considered statistically significant [48].

2.4.3. Cytotoxicity Test

The percentage of the viable cells was estimated through MTT colorimetric assay [3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] (Thiazolyl Blue Tetrazolium
Bromide M5655, Sigma-Aldrich, Darmstadt, Germany), as described previously [43,44].
Cells treated with 0.75 mg/mL of cisplatin were considered as the positive control of
the series of experiments. A blind sample including a cell-culture medium without cells,
untreated cells (negative control) and the cell samples was irradiated with visible light,
without Ag-TiO2 NPs or composites (extra negative control). Under the same conditions,
the experiment was finally repeated three times in triplicate. A statistical analysis was
performed using the nonparametric Kruskal–Wallis test; p < 0.05 was considered statistically
significant [48].

3. Results and Discussion
3.1. Characterization of the Nanoparticles and the Composite Materials
3.1.1. XRD Analysis

XRD was principally used to investigate the Ag-TiO2 NPs crystallinity but also the
crystallinity of the produced microgel powder and the composite material. Figure 4 shows
that anatase is the dominant crystal phase of Ag-TiO2. In specific, the main and highest
diffraction peak of anatase was detected at 2θ = 25.35◦, which belongs to (101) crystal
plain. The other detected peaks of anatase phase were found in accordance with the PDF
No 03-065-5714 [6,7,12,16,33,49]. According to the literature, the peaks of Ag-TiO2 NPs
at 2θ, specifically 25.3◦, 37.8◦, 48.0◦, 53.9◦, 55.1◦, 62.7◦, 68.8◦, 70.2◦ and 75.0◦, seemed
to correspond to the (101), (004), (200), (105), (211), (204), (116), (220), (213) and (215)
crystal plains of anatase [50]. These intense peaks reflected the high crystallinity of Ag-
TiO2/microgel and confirmed the successful loading of TiO2 into the PNIPAM microgel
polymeric matrix, decreasing the crystal distances [51]. There is a characteristic peak at
2θ = 46.2◦ that corresponds to the formation of silver phase, according to the PDF-2-
2003 [52,53].



Pharmaceutics 2023, 15, 135 8 of 28

Pharmaceutics 2023, 15, x FOR PEER REVIEW 8 of 31 
 

 

employing the nonparametric Kruskal–Wallis method; p < 0.05 was considered statisti-
cally significant [48]. 

2.4.3. Cytotoxicity Test 
The percentage of the viable cells was estimated through MTT colorimetric assay [3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] (Thiazolyl Blue Tetrazo-
lium Bromide M5655, Sigma-Aldrich, Darmstadt, Germany), as described previously 
[43,44]. Cells treated with 0.75 mg/mL of cisplatin were considered as the positive control 
of the series of experiments. A blind sample including a cell-culture medium without cells, 
untreated cells (negative control) and the cell samples was irradiated with visible light, 
without Ag-TiO2 NPs or composites (extra negative control). Under the same conditions, 
the experiment was finally repeated three times in triplicate. A statistical analysis was 
performed using the nonparametric Kruskal–Wallis test; p < 0.05 was considered statisti-
cally significant [48]. 

3. Results and Discussion 
3.1. Characterization of the Nanoparticles and the Composite Materials 
3.1.1. XRD Analysis 

XRD was principally used to investigate the Ag-TiO2 NPs crystallinity but also the 
crystallinity of the produced microgel powder and the composite material. Figure 4 shows 
that anatase is the dominant crystal phase of Ag-TiO2. In specific, the main and highest 
diffraction peak of anatase was detected at 2θ = 25.35°, which belongs to (101) crystal 
plain. The other detected peaks of anatase phase were found in accordance with the PDF 
No 03-065-5714 [6,7,12,16,33,49]. According to the literature, the peaks of Ag-TiO2 NPs at 
2θ, specifically 25.3◦, 37.8°, 48.0°, 53.9°, 55.1°, 62.7°, 68.8°, 70.2° and 75.0°, seemed to corre-
spond to the (101), (004), (200), (105), (211), (204), (116), (220), (213) and (215) crystal plains 
of anatase [50]. These intense peaks reflected the high crystallinity of Ag-TiO2/microgel 
and confirmed the successful loading of TiO2 into the PNIPAM microgel polymeric ma-
trix, decreasing the crystal distances [51]. There is a characteristic peak at 2θ = 46.2° that 
corresponds to the formation of silver phase, according to the PDF-2-2003 [52,53]. 

 
Figure 4. XRD patterns of Ag-TiO2 nanoparticles (in black), PNIPAM/PAA salt (in red) and 
PNIPAM/PAA microgel/Ag-TiO2 (in blue). 
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No diffraction peaks were observed that correspond to the existence of impurities,
such as Ag or Ag oxides, confirming that chemical modification did not disturb the anatase
phase. Moreover, the fact that there is an absence of any impurity phases indicated that the
integration of the silver ion was successful in the matrix of the TiO2 [54].

Owing to the low concentration of Ag and overlapping by the TiO2 characteristic peak
(2θ = 37.8◦) at 2θ = 38.1◦, the corresponding peaks appeared relatively weak in the XRD
pattern. The major diffraction peaks shifted toward the lower 2θ values that are obtained
and became broader as the doping ion concentration increases. This phenomenon can
be attributed to the lattice strain that is present in the samples [50,54] and attributed to
the embedment in the semicrystal polymer network. With regard to the PNIPAM/PAA
salt, the XRD patter shows a single broad diffraction peak centered at 2θ of ~21◦, which is
characteristic of amorphous PNIPAM [51,55]. In general, the crystallinity of pure PNIPAM
is 0%, so the XRD pattern indicates a totally amorphous situation. In contrast with pure
PNIPAM, the grafting-PNIPAM polymer microgel indicates an increased crystallinity. This
suggests the formation of crystalline regions, as a result of grafting process, which were
present as a consequence of the existence of H-bonding interactions between the OH
groups of pectin chains and the NH groups of PNIPAM [56]. So hybrid microgels can be
crystallized, but pure microgels do not exhibit any peak in XRD spectra [37]. The broadness
in peak is due to copolymerization [57] and confirms the grafting of poly(acrylic acid)
sodium salt chains onto PNIPAM. Additionally, the pattern exhibited a sharp crystalline
peak at 2θ = 26.7◦, 27.8◦, ~30◦, 39.8◦ and other microcrystalline peaks. Thus, the pattern
suggests that the graft-polymerization process and the cross-linking created crystalline
given that the distance between the molecules was reduced [57,58]. Possible slight lattice
deformation was caused by the bonding of Ag-TiO2 and the polymer [59]. However, the
diffraction peaks were broad, indicating that the crystal size was very small. The mean
crystal size of the produced Ag-TiO2 NPs was estimated by Scherrer’s equation [32]. Thus,
through these measurements and calculations, the average crystallite size was estimated
at 9.52 nm.

3.1.2. FT-IR Analysis

The characteristic of the PNIPAM gels is the three regions of wavenumbers: 1680–1500,
1420–1350 and 1300–1100 cm−1 [60]. The origin of the peaks and the differences between
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the spectra appear as consequences of the water exchange and the spontaneous reswelling
transition of PNIPAM microgels and the ionization. The peak at 1713 cm−1 indicates the
coexistence of hydrogen-bonded (HB) and non-hydrogen-bonded (NHB) carboxyl groups.
The intensity of this peak at 1713 cm−1 is not large enough but exists. As Figure 5 depicts,
four peaks (1745, 1731, 1715 and 1695 cm−1) are detected. The peak that corresponds to the
C=O stretching vibration between the NHB carboxyl group is present at 1740 cm−1 [60,61].
The peak of the C=O stretching vibration of the HB group (dimeric form) is observed at a
lower wavenumber (1710 cm−1) [60,61].
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PAM/PAA microgel/Ag-TiO2 composite (in blue).

The peaks that appeared at 1745 and 1731 cm−1 may be associated with the C=O NHB
carboxyl group’s stretching vibration (“free” C=O). The peaks at the region of 1715 and
1695 cm−1 could be assigned to the C=O stretching vibration of the HB carboxyl groups
(C=O, H-O). A sharp peak at 1644 cm−1 is observed in the spectrum that corresponds to
the amidic C=O NIPAM groups. The coupled peaks that correspond to the C=O stretching
vibration and the O-H bending vibration in the hydrogen bonding between two carboxyl
groups of the monomer lead to the formation of the broad peak at 1300–1200 cm−1. For the
major bands of amide I and amide II (1680–1500 cm−1) [61,62], the one corresponding to
amide I (located between 1680 and 1580 cm−1) is related to the C=O stretching vibration
of the amide group of NIPAM. The amide II band (located between 1580 and 1500 cm−1)
seems to be derived from the N-H bending vibration of the amide group of NIPAM. For the
region of 2800–3800 cm−1, the width and the corresponding intensity of the bands is related
to the absorbance of water, so the broad absorptions around 2800–3400 cm−1 are relevant
to the O-H bonds [33,35]. The embedded Ag-TiO2 NPs reduce the capacity of the network
in water absorption, possibly because the NPs have entered the pores of the network. The
reduction in the intensity in the 2500–340 cm −1 bands indicates the reduction in the water’s
absorbance. The peaks that appeared in the region of 400–900 cm−1 are characteristic of
the existence of a O-Ti-O lattice and a Ti-O stretching mode peak of around ~1630 cm−1

and correspond to the bending vibration of the H-O bond, which confirms that there is a
formation of a metal oxygen bond [54,63,64].
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3.1.3. Raman Analysis

Figure 6a demonstrates several characteristic bands at 142, 196, 395, 515 and 637 cm−1,
corresponding to Eg(1), Eg(2) B1g(1), A1g and Eg(3), submodes of the anatase crystal phase
of commercial Evonik p25 TiO2, respectively. Regarding the Ag-TiO2 NPs, it seems that
the spectrum is characterized by Raman peaks similar to those of pure TiO2, with minor
differences. Probably, for these red shifts, Ag NPs modification is responsible, which tends
to construct the Schottky barrier [65]. The peak intensities were found to be decreased,
whereas the width of the peak increased, thanks to the lattice distortion and the presence of
defect levels [66]. Additionally, the Raman spectra of Ag-TiO2 NPs exhibit no other peaks
related to the brookite/rutile phase, confirming that all particles are in a single anatase
phase [12,32]. The main Ag-O symmetric stretching (SS) vibration band of Ag2O expected
at 490 cm−1 might be masked under the 515 cm−1 strong anatase band. Furthermore,
it seems that Ag-TiO2 NPs succeed at preserving the anatase structure. This suggestion
means that Ag dopants were incorporated into the structure of the TiO2 framework. Raman
bands at 146 cm−1 slightly shifts toward increasing wavenumbers, increasing the silver ion.
Generally, the shift that is observed in a Raman peak appears to be due to the detectable
alternation in the size of the particles, their structure and the nature of defects. However,
the broadening of the peaks is also depicted. This could be attributed to the particle size
effect on the force constants and also to the vibrational amplitudes [54].
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Changes were detected on the bands of PNIPAM, which are sensitive to hydrogen
bond variations and can be explained through the different interactions between polymers,
as well as among the polymer side groups and the available water molecules close to
them. Thus, the Raman spectrum is characterized by an SS of CH3 (2880 cm−1), an SS
and an antisymmetric stretching (AS) of CH2 (2920 cm−1 and 2945 cm−1, respectively)
and an AS of CH3 (2988 cm−1) (see Figure 6b). In general, a significant red shift of the
spectral weight between the two main peaks was related to the CH2 SS and AS modes of
the methylene group. The intensity ratio between the SS and AS modes (lower and higher
frequency, respectively) corresponds to the density of the lateral packing of any polymer
chain [32,67,68]. The signals at 1650 cm−1 correspond to the carbonyl group and appear
in both monomers. Additionally, the detected signal at 2920 cm−1 that corresponds to the
Raman red shift of the methyl group is detected only in the Raman spectrum of the NIPAM
monomer [32,61,69].

As we indicated in our previous work, in the frequency region of 2850–3050 cm−1, the
detected peaks were assigned to the existence of different stretching modes, namely C-H of
the molecule NIPAM in the hydrate state, at 2880 cm−1 to the SS of CH3, whereas peaks at
2920 cm−1 and 2945 cm−1 correspond to the SS and AS of CH2, respectively. Finally, the
obtained peak at 2988 cm−1 is related to the AS of CH3 [32].

3.1.4. Energy Band Gap Estimation

The energy band gap of a semiconductor indirectly determines the energy that should
be provided to excite an electron that leaves the valence band (VB) and transmits to
the conduction band (CB). An accurate evaluation of the energy band gap is crucial to
predicting the photophysical and photochemical properties of semiconductors [70]. The
optical properties were analyzed in the wavelength range of 300–850 nm by UV-Vis diffuse
reflectance spectra (DRS). The powder reflectance and the Eg were measured through the
Kubelka-Munk (K-M) method, as it was previously described [32] (Figure 7a,b).
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Figure 7. (a) F(R) reflectance as a function of wavelength for Ag-TiO2 nanoparticles. (b) Optical
energy band gap (Eg) of the Ag-TiO2 nanoparticles.

The Eg of the commercial pure Evonik P25 was measured, which was Eg = 3.1 eV [32],
and the produced Ag-TiO2 NPs revealed that there is a decrease in Eg (Eg = 2.32 eV), in
comparison with pure anatase, owing to chemical modification with Ag. This finding is
perhaps associated with enhanced photocatalytic behavior visible-light irradiation, because
under the chemically modified photocatalyst needed lower energy for its photoactivation,
overcoming the Eg [70].
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3.1.5. Dynamic Light Scattering (DLS)

The determination of the hydrodynamic diameter (Dh) of the polymeric IP network
(microgel PNIPAM/PAA salt) particles was achieved through DLS, within a temperature
range of 25–45 ◦C, at a constant pH value of ~7.4.

A red laser beam that was operating at 633 nm was used for the measurements. An
amount of 1 mL of the microgel PNIPAM/PAA salt was placed in a proper DTS1070-
type capillary cell (Malvern Instr., Malvern, UK) and measured. Volume phase transition
temperature (VPTT) was defined as a direct, perpetual transition in the Dh volume, at
the swollen phase and the collapsed phase [26,32,38]. The DLS data that are shown in
Figure 8 indicate that the collapsed Dh of the microgel was ~322 nm, whereas the swollen
Dh was ~720 nm. The VPTT was evaluated by plotting the first derivative of the particle
diameter versus temperature [32]. We estimated the VPTT of the sample to be around
37.6 ◦C, and thus, a shift toward higher values was observed, compared with the VPTT
that was reported for PNIPAM. Hence, this VPTT is considered suitable for applications in
drug-delivery systems in biological environments, such as the human body. The selection
of the copolymer and the optimal selection of the time interval among the addition of the
two monomers of the graft-polymerization process can result in this shift. In temperatures
below the VPTT, in an aqueous solution, the chains are still soluble, thanks to the presence
of hydrogen bonds that are formed among water and amine chains. In temperatures over
the VPTT, a significant amount of water is finally discarded from the microgel; thus, the Dh
volume appears to shrink [32].
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Figure 8. Size (Dh—hydrodynamic diameter) of the microgel PNIPAM/PAA salt, as a function
of temperature through DLS. The suspension pH was equal to 7.4. The red dash line underlines
the VPTT, which corresponds to 37.6 ◦C. The data represent means ± standard deviation from
three experiments.

The aqueous solution of Ag-TiO2 NPs was measured at a pH of 7.4 and the corre-
sponding zeta potential measurements revealed very stable suspensions, as demonstrated
in Figure 9 (ZP = (−53.5 ± 6) mV).
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Figure 9. Zeta potential distribution of Ag-TiO2 nanoparticles via DLS. The suspension pH was equal
to 7.4.

3.1.6. TEM Analysis

The observation of the morphology of all the produced composite NPs and the IP
network microgel/Ag-TiO2 NPs was performed with transmission electron microscopy
(TEM). The images of the PNIPAM/PAA microgel/Ag-TiO2 are shown in Figure 10a–e.
PNIPAM/PAA microgel/Ag-TiO2 composite was examined using TEM to visually deter-
mine the extent of Ag-TiO2 loading [38]. In the sample, several microgel particles appeared
as clear objects, with sizes of approximately ~600 nm, but some particles baffled each other
because of the TEM measurement, which led to a concentrated sample of hybrid microgels
dispersion, under the intensity of the electron beam [71]. The measured diameter of the
hybrid microgel particles might be lower than that was measured by DLS (see Figure 8),
which might be attributed to a significant decrease in Dh on the drying microgel sample,
placed on the grid for TEM measurement [71]. The observed dark black spots in the TEM
image represent Ag-TiO2 nanoparticles that were loaded into the microgel (Figure 10a,c–e).
Figure 10a,c,d show the typical morphology and surface of the produced composite Ag-
TiO2/microgel NPs, compared with pure TiO2 (Figure 10f) and Ag NPs (Figure 10g). The
TEM images of the hybrid microgels showed that Ag-TiO2 nanoparticles are uniformly
distributed in the PNIPAM/PAA salt and not aggregated, as is clear in Figure 10a,b. Re-
garding the Ag-TiO2 NPs, the TEM images (Figure 10a,c–e) clearly show the sphere-like
synthesized material. Observation revealed that TiO2 NPs were crystallized well, with
a lattice-fringe spacing of 3.55, 2.34, 1.70, 0.24, 1.50 and 1.89 nm, and these findings well
match the d-spacing of (101) (112) (105) (004) (213) and (200) planes of anatase TiO2. Ag
NPs could be found on the surface TiO2 (in a decorated type) (Figure 10d,e,h,i) [11]. Ag NPs
appear with a lattice-fringe spacing of 0.2 nm, which adequately matches the d-spacing
of (002). The dopant Ag was well distributed. The Ag-TiO2 has many black–gray col-
ored dots, in contrast. It is important to highlight that these TEM findings might verify
the size scale of the Ag-TiO2 NPs, as was previously recorded by XRD [12,50,72]. The
energy-dispersive spectroscopy (EDS) analysis of Ag-TiO2/microgel composite is also
displayed in Figure 11. It seems that the Ag and Ti elements were incorporated and
distributed in the polymer microgels, confirming that Ag-TiO2 NPs were successfully
formed. Figure 10c,d clearly indicate the successful embedment of the Ag-TiO2 NPs in the
polymeric network.
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Figure 10. Transmission electron microscopy images of (a) the spherical particle of microgel with
embedded Ag-TiO2 nanoparticles, (b) the PNIPAM/PAA microgel Ag-TiO2 NPs, (c) the outline
of a microgel particle, (d) a microgel particle with embedded Ag-TiO2 nanoparticles and lattice
measurement spacing, (e) embedded Ag-TiO2 nanoparticles with lattice measurement spacing,
(f) TiO2 nanoparticles, (g) Ag nanoparticles and (h,i) TiO2-decorated Ag nanoparticles.
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3.2. Photocatalytic Activity Experiments
3.2.1. Photocatalytic Efficiency and Kinetics

RhB (C28H31CIN2O3) was chosen as a stable pollutant for the photocatalysis exper-
iments to test the prepared TiO2 basis materials. RhB is a basic red dye of the xanthene
class, which has been commonly used as a colorant in foodstuffs and in textiles. It is
one of most hazardous types of textile waste and is considered as carcinogenic because it
consists of radical compounds that potentially cause damage to the ecosystem [73]. Several
inorganic semiconductor materials were used as photocatalysts to degrade wastewater, and
many of them have been widely studied [8,9,13,74]. The photocatalytic experiments were
implemented at room temperature and at pH of 7.4 (simulating the biological environment),
in order to certify the photocatalytic ability of the Ag-TiO2 NPs and composites, before
testing their biological effect on cancer cells. The photocatalytic efficiency of the produced
materials was estimated under appropriate visible-light illumination.

Figure 12a depicts the photocatalytic activity of all the produced materials under
visible irradiation for 150 min. Figure 12 shows that a significant amount of pollutant
has been degraded at 150 min, indicated by the removal of RhB by more than over 95%
for the case of the composite Ag-TiO2/microgel. Additionally, it is revealed that the
produced composites are superior to Ag-TiO2 NPs regarding their photocatalytic activity
under visible-light irradiation conditions, and this superiority was statistically significant,
according to the Kruskal–Wallis test. This might be because the microgel could act as a
bridging mean, keeping the photocatalyst closer to the pollutant compared with the case of
its absence. However, pure Ag-TiO2 can also degrade the pollutant, but not as efficiently.
Both Ag-TiO2 and Ag-TiO2/microgel show statistically significantly different behavior
than the microgel itself, or the light itself (photolysis sample) leaves the pollutant RhB
totally unaffected.
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Figure 12. (a) Degradation curves of rhodamine B for Ag-TiO2, PNIPAM-co-PAA microgel and
PNIPAM -co-PAA Ag-TiO2 composite as a function of time, under visible-light irradiation. The
phenomenon of rhodamine B photolysis and its degradation in the dark are also studied. The
data represent means ± standard deviation from three experiments. In these series of experiments,
* p < 0.05 was considered statistically significant. (b) Photocatalytic kinetics of the degradation of
rhodamine B for Ag-TiO2, PNIPAM-co-PAA microgel and PNIPAM-co-PAA Ag-TiO2, according to a
linear pseudo-first-order model.

First-order kinetics, which were obtained through the Langmuir–Hinshelwood equa-
tion, were normalized for the reactions that occurred at the liquid–solid interface, following
a standard methodology, which was previously described [18,32,75] (Figure 12b).
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For the colored compounds, such as pigments, inks and dyes, their degradation rate
commonly increases as the dye concentration increases, but as soon as it attains a critical
specific concentration level, it begins to decrease. This reduction in the degradation rate
with the increasing concentration of the pollutant could be attributed to the screening of
UV-visible-light radiation by the dye molecules, before finally reaching the catalyst surface.
Actually, the catalyst concentration can be adjusted for the concentration of the organic
compound, so that it can be considerably adsorbed on the photocatalyst surface and thus
efficiently degraded [76]. In order to be in accordance with the typical concentrations of the
pollutants that are found in real wastewater, the common degradation studies also apply
similar concentrations of the organic dyes, in the range of 10–200 mg/L. The same strategy
was employed in the present study.

Table 1 gathers the evaluated photoinduced degradation rate constant (kapp) and the
coefficient R2 of the linear regression that fit for all the tested materials. As shown through
the R2 values, the linear kinetic model seems to satisfactorily fit in all the experimental
data. The composite material exhibits the best photocatalytic performance. The intrinsic
absorbance of RhB dye measured at 554 nm was used to calculate the removal efficiency by
using Equation (1):

Removal efficiency (%) =
C0 − C

C0
·100 (1)

Table 1. R2—linear correlation coefficients; kapp—photocatalytic degradation rate constant, for the
produced materials and pure rhodamine B solution.

Material R2 Kapp (min−1) Degradation %

Microgel 0.86271 2.96 × 10−4 4.1%
Rhodamine B 0.95107 3.37 × 10−4 4.76%

Ag-TiO2 0.91016 1.13 × 10−2 85.3%
Ag-TiO2/microgel 0.96734 1.84 × 10−2 95%

3.2.2. Effect of Radical Scavengers—Proposed Reaction Mechanism

In order to investigate the main reactive species, including h+, ·OH and ·O2
−, which

were produced during the photocatalytic degradation of RhB, the trapping series of ex-
periments were implemented in the presence of the radicals’ scavengers, determining the
photocatalytic mechanism of the Ag-TiO2 NPs. Thus, ethylenediaminetetraacetic acid dis-
odium salt (EDTA-2Na), benzoquinone (BQ) and isopropanol (IPA) were introduced, acting
as scavengers, to test the effect of ·OH, ·O2

− and h+ active species in the photocatalytic
experiment, respectively [77,78] (Table 2).

Table 2. Reactive oxygen species and h+ can be trapped by various scavengers.

Scavenger ROS

EDTA-2Na hole (h+)
BQ superoxide radicals(·O2

−)
IPA hydroxyl radical (·OH)

The results demonstrated that the photocatalytic degradation efficiency of Ag-TiO2 NPs
decreased in the presence of scavengers, and this decrease is statistically significant [73,78]
(Figure 13). The photocatalytic studies with scavengers were performed under the same
test conditions as those previously mentioned in the absence of them (see Section 3.2.1).
The concentration of RhB/scavenger solutions were set at 0.001 M [53,78]. In Table 3, the
calculated photoinduced degradation rate constant (kapp) and the R2 coefficient of the linear
regression are presented, fitting for all the scavengers.
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Figure 13. (a) Photocatalytic degradation curves of RhB in the presence of Ag-TiO2 and the radicals’
scavengers (ethylenediaminetetraacetic acid disodium salt (EDTA-2Na), benzoquinone (BQ) and
isopropanol (IPA)). The data represent means ± standard deviation from three experiments. In these
series of experiments, * p < 0.05 was considered statistically significant. (b) Photocatalytic kinetics of
the same samples, according to a linear pseudo-first-order model.

Table 3. Linear correlation coefficients (R2) and photocatalytic degradation rate constant (kapp) for all
the scavengers.

Ag-TiO2 R2 Kapp (min−1)

EDTA-2Na 0.87798 3.85 × 10−3

BQ 0.94117 8.86 × 10−3

IPA 0.76272 3.88 × 10−3

The presence of IPA led to a statistically significant reduction in the photodegrada-
tion, indicating hydroxyl radical as the dominant ROS species [53,78]. The photocatalytic
degradation efficiency of Ag-TiO2 was inhibited more when EDTA-2Na was used, prov-
ing that the most reactive species of prepared Ag-TiO2 in the photodegradation process
were h+ (Figure 14). In IPA trapping experiments suggested that ·OH was another im-
portant photocatalytic active agent in Ag-TiO2. By contrast, the function of ·O2

− is the
lowest in the presence of all the reactive agents, and it was obtained from the trapping
experiments [77,79].
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Figure 14. Percentage of degradation of rhodamine B by Ag-TiO2 nanoparticles (in black) and also
in the presence of scavengers: ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) (in blue),
benzoquinone (BQ) (in red) and isopropanol (IPA) (in purple). The data represent means ± standard
deviation from three experiments. In these series of experiments, * p < 0.05 was considered statisti-
cally significant.
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3.2.3. Photocatalytic Mechanism

Photocatalysis is a quite complex process. Generally, the photocatalytic reaction
depends on the wavelength, the light (photon) energy and the type of the catalyst. The
photocatalytic mechanism includes the following steps, according to the literature [8,13,17]:

(a) Upon irradiation with an appropriate light source, providing energy at minimum
equal to the value of the photocatalyst Eg, the electrons that exist on the VB are
agitated and finally move to the CB of the semiconductor. As a consequence, positively
charged holes are left in the VB of the semiconductor, oxidizing donor molecules and
reacting with the available water molecules in order to generate hydroxyl radicals
that have strong oxidizing potential, which is capable of degrading various pollutants
or damaging or killing biomolecules, leading cells to undergo apoptosis.

(b) The electrons of the CB are ready to react with the nearby dissolved oxygen species,
forming superoxide ions; thus, these electrons can induce and mediate the redox reactions.

(c) The electrons and the produced holes undergo consequent oxidation and reduction
reactions with any species that are adsorbed on the semiconductor surface, giving the
necessary products as separate for a short time.

According to a research report [75], depending on the reaction conditions, the holes
and the ·OH radicals, ·O2

−, H2O2 and O2 play crucial roles during the photocatalytic
reaction process. Especially, the increased photocatalytic activity of Ag-TiO2 NPs against
RhB dye could be easily explained by the SPR effect of Ag and by the visible-light absorption
by RhB on the catalyst surface (Figure 15). The SPR of Ag is responsible for the production
of electrons and holes (separated charges) in the presence of visible light. Again, RhB*,
excited by visible-light irradiation, can transfer electrons to the CB of the semiconductor
(TiO2) and thus lead to the generation of RhB+, which is then degraded through oxidation.
Additionally, the electrons (CB electrons of TiO2) are transferred to Ag particles. The
electron that is generated by the SPR of Ag and the transferred electron from the CB of
TiO2 (from RhB*) are absorbed by the O2, which can further produce ·O2

−. The superoxide
radicals (·O2

−) further generate ·OOH, ·OH and ·H2O2, which can degrade the dye [13,14].
Figure 16 schematically represents the photocatalytic degradation of RhB, by Ag-TiO2 NPs,
under visible-light irradiation.
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3.3. Biological Effect
3.3.1. Effect on Cell Proliferation

MDA-MB-231 (cell line with metastatic profile), MCF-7 (low metastatic potential)
and HEK293 (normal cells) were treated with increasing concentrations of Ag-TiO2 NPs,
PNIPAM/PAA salt and PNIPAM/PAA microgel/Ag-TiO2. In particular, the concentration
of the dispersions that was tested was selected as being in the range of 0–0.75 mg/mL.
Additionally, the counting of the cells allowed the creation of growth rates, estimating the
proliferation rate. There was no significant effect on the cell proliferation of HEK 293 cells
in the presence of any of the produced material (Figure 17a–c), even after visible-light
irradiation; thus, normal cells were left unaffected. Various other studies have indicated
that primary rat hepatocytes, human lung fibroblasts and other types of normal cells
were not affected by TiO2 NPs [12]. Moreover, Ag-TiO2 NPs, PNIPAM/PAA salt and
PNIPAM/PAA microgel/Ag-TiO2 before and after irradiation had no effect on MCF-7 cells,
whereas cisplatin significantly decreased this cell population (Figure 18a–c).
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Figure 17. Growth rates of HEK293 cell line, with the addition of (a) PNIPAM/PAA salt, (b) Ag-
TiO2 NPs and (c) PNIPAM/PAA microgel/Ag-TiO2. There was no effect on cell proliferation, as
the concentration of each of the tested materials increased. Additionally, irradiation with visible
light did not affect their proliferation. In these series of experiments, p < 0.05 was considered
statistically significant.
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Figure 18. Growth rates of MCF-7 cell line, with the addition of (a) PNIPAM/PAA salt, (b) Ag-TiO2

NPs and (c) PNIPAM/PAA microgel/Ag-TiO2. There was no detectable effect on cell proliferation
in the presence of each of the produced materials in increasing concentrations, even after their
photoactivation. Samples treated with cisplatin were used as positive controls in the experiment. In
these series of experiments, p < 0.05 was considered statistically significant.

These findings are in accordance with some of our previous studies [3,32,43–45].
PNIPAM/PAA salt did not also affect the MDA-MB-231 cells (Figure 19a); thus, PNI-
PAM/PAA salt is not cytotoxic in any of the cell lines in this range of concentrations
(Figures 17a, 18a and 19a). It is well known that PNIPAM and various copolymers based
on PNIPAM are biocompatible materials, so our findings are commensurate with previous
studies on other biological systems [80]. In the presence of Ag/TiO2 NPs, MDA-MB-231
cells seem to be functional (Figure 19b). It is clear that the cell proliferation of the MDA-
MB-231 cells was decreased when 0.75 mg/mL of photoexcited Ag/TiO2 NPs were added
(Figure 19b). Hence, a cell-dependent toxicity was observed [32,43,45], perhaps due to the
different interactions between the photoactivated materials and cell membranes. Several
studies support a similar finding in the anticancer behavior of Ag/TiO2 NPs, such as that
of Ahamed et al., who found that A549 human pulmonary cancer cells were unaffected
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by Ag/TiO2 NPs, whereas there was significant toxicity in human liver cancer (HepG2)
cells [12]. Photoactivated PNIPAM/PAA microgel/Ag-TiO2 NPs were more effective and
reduced the cell population of MDA-MB-231 cells (Figure 19c). The embedment of Ag-
TiO2 in the biocompatible microgel increased the efficacy of the nanoparticles to induce
cell death or even to inhibit cell proliferation. The cell population was 50% lower in the
presence of 0.50 mg/mL of photoexcited PNIPAM/PAA microgel/Ag-TiO2 NPs. Perhaps
the microgel facilitates the release of Ag-TiO2 NPs close to cell membranes and favors the
local photocatalytic action of Ag-TiO2 NPs [32]. Thus, the polymeric microgel is actually
enhancing the photocatalytic efficiency of Ag-TiO2 NPs.
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Figure 19. Growth rates of MDA-MB-231 cell line, with the addition of (a) PNIPAM/PAA salt,
(b) Ag-TiO2 NPs and (c) PNIPAM/PAA microgel/Ag-TiO2. There was no effect on cell proliferation
in the presence of increasing concentrations of PNIPAM/PAA salt or Ag-TiO2 before irradiation.
Under irradiation with visible light, there was a decrease in cell population when 0.75 mg/mL
of Ag/TiO2 NPs were added. The photoexcitement of PNIPAM/PAA microgel/Ag-TiO2 NPs
resulted in a significant decrease in this cell proliferation. Samples treated with cisplatin were used
as positive controls in the experiment. In these series of experiments, * p < 0.05 was considered
statistically significant.
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The selection of the tested materials was based partly on our previous systematic
studies focusing on the titania-based materials (TiO2 [43,44], N/TiO2 [3,32] and Ag/TiO2
NPs [45]), optimizing their performance by chemically modifying TiO2 with silver and
embedding them inside a thermoresponsive microgel. Thus, among several photocata-
lysts, TiO2 remains a promising biocompatible material, and for this reason, Ag/TiO2
was developed.

Because the ultimate goal of this research, and for our future plans, is to develop
a drug-delivery system that can efficiently kill cancer cells, a polymeric material was
critical to be added to the composite particles to provide the required properties and in
particular to transfer the material to the target area. Thus, various materials could be used,
such as liposomes [81], poly (N-vinyl caprolactam) (PNVCL) [82], chitosan [83] or PEO-b-
PCL–DPPC chimeric nanocarriers [84,85]. PNIPAM/PAA microgel combines the required
properties of the aforementioned materials, allowing the development of a material with
a controlled size [41,42] that can adequately act at 37 ◦C, a temperature close to that of a
human body, and therefore was considered among the most promising biopolymers to be
used in our study in order to fulfill our future plans of designing a photoinduced targeted
drug-delivery system with anticancer performance.

3.3.2. Effect on Cytotoxicity

MTT colorimetric assay was applied to investigate the viability of HEK293, MCF-7
and MDA-MB-231 cells, as the concentration of Ag-TiO2 NPs, PNIPAM/PAA salt and
PNIPAM/PAA microgel/Ag-TiO2 NPs increased before and after of their photoactivation
with visible light. By using well-known MTT protocols, the cell viability was estimated as a
percentage ratio of the measured optical density of the treated cells to untreated ones. All
the types of cells remained unaffected in the presence of PNIPAM/PAA salt or photoacti-
vated PNIPAM/PAA salt, meaning that this material was not cytotoxic, at least in this range
of concentrations (Figure 20a,b). Indeed, PNIPAM/PAA and other stimuli-responsive poly-
mers are considered as suitable materials for biomedical applications, as drug carriers [86].
Ag-TiO2 NPs did not induce any cytotoxic effect on these cell lines (Figure 20c). The cell
population was also unaffected; thus, this finding was in agreement with that of growth
rates (Figures 17b, 18b and 19b). Photoactivated Ag-TiO2 NPs had no biological effect on
HEK293 and MCF-7 (Figure 20d), whereas a gradual decrease in cell viability of MDA-MB-
231 cells was revealed (Figure 20d). In particular, 0.5 mg/mL of photoactivated Ag/TiO2
NPs reduced MDA-MB-231 cell viability by 20% and 0.75 mg/mL by 30%. As is clear in
Figure 16e, cell viability did not change in the presence of PNIPAM/PAA microgel/Ag-
TiO2 NPs for all the cell lines. Photoactivated PNIPAM/PAA microgel/Ag-TiO2 NPs had
no effect on the cell viability of HEK293 and MCF-7 cells (Figure 20f). Interestingly, under
photoenhancement with visible light, the cell viability of MDA-MB-231 cells gradually
decreases (Figure 20f). Even 0.25 mg/mL can reduce cell viability by 20%, and 0.75 mg/mL
of the composite material finally induced a 50% decrease in cell viability (IC50). Hence,
embedment in this thermoresponsive microgel increased the photocatalytic efficiency of
Ag-TiO2 NPs. Thus, a cell-type selectivity was observed, where MDA-MB-231 was more
vulnerable to these materials.

In order to further develop a drug-delivery system that can be efficient for in vivo
treatments, it is crucial to design a 3D tissue model [87]. Our cell-line-based experiments are
very promising, but in order to predict the behavior of the produced materials in vivo [88],
adding an intermediate step using a 3D model (probably an alginic/gelatin-based scaffold-
like system or organoids) is among our future plans.
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Figure 20. Effect of the produced materials on cell viability. MTT colorimetric assay was employed to
estimate the percentage of cell viability of HEK293, MCF-7 and MDA-MB-231 cells in the presence
of PNIPAM/PAA salt (a,b), Ag-TiO2 NPs (c,d) and PNIPAM/PAA microgel/Ag-TiO2 NPs (e,f) in
increasing concentrations and also before and after photoactivation with visible light. Photoactivated
Ag-TiO2 NPs gradually decreased the cell viability of MDA-MB-231 cells, and this phenomenon was
more intense in the presence of PNIPAM/PAA microgel/Ag-TiO2 NPs. * p < 0.05 vs. negative control,
through the Kruskal–Wallis nonparametric test. The obtained data represent means ± standard
deviation from four experiments.

4. Conclusions

Nanostructured Ag/TiO2 was produced via the sol-gel synthesis method and embed-
ded within PNIPAM/PAA microgel, creating a thermoresponsive composite material. Full
characterization, employing XRD, micro-Raman, FT-IR, UV-Vis, DLS and TEM confirmed
the physicochemical properties and the morphology of the produced material, verifying the
chemical modification of TiO2 with silver and the successful development of the composite
material. The photocatalytic efficacy of the produced Ag-TiO2 was broadened, including
also the visible-light range of the electromagnetic spectrum, thanks to doping with silver in
that the produced Ag-TiO2 nanopowder revealed that there was a decrease in the energy
band gap Eg (Eg = 2.32 eV) when it was compared with pure anatase (Eg = 3.1 eV). This
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decrease indicated that Ag-TiO2 had better photocatalytic activity under irradiation with
visible light, because the chemically modified catalyst finally needed lower energy for
its photoactivation. Anatase was found to be the dominant crystal phase of the Ag-TiO2
powders, as XRD and Raman analysis results displayed, while the composition of the
produced materials was confirmed via FT-IR analysis. The average crystallite size of the
produced nanoparticles was estimated to be in the nanoscale, particularly 9.52 nm, as it
was obtained through XRD and their zeta potential (ZP = (−53.5 ± 6) mV), indicating their
stability. The polymeric network was synthesized following the steps of a precipitation
polymerization process, presenting a VPTT at 37.6 ◦C, which allows the controlled release
of a pharmaceutic factor, such as TiO2, inside a biological system. Afterward, the Ag-TiO2
NPs were successfully embedded in the network (as indicated in TEM images). Hence,
embedding the nanoparticles resulted in the formation of the composite material (PNI-
PAM/PAA microgel/Ag-TiO2 NPs), which could act as a thermoresponsive and innovative
drug-delivery system.

Photocatalytic tests using RhB pollutant reassured the visible-light activation of the
powders, with the composite material succeeding to almost totally degrade the RhB pollu-
tant (over 95%), after 150 min of irradiation with visible light. Composite nanoparticles
demonstrated better photocatalytic activity compared with Ag-TiO2 NPs (85.3%), as we
expected, because of the structure of microgels. Microgels act like sponges of high porosity
that trap the photocatalytic nanoparticles close to the pollutant. In this way, the photo-
catalytic reaction can take place faster, and the degradation of the pollutant is achievable.
The implementation of the same photocatalytic experiments was implemented in the
presence of radicals’ scavengers (ethylenediaminetetraacetic acid disodium salt (EDTA-
2Na), benzoquinone (BQ) and isopropanol (IPA)), indicating the hydroxyl radical as the
dominant reactive oxygen species, shedding light on the mechanism through which this
photocatalyst acts.

Furthermore, for the analysis of their anticancer behavior, two breast cancer epithelial
cell lines (MCF-7 and MDA-MB-231) and normal human embryonic kidney cells (HEK
293) were cultured and treated with the produced materials (the concentration was in
the range of 0–0.75 mg/mL), under irradiation with visible light, and cell proliferation
and cytotoxicity assays were employed. All the tested materials did not affect the cell
proliferation rate or the cell viability before their photoactivation. This was a very promising
result in that it is important to control the anticancer potential of the developed materials.
Under visible-light irradiation, PNIPAM/PAA was still harmless for all the cell lines,
while Ag-TiO2 NPs gradually decreased the cell proliferation and the MDA-MB-231 cell
viability, leaving the MCF-7 and HEK293 cells unaffected. An amount of 0.50 mg/mL of
photoactivated PNIPAM/PAA microgel/Ag-TiO2 NPs decreased the cell population of
MDA-MB-231 cells by 50%.

Moreover, photoactivated PNIPAM/PAA microgel/Ag-TiO2 NPs had a more signifi-
cant killing effect on MDA-MB-231 cells, with the IC50 being 0.75 mg/mL for this cell line,
while at the same concentration, the cell viability of the MDA-MB-231 cells was decreased
by 25–30% in the presence of Ag-TiO2 NPs, meaning that the composite material had
enhanced anticancer efficiency.

Further clarification on the interactions between the different cell types would be
in our future plans because a cell-dependent toxicity was observed. These promising
findings will encourage us to continue to optimize our method in order to develop an
alternative photodynamic cancer therapy, one that is based on a drug-delivery system
that allows the controlled release of the photocatalytic anticancer material at the target
area, maximizing the therapeutic effect on the cancer cells and avoiding the harmful
side effects on healthy tissue, while reducing costs to the healthcare system supporting
those treatments.
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