Nanoemulgel: A Novel Nano Carrier as a Tool for Topical Drug Delivery
Abstract
:1. Introduction
2. Drug Delivery through a Topical Route
3. Nano Emulsions in Topical Delivery
4. Nano-Emulgel Drug Delivery System
5. Formulation Components
5.1. Oil Phase
5.2. Surfactant System
5.3. Co-Surfactant System
5.4. Gelling Agents
6. Preparation of Nano-Emulgel
7. Permeability of Nano-Emulgel
8. Permeability of Nano-Emulgel
9. Characterization Studies of Nano-Emulgel
9.1. Zeta Potential
9.2. Droplet Size Measurement and Polydispersity Index (PDI)
9.3. Rheological Characterizations
9.4. Spreadability Testing
9.5. In-Vitro Release Test (IVRT)
9.6. Bio-Adhesive Property
10. Safety Issues
11. Challenges
12. Current and Future Prospects of Nanoemulgel
13. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kalepu, S.; Nekkanti, V. Insoluble Drug Delivery Strategies: Review of Recent Advances and Business Prospects. Acta Pharm. Sin. B 2015, 5, 442–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donthi, M.R.; Munnangi, S.R.; Krishna, K.V.; Marathe, S.A.; Saha, R.N.; Singhvi, G.; Dubey, S.K. Formulating Ternary Inclusion Complex of Sorafenib Tosylate Using β-Cyclodextrin and Hydrophilic Polymers: Physicochemical Characterization and In Vitro Assessment. AAPS PharmSciTech 2022, 23, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Singh, D.; Choudhari, M.; Kaur, S.D.; Dubey, S.K.; Arora, S.; Bedi, N. Exemestane Encapsulated Copolymers L121/F127/GL44 Based Mixed Micelles: Solubility Enhancement and in Vitro Cytotoxicity Evaluation Using MCF-7 Breast Cancer Cells. J. Pharm. Investig. 2021, 51, 701–714. [Google Scholar] [CrossRef]
- Alekya, T.; Narendar, D.; Mahipal, D.; Arjun, N.; Nagaraj, B. Design and Evaluation of Chronomodulated Drug Delivery of Tramadol Hydrochloride. Drug Res. 2018, 68, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Homayun, B.; Lin, X.; Choi, H.J. Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics 2019, 11, 129. [Google Scholar] [CrossRef] [Green Version]
- Donthi, M.R.; Dudhipala, N.R.; Komalla, D.R.; Suram, D.; Banala, N. Preparation and Evaluation of Fixed Combination of Ketoprofen Enteric Coated and Famotidine Floating Mini Tablets by Single Unit Encapsulation System. J. Bioequiv. Availab. 2015, 7, 1–5. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, H.; Liu, L. Side Effects of Methotrexate Therapy for Rheumatoid Arthritis: A Systematic Review. Eur. J. Med. Chem. 2018, 158, 502–516. [Google Scholar] [CrossRef]
- Rajitha, R.; Narendar, D.; Arjun, N.; Nagaraj, B. Colon Delivery of Naproxen: Preparation, Characterization and Clinical Evaluation in Healthy Volunteers. Int. J. Pharm. Sci. Nanotechnol. 2016, 9, 3383–3389. [Google Scholar] [CrossRef]
- Garg, N.K.; Singh, B.; Tyagi, R.K.; Sharma, G.; Katare, O.P. Effective Transdermal Delivery of Methotrexate through Nanostructured Lipid Carriers in an Experimentally Induced Arthritis Model. Colloids Surf. B Biointerfaces 2016, 147, 17–24. [Google Scholar] [CrossRef]
- Szumała, P.; Macierzanka, A. Topical Delivery of Pharmaceutical and Cosmetic Macromolecules Using Microemulsion Systems. Int. J. Pharm. 2022, 615, 121488. [Google Scholar] [CrossRef]
- Gupta, R.; Dwadasi, B.S.; Rai, B.; Mitragotri, S. Effect of Chemical Permeation Enhancers on Skin Permeability: In Silico Screening Using Molecular Dynamics Simulations. Sci. Rep. 2019, 9, 1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saka, R.; Jain, H.; Kommineni, N.; Chella, N.; Khan, W. Enhanced Penetration and Improved Therapeutic Efficacy of Bexarotene via Topical Liposomal Gel in Imiquimod Induced Psoriatic Plaque Model in BALB/c Mice. J. Drug Deliv. Sci. Technol. 2020, 58, 101691. [Google Scholar] [CrossRef]
- Pandi, P.; Jain, A.; Kommineni, N.; Ionov, M.; Bryszewska, M.; Khan, W. Dendrimer as a New Potential Carrier for Topical Delivery of SiRNA: A Comparative Study of Dendriplex vs. Lipoplex for Delivery of TNF-$α$ SiRNA. Int. J. Pharm. 2018, 550, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Sarathlal, K.C.S.; Kakoty, V.; Krishna, K.V.; Dubey, S.K.; Chitkara, D.; Taliyan, R. Neuroprotective Efficacy of Co-Encapsulated Rosiglitazone and Vorinostat Nanoparticle on Streptozotocin Induced Mice Model of Alzheimer Disease. ACS Chem. Neurosci. 2021, 12, 1528–1541. [Google Scholar] [CrossRef]
- Nafisi, S.; Maibach, H.I. Nanotechnology in Cosmetics. In Cosmetic Science and Technology: Theoretical Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2017; pp. 337–369. [Google Scholar] [CrossRef]
- Tiwari, N.; Osorio-Blanco, E.R.; Sonzogni, A.; Esporr\’\in-Ubieto, D.; Wang, H.; Calderon, M. Nanocarriers for Skin Applications: Where Do We Stand? Angew. Chem. Int. Ed. 2022, 61, e202107960. [Google Scholar] [CrossRef]
- Shukla, T.; Upmanyu, N.; Agrawal, M.; Saraf, S.; Saraf, S.; Alexander, A. Biomedical Applications of Microemulsion through Dermal and Transdermal Route. Biomed. Pharmacother. 2018, 108, 1477–1494. [Google Scholar] [CrossRef]
- Nastiti, C.M.R.R.; Ponto, T.; Abd, E.; Grice, J.E.; Benson, H.A.E.; Roberts, M.S. Topical Nano and Microemulsions for Skin Delivery. Pharmaceutics 2017, 9, 37. [Google Scholar] [CrossRef]
- Aithal, G.C.; Narayan, R.; Nayak, U.Y. Nanoemulgel: A Promising Phase in Drug Delivery. Curr. Pharm. Des. 2020, 26, 279–291. [Google Scholar] [CrossRef]
- Anand, K.; Ray, S.; Rahman, M.; Shaharyar, A.; Bhowmik, R.; Bera, R.; Karmakar, S. Nano-Emulgel: Emerging as a Smarter Topical Lipidic Emulsion-Based Nanocarrier for Skin Healthcare Applications. Recent Pat. Antiinfect. Drug Discov. 2019, 14, 16–35. [Google Scholar] [CrossRef]
- Murthy, S.N. Approaches for Delivery of Drugs Topically. AAPS PharmSciTech 2019, 21, 1–2. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Md, S.; Sahni, J.K.; Baboota, S.; Dang, S.; Ali, J. Nanostructured Lipid Carriers System: Recent Advances in Drug Delivery. J. Drug Target. 2012, 20, 813–830. [Google Scholar] [CrossRef] [PubMed]
- Bhowmik, D.; Gopinath, H.; Kumar, B.P.; Duraivel, S.; Kumar, K.P.S. Recent Advances In Novel Topical Drug Delivery System. Pharma Innov. J. 2012, 1, 12–31. [Google Scholar]
- Gannu, R.; Palem, C.R.; Yamsani, V.V.; Yamsani, S.K.; Yamsani, M.R. Enhanced Bioavailability of Lacidipine via Microemulsion Based Transdermal Gels: Formulation Optimization, Ex Vivo and in Vivo Characterization. Int. J. Pharm. 2010, 388, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, K.; Anbu, J.; Ravichandiran, V.; Venkateswarlu, V.; Rao, Y.M. Lipid Nanoparticles for Transdermal Delivery of Flurbiprofen: Formulation, in Vitro, Ex Vivo and in Vivo Studies. Lipids Health Dis. 2009, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Zhou, M.; Yang, F.F.; Liu, C.Y.; Pan, R.L.; Chang, Q.; Liu, X.M.; Liao, Y.H. Involvement of the Inhibition of Intestinal Glucuronidation in Enhancing the Oral Bioavailability of Resveratrol by Labrasol Containing Nanoemulsions. Mol. Pharm. 2015, 12, 1084–1095. [Google Scholar] [CrossRef]
- Chang, R.K.; Raw, A.; Lionberger, R.; Yu, L. Generic Development of Topical Dermatologic Products: Formulation Development, Process Development, and Testing of Topical Dermatologic Products. AAPS J. 2013, 15, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Cevc, G. Lipid Vesicles and Other Colloids as Drug Carriers on the Skin. Adv. Drug Deliv. Rev. 2004, 56, 675–711. [Google Scholar] [CrossRef]
- Chellapa, P.; Mohamed, A.T.; Keleb, E.I.; Elmahgoubi, A.; Eid, A.M.; Issa, Y.S.; Elmarzugi, N.A. Nanoemulsion and Nanoemulgel as a Topical Formulation. IOSR J. Pharm. 2015, 5, 43–47. [Google Scholar]
- Marto, J.; Baltazar, D.; Duarte, A.; Fernandes, A.; Gouveia, L.; Militão, M.; Salgado, A.; Simões, S.; Oliveira, E.; Ribeiro, H.M. Topical Gels of Etofenamate: In Vitro and in Vivo Evaluation. Pharm. Dev. Technol. 2015, 20, 710–715. [Google Scholar] [CrossRef]
- Lau, W.; White, A.; Gallagher, S.; Donaldson, M.; McNaughton, G.; Heard, C. Scope and Limitations of the Co-Drug Approach to Topical Drug Delivery. Curr. Pharm. Des. 2008, 14, 794–802. [Google Scholar] [CrossRef]
- Raza, K.; Kumar, M.; Kumar, P.; Malik, R.; Sharma, G.; Kaur, M.; Katare, O.P. Topical Delivery of Aceclofenac: Challenges and Promises of Novel Drug Delivery Systems. Biomed Res. Int. 2014, 2014, 406731. [Google Scholar] [CrossRef] [PubMed]
- Somagoni, J.; Boakye, C.H.A.; Godugu, C.; Patel, A.R.; Faria, H.A.M.; Zucolotto, V.; Singh, M. Nanomiemgel--a Novel Drug Delivery System for Topical Application--in Vitro and in Vivo Evaluation. PLoS ONE 2014, 9, e115952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Begur, M.; Vasantakumar Pai, K.; Gowda, D.V.; Srivastava, A.; Raghundan, H.V. Development and Characterization of Nanoemulgel Based Transdermal Delivery System for Enhancing Permeability of Tacrolimus. Adv. Sci. Eng. Med. 2016, 8, 324–332. [Google Scholar] [CrossRef]
- Ngawhirunpat, T.; Worachun, N.; Opanasopit, P.; Rojanarata, T.; Panomsuk, S. Cremophor RH40-PEG 400 Microemulsions as Transdermal Drug Delivery Carrier for Ketoprofen. Pharm. Dev. Technol. 2013, 18, 798–803. [Google Scholar] [CrossRef]
- Bos, J.D.; Meinardi, M.M.H.M. The 500 Dalton Rule for the Skin Penetration of Chemical Compounds and Drugs. Exp. Dermatol. 2000, 9, 165–169. [Google Scholar] [CrossRef]
- Phad, A.R.; Dilip, N.T.; Sundara Ganapathy, R. Emulgel: A Comprehensive Review for Topical Delivery of Hydrophobic Drugs. Asian J. Pharm. 2018, 12, 382. [Google Scholar]
- Azeem, A.; Rizwan, M.; Ahmad, F.J.; Iqbal, Z.; Khar, R.K.; Aqil, M.; Talegaonkar, S. Nanoemulsion Components Screening and Selection: A Technical Note. AAPS PharmSciTech 2009, 10, 69. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, Z.; Bu, H.; Huang, Y.; Gao, Z.; Shen, J.; Zhao, C.; Li, Y. Nanoemulsion Improves the Oral Absorption of Candesartan Cilexetil in Rats: Performance and Mechanism. J. Control. Release 2011, 149, 168–174. [Google Scholar] [CrossRef]
- Kim, B.S.; Won, M.; Lee, K.M.; Kim, C.S. In Vitro Permeation Studies of Nanoemulsions Containing Ketoprofen as a Model Drug. Drug Deliv. 2008, 15, 465–469. [Google Scholar] [CrossRef] [Green Version]
- Akhter, S.; Jain, G.; Ahmad, F.; Khar, R.; Jain, N.; Khan, Z.; Talegaonkar, S. Investigation of Nanoemulsion System for Transdermal Delivery of Domperidone: Ex-Vivo and in Vivo Studies. Curr. Nanosci. 2008, 4, 381–390. [Google Scholar] [CrossRef]
- El Maghraby, G.M. Transdermal Delivery of Hydrocortisone from Eucalyptus Oil Microemulsion: Effects of Cosurfactants. Int. J. Pharm. 2008, 355, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.B.; Lin, Y.H.; Lu, T.M.; Wang, R.J.; Tsai, Y.H.; Wu, P.C. Transdermal Delivery of Capsaicin Derivative-Sodium Nonivamide Acetate Using Microemulsions as Vehicles. Int. J. Pharm. 2008, 349, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Eid, A.M.; El-Enshasy, H.A.; Aziz, R.; Elmarzugi, N.A. Preparation, Characterization and Anti-Inflammatory Activity of Swietenia Macrophylla Nanoemulgel. J. Nanomed. Nanotechnol. 2014, 5, 1–10. [Google Scholar] [CrossRef]
- Algahtani, M.S.; Ahmad, M.Z.; Ahmad, J. Nanoemulgel for Improved Topical Delivery of Retinyl Palmitate: Formulation Design and Stability Evaluation. Nanomaterials 2020, 10, 848. [Google Scholar] [CrossRef]
- Bernardi, D.S.; Pereira, T.A.; Maciel, N.R.; Bortoloto, J.; Viera, G.S.; Oliveira, G.C.; Rocha-Filho, P.A. Formation and Stability of Oil-in-Water Nanoemulsions Containing Rice Bran Oil: In Vitro and in Vivo Assessments. J. Nanobiotechnol. 2011, 9, 44. [Google Scholar] [CrossRef]
- Bolzinger, M.A.; Briançon, S.; Pelletier, J.; Fessi, H.; Chevalier, Y. Percutaneous Release of Caffeine from Microemulsion, Emulsion and Gel Dosage Forms. Eur. J. Pharm. Biopharm. 2008, 68, 446–451. [Google Scholar] [CrossRef]
- Fini, A.; Bergamante, V.; Ceschel, G.C.; Ronchi, C.; Moraes, C.A.F. Control of Transdermal Permeation of Hydrocortisone Acetate from Hydrophilic and Lipophilic Formulations. AAPS PharmSciTech 2008, 9, 762. [Google Scholar] [CrossRef] [Green Version]
- Teichmann, A.; Heuschkel, S.; Jacobi, U.; Presse, G.; Neubert, R.H.H.; Sterry, W.; Lademann, J. Comparison of Stratum Corneum Penetration and Localization of a Lipophilic Model Drug Applied in an o/w Microemulsion and an Amphiphilic Cream. Eur. J. Pharm. Biopharm. 2007, 67, 699–706. [Google Scholar] [CrossRef]
- Khurana, S.; Jain, N.K.; Bedi, P.M.S. Nanoemulsion Based Gel for Transdermal Delivery of Meloxicam: Physico-Chemical, Mechanistic Investigation. Life Sci. 2013, 92, 383–392. [Google Scholar] [CrossRef]
- Mou, D.; Chen, H.; Du, D.; Mao, C.; Wan, J.; Xu, H.; Yang, X. Hydrogel-Thickened Nanoemulsion System for Topical Delivery of Lipophilic Drugs. Int. J. Pharm. 2008, 353, 270–276. [Google Scholar] [CrossRef]
- Pund, S.; Pawar, S.; Gangurde, S.; Divate, D. Transcutaneous Delivery of Leflunomide Nanoemulgel: Mechanistic Investigation into Physicomechanical Characteristics, in Vitro Anti-Psoriatic and Anti-Melanoma Activity. Int. J. Pharm. 2015, 487, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Dev, A.; Chodankar, R.; Shelke, O. Emulgels: A Novel Topical Drug Delivery System. Pharm. Biol. Eval. 2015, 2, 64–75. [Google Scholar]
- Sengupta, P.; Chatterjee, B. Potential and Future Scope of Nanoemulgel Formulation for Topical Delivery of Lipophilic Drugs. Int. J. Pharm. 2017, 526, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Arora, R.; Aggarwal, G.; Harikumar, S.L.; Kaur, K. Nanoemulsion Based Hydrogel for Enhanced Transdermal Delivery of Ketoprofen. Adv. Pharm. 2014, 2014, 468456. [Google Scholar] [CrossRef]
- Gorain, B.; Choudhury, H.; Tekade, R.K.; Karan, S.; Jaisankar, P.; Pal, T.K. Comparative Biodistribution and Safety Profiling of Olmesartan Medoxomil Oil-in-Water Oral Nanoemulsion. Regul. Toxicol. Pharmacol. 2016, 82, 20–31. [Google Scholar] [CrossRef]
- Dubey, S.K.; Ram, M.S.; Krishna, K.V.; Saha, R.N.; Singhvi, G.; Agrawal, M.; Ajazuddin; Saraf, S.; Saraf, S.; Alexander, A. Recent Expansions on Cellular Models to Uncover the Scientific Barriers Towards Drug Development for Alzheimer’s Disease. Cell. Mol. Neurobiol. 2019, 39, 181–209. [Google Scholar] [CrossRef]
- Formariz, T.P.; Sarmento, V.H.V.; Silva-Junior, A.A.; Scarpa, M.V.; Santilli, C.V.; Oliveira, A.G. Doxorubicin Biocompatible O/W Microemulsion Stabilized by Mixed Surfactant Containing Soya Phosphatidylcholine. Colloids Surf. B Biointerfaces 2006, 51, 54–61. [Google Scholar] [CrossRef]
- Ahmad, M.Z.; Ahmad, J.; Alasmary, M.Y.; Akhter, S.; Aslam, M.; Pathak, K.; Jamil, P.; Abdullah, M.M. Nanoemulgel as an Approach to Improve the Biopharmaceutical Performance of Lipophilic Drugs: Contemporary Research and Application. J. Drug Deliv. Sci. Technol. 2022, 72, 103420. [Google Scholar] [CrossRef]
- Kaur, G. TPGS Loaded Topical Nanoemulgel of Mefenamic Acid for the Treatment of Rheumatoid Arthritis. Int. J. Pharm. Pharm. Res. 2019, 15, 64–107. [Google Scholar]
- Tesch, S.; Gerhards, C.; Schubert, H. Stabilization of Emulsions by OSA Starches. J. Food Eng. 2002, 54, 167–174. [Google Scholar] [CrossRef]
- Ingle, A.P.; Shende, S.; Gupta, I.; Rai, M. Recent Trends in the Development of Nano-Bioactive Compounds and Delivery Systems. In Biotechnological Production of Bioactive Compounds; Elsevier: Amsterdam, The Netherlands, 2020; pp. 409–431. [Google Scholar]
- Ashara, K.C. Microemulgel: An overwhelming approach to improve therapeutic action of drug moiety. Saudi Pharm. J. 2014, 24, 452–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sultana, N.; Akhtar, J.; Khan, M.I.; Ahmad, U.; Arif, M.; Ahmad, M.; Upadhyay, T. Nanoemulgel: For Promising Topical and Systemic Delivery. In Drug Development Life Cycle; IntechOpen: London, UK, 2022. [Google Scholar]
- Zhou, H.; Yue, Y.; Liu, G.; Li, Y.; Zhang, J.; Gong, Q.; Yan, Z.; Duan, M. Preparation and Characterization of a Lecithin Nanoemulsion as a Topical Delivery System. Nanoscale Res. Lett. 2010, 5, 224–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Nielsen, H.M.; Müllertz, A. Oral Delivery of Peptides and Proteins Using Lipid-Based Drug Delivery Systems. Expert Opin. Drug Deliv. 2012, 9, 1289–1304. [Google Scholar] [CrossRef] [PubMed]
- Bahadur, S.; Pardhi, D.M.; Rautio, J.; Rosenholm, J.M.; Pathak, K. Intranasal Nanoemulsions for Direct Nose-to-Brain Delivery of Actives for Cns Disorders. Pharmaceutics 2020, 12, 1230. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, B.; Gorain, B.; Mohananaidu, K.; Sengupta, P.; Mandal, U.K.; Choudhury, H. Targeted Drug Delivery to the Brain via Intranasal Nanoemulsion: Available Proof of Concept and Existing Challenges. Int. J. Pharm. 2019, 565, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Algahtani, M.S.; Ahmad, M.Z.; Nourein, I.H.; Albarqi, H.A.; Alyami, H.S.; Alyami, M.H.; Alqahtani, A.A.; Alasiri, A.; Algahtani, T.S.; Mohammed, A.A.; et al. Preparation and Characterization of Curcumin Nanoemulgel Utilizing Ultrasonication Technique for Wound Healing: In Vitro, Ex Vivo, and in Vivo Evaluation. Gels 2021, 7, 213. [Google Scholar] [CrossRef]
- Algahtani, M.S.; Ahmad, M.Z.; Shaikh, I.A.; Abdel-Wahab, B.A.; Nourein, I.H.; Ahmad, J. Thymoquinone Loaded Topical Nanoemulgel for Wound Healing: Formulation Design and In-Vivo Evaluation. Molecules 2021, 26, 3863. [Google Scholar] [CrossRef] [PubMed]
- Alyoussef, A.; El-Gogary, R.I.; Ahmed, R.F.; Ahmed Farid, O.A.; Bakeer, R.M.; Nasr, M. The Beneficial Activity of Curcumin and Resveratrol Loaded in Nanoemulgel for Healing of Burn-Induced Wounds. J. Drug Deliv. Sci. Technol. 2021, 62, 102360. [Google Scholar] [CrossRef]
- Abdallah, M.; Lila, A.; Unissa, R.; Elsewedy, H.S.; Elghamry, H.A.; Soliman, M.S. Preparation, Characterization and Evaluation of Anti-Inflammatory and Anti-Nociceptive Effects of Brucine-Loaded Nanoemulgel. Colloids Surf. B Biointerfaces 2021, 205, 111868. [Google Scholar] [CrossRef]
- Zakir, F.; Ahmad, A.; Mirza, M.A.; Kohli, K.; Ahmad, F.J. Exploration of a Transdermal Nanoemulgel as an Alternative Therapy for Postmenopausal Osteoporosis. J. Drug Deliv. Sci. Technol. 2021, 65, 102745. [Google Scholar] [CrossRef]
- Mao, Y.; Chen, X.; Xu, B.; Shen, Y.; Ye, Z.; Chaurasiya, B.; Liu, L.; Li, Y.; Xing, X.; Chen, D. Eprinomectin Nanoemulgel for Transdermal Delivery against Endoparasites and Ectoparasites: Preparation, in Vitro and in Vivo Evaluation. Taylor Fr. 2019, 26, 1104–1114. [Google Scholar] [CrossRef] [Green Version]
- Gadhave, D.; Tupe, S.; Tagalpallewar, A.; Gorain, B.; Choudhury, H.; Kokare, C. Nose-to-Brain Delivery of Amisulpride-Loaded Lipid-Based Poloxamer-Gellan Gum Nanoemulgel: In Vitro and in Vivo Pharmacological Studies. Int. J. Pharm. 2021, 607, 121050. [Google Scholar] [CrossRef]
- Qu, Y.; Li, A.; Ma, L.; Iqbal, S.; Sun, X.; Ma, W.; Li, C. Nose-to-Brain Delivery of Disulfiram Nanoemulsion in Situ Gel Formulation for Glioblastoma Targeting Therapy. Int. J. Pharm. 2021, 597, 120250. [Google Scholar] [CrossRef]
- Topical Metformin Emulgel VS Salicylic Acid Peeling in Treatment of Acne Vulgaris—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT05536193 (accessed on 1 December 2022).
- Comparison of the Bioavailability of Diclofenac in a Combination Product (Diclofenac 2% + Capsaicin 0.075% Topical Gel) with Two Diclofenac Only Products, Diclofenac Mono Gel 2% and Voltarol® 12 Hour Emulgel 2.32% Gel, in Healthy Volunteers—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03074162 (accessed on 1 December 2022).
- Effects of Visnadin, Ethyl Ximeninate, Coleus Barbatus and Millet in Emulgel on Sexual Function in Postmenopausal Women—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04579991 (accessed on 1 December 2022).
- Clinical Assessment of Voriconazole Self Nano Emulsifying Drug Delivery System Intermediate Gel—Full Text View—ClinicalTrials.Gov. Available online: https://www.clinicaltrials.gov/ct2/show/NCT04110860 (accessed on 1 December 2022).
- Clinical Assessment of Itraconazole Self Nano Emulsifying Drug Delivery System Intermediate Gel—Full Text View—ClinicalTrials.Gov. Available online: https://www.clinicaltrials.gov/ct2/show/NCT04110834 (accessed on 1 December 2022).
- Study of Efficacy and Tolerability of SYSTANE Complete in Patients with Dry Eye Disease—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03492541 (accessed on 1 December 2022).
- Santhosh, A.; Kumar, A.; Pramanik, R.; Gogia, A.; Prasad, C.P.; Gupta, I.; Gupta, N.; Cheung, W.Y.; Pandey, R.M.; Sharma, A.; et al. Randomized Double-Blind, Placebo-Controlled Study of Topical Diclofenac in the Prevention of Hand-Foot Syndrome in Patients Receiving Capecitabine (the D-TORCH Study). Trials 2022, 23, 420. [Google Scholar] [CrossRef]
- Eswaraiah, S.; Swetha, K. Emulgel: Review on Novel Approach to Topical Drug Delivery. Available online: https://asianjpr.com/AbstractView.aspx?PID=2014-4-1-2 (accessed on 1 December 2022).
- Jeengar, M.K.; Rompicharla, S.V.K.; Shrivastava, S.; Chella, N.; Shastri, N.R.; Naidu, V.G.M.; Sistla, R. Emu Oil Based Nano-Emulgel for Topical Delivery of Curcumin. Int. J. Pharm. 2016, 506, 222–236. [Google Scholar] [CrossRef]
- Md, S.; Alhakamy, N.A.; Aldawsari, H.M.; Kotta, S.; Ahmad, J.; Akhter, S.; Alam, M.S.; Khan, M.A.; Awan, Z.; Sivakumar, P.M. Improved Analgesic and Anti-Inflammatory Effect of Diclofenac Sodium by Topical Nanoemulgel: Formulation Development—In Vitro and in Vivo Studies. J. Chem. 2020, 2020, 4071818. [Google Scholar] [CrossRef] [Green Version]
- Drais, H.K.; Hussein, A.A. Formulation Characterization and Evaluation of Meloxicam Nanoemulgel to Be Used Topically. Iraqi J. Pharm. Sci. 2017, 26, 9–16. [Google Scholar]
- Aithal, G.C.; Nayak, U.Y.; Mehta, C.; Narayan, R.; Gopalkrishna, P.; Pandiyan, S.; Garg, S. Localized In Situ Nanoemulgel Drug Delivery System of Quercetin for Periodontitis: Development and Computational Simulations. Molecules 2018, 23, 1363. [Google Scholar] [CrossRef] [Green Version]
- Wankar, J.; Ajimera, T. Design, Development and Evaluation of Nanoemulsion and Nanogel of Itraconazole for Transdermal Delivery. J. Sci. Res. Pharm. 2014, 3, 6–11. [Google Scholar]
- Pathak, M.K.; Chhabra, G.; Pathak, K. Design and Development of a Novel PH Triggered Nanoemulsified In-Situ Ophthalmic Gel of Fluconazole: Ex-Vivo Transcorneal Permeation, Corneal Toxicity and Irritation Testing. Drug Dev. Ind. Pharm. 2013, 39, 780–790. [Google Scholar] [CrossRef]
- Wais, M.; Samad, A.; Nazish, I.; Khale, A.; Aqil, M.; Khan, M. Formulation development ex-vivo and in-vivo evaluation of nanoemulsion for transdermal delivery of glibenclamide. Int. J. Pharm. Pharm. Sci. 2013, 5, 747–754. [Google Scholar]
- Pratap, S.B.; Brajesh, K.; Jain, S.K.; Kausar, S. Development and Characterization of A Nanoemulsion Gel for Transdermal Delivery of Carvedilol. Int. J. Drug Dev. Res. 2012, 4, 151–161. [Google Scholar]
- Begur, M.; Pai, V.; Gowda, D.V.; AtulSrivastava; Raghundan, H.V.; Shinde, C.G.; Manusri, N. Enhanced Permeability of Cyclosporine from a Transdermally Applied Nanoemulgel. Der Pharm. Sin. 2015. Available online: https://hal.archives-ouvertes.fr/hal-03627803 (accessed on 1 December 2022).
- Nagaraja, S.; Basavarajappa, G.M.; Attimarad, M.; Pund, S. Topical Nanoemulgel for the Treatment of Skin Cancer: Proof-of-Technology. Pharmaceutics 2021, 13, 902. [Google Scholar] [CrossRef]
- Morsy, M.A.; Abdel-Latif, R.G.; Nair, A.B.; Venugopala, K.N.; Ahmed, A.F.; Elsewedy, H.S.; Shehata, T.M. Preparation and Evaluation of Atorvastatin-Loaded Nanoemulgel on Wound-Healing Efficacy. Pharmaceutics 2019, 11, 609. [Google Scholar] [CrossRef] [Green Version]
- Soliman, W.E.; Shehata, T.M.; Mohamed, M.E.; Younis, N.S.; Elsewedy, H.S. Enhancement of Curcumin Anti-Inflammatory Effect via Formulation into Myrrh Oil-Based Nanoemulgel. Polymers 2021, 13, 577. [Google Scholar] [CrossRef]
- Elmataeeshy, M.E.; Sokar, M.S.; Bahey-El-Din, M.; Shaker, D.S. Enhanced Transdermal Permeability of Terbinafine through Novel Nanoemulgel Formulation; Development, in Vitro and in Vivo Characterization. Future J. Pharm. Sci. 2018, 4, 18–28. [Google Scholar] [CrossRef]
- Vartak, R.; Menon, S.; Patki, M.; Billack, B.; Patel, K. Ebselen Nanoemulgel for the Treatment of Topical Fungal Infection. Eur. J. Pharm. Sci. 2020, 148, 105323. [Google Scholar] [CrossRef]
- Vandamme, T.F. Microemulsions as Ocular Drug Delivery Systems: Recent Developments and Future Challenges. Prog. Retin. Eye Res. 2002, 21, 15–34. [Google Scholar] [CrossRef]
- Bashir, M.; Ahmad, J.; Asif, M.; Khan SU, D.; Irfan, M.; Ibrahim, A.Y.; Asghar, S.; Khan, I.U.; Iqbal, M.S.; Haseeb, A.; et al. Undefined Nanoemulgel, an Innovative Carrier for Diflunisal Topical Delivery with Profound Anti-Inflammatory Effect: In Vitro and in Vivo Evaluation. Int. J. Nanomed. 2021, 16, 1457. [Google Scholar] [CrossRef]
- Williams, A.C.; Barry, B.W. Penetration Enhancers. Adv. Drug Deliv. Rev. 2012, 64, 128–137. [Google Scholar] [CrossRef]
- Aggarwal, G.; Dhawan, B.; Harikumar, S. Enhanced Transdermal Permeability of Piroxicam through Novel Nanoemulgel Formulation. Int. J. Pharm. Investig. 2014, 4, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeengar, M.K.; Sravan Kumar, P.; Thummuri, D.; Shrivastava, S.; Guntuku, L.; Sistla, R.; Naidu, V.G.M. Review on Emu Products for Use as Complementary and Alternative Medicine. Nutrition 2015, 31, 21–27. [Google Scholar] [CrossRef]
- Tayel, S.A.; El-Nabarawi, M.A.; Tadros, M.I.; Abd-Elsalam, W.H. Positively Charged Polymeric Nanoparticle Reservoirs of Terbinafine Hydrochloride: Preclinical Implications for Controlled Drug Delivery in the Aqueous Humor of Rabbits. AAPS PharmSciTech 2013, 14, 782–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, H.D.; Cerqueira, M.A.; Vicente, A.A. Influence of Surfactant and Processing Conditions in the Stability of Oil-in-Water Nanoemulsions. J. Food Eng. 2015, 167, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Rajpoot, K.; Tekade, R.K. Microemulsion as Drug and Gene Delivery Vehicle: An inside Story. In Drug Delivery Systems; Academic Press: Cambridge, MA, USA, 2019; pp. 455–520. [Google Scholar] [CrossRef]
- Rousseau, D.; Rafanan, R.R.; Yada, R. Microemulsions as Nanoscale Delivery Systems. Compr. Biotechnol. Second Ed. 2011, 4, 675–682. [Google Scholar] [CrossRef]
- Khachane, P.V.; Jain, A.S.; Dhawan, V.V.; Joshi, G.V.; Date, A.A.; Mulherkar, R.; Nagarsenker, M.S. Cationic Nanoemulsions as Potential Carriers for Intracellular Delivery. Saudi Pharm. J. 2015, 23, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Shakeel, F.; Haq, N.; Alanazi, F.K.; Alsarra, I.A. Impact of Various Nonionic Surfactants on Self-Nanoemulsification Efficiency of Two Grades of Capryol (Capryol-90 and Capryol-PGMC). J. Mol. Liq. 2013, 182, 57–63. [Google Scholar] [CrossRef]
- Mantzaridis, C.; Mountrichas, G.; Pispas, S. Complexes between High Charge Density Cationic Polyelectrolytes and Anionic Single- and Double-Tail Surfactants. J. Phys. Chem. B 2009, 113, 7064–7070. [Google Scholar] [CrossRef]
- Zakharova, L.Y.; Pashirova, T.N.; Fernandes, A.R.; Doktorovova, S.; Martins-Gomes, C.; Silva, A.M.; Souto, E.B. Self-Assembled Quaternary Ammonium Surfactants for Pharmaceuticals and Biotechnology. In Organic Materials as Smart Nanocarriers for Drug Delivery; William Andrew Publishing: Norwich, NY, USA, 2018; pp. 601–618. [Google Scholar] [CrossRef]
- Bali, V.; Ali, M.; Ali, J. Study of Surfactant Combinations and Development of a Novel Nanoemulsion for Minimising Variations in Bioavailability of Ezetimibe. Colloids Surf. B. Biointerfaces 2010, 76, 410–420. [Google Scholar] [CrossRef]
- Hu, J.; Chen, D.; Jiang, R.; Tan, Q.; Zhu, B.; Zhang, J. Improved Absorption and in Vivo Kinetic Characteristics of Nanoemulsions Containing Evodiamine–Phospholipid Nanocomplex. Int. J. Nanomed. 2014, 9, 4411–4420. [Google Scholar] [CrossRef] [Green Version]
- Poré, J. Emulsions, Micro-Émulsions, Émulsions Multiples; Editions Techniques des Industries des Corps Gras: Neuilly sur Seine, France, 1992; ISBN 9782950724106. [Google Scholar]
- Wang, Z.; Mu, H.-J.; Zhang, X.-M.; Ma, P.-K.; Lian, S.-N.; Zhang, F.-P.; Chu, S.-Y.; Zhang, W.-W.; Wang, A.-P.; Wang, W.-Y.; et al. Lower Irritation Microemulsion-Based Rotigotine Gel: Formulation Optimization and in Vitro and in Vivo Studies. Int. J. Nanomed. 2015, 10, 633–644. [Google Scholar]
- Syed, H.K.; Peh, K.K. Identification of Phases of Various Oil, Surfactant/ Co-Surfactants and Water System By Ternary Phase Diagram. Acta Pol. Pharm. 2014, 71, 301–309. [Google Scholar] [PubMed]
- Shah, H.; Jain, A.; Laghate, G.; Prabhudesai, D. Pharmaceutical Excipients. In Remington; Academic Press: Cambridge, MA, USA, 2021; pp. 633–643. [Google Scholar] [CrossRef]
- Ojha, B.; Jain, V.K.; Gupta, S.; Talegaonkar, S.; Jain, K. Nanoemulgel: A Promising Novel Formulation for Treatment of Skin Ailments. Polym. Bull. 2021, 79, 1–25. [Google Scholar] [CrossRef]
- Dubey, S.K.; Alexander, A.; Sivaram, M.; Agrawal, M.; Singhvi, G.; Sharma, S.; Dayaramani, R. Uncovering the Diversification of Tissue Engineering on the Emergent Areas of Stem Cells, Nanotechnology and Biomaterials. Curr. Stem Cell Res. Ther. 2020, 15, 187–201. [Google Scholar] [CrossRef]
- Ajazuddin; Alexander, A.; Khichariya, A.; Gupta, S.; Patel, R.J.; Giri, T.K.; Tripathi, D.K. Recent Expansions in an Emergent Novel Drug Delivery Technology: Emulgel. J. Control. Release 2013, 171, 122–132. [Google Scholar] [CrossRef]
- Deshmukh, K.; Basheer Ahamed, M.; Deshmukh, R.R.; Khadheer Pasha, S.K.; Bhagat, P.R.; Chidambaram, K. Biopolymer Composites with High Dielectric Performance: Interface Engineering. In Biopolymer Composites in Electronics; Elsevier: Amsterdam, The Netherlands, 2017; pp. 27–128. [Google Scholar] [CrossRef]
- Vlaia, L.; Coneac, G.; Olariu, I.; Vlaia, V.; Lupuleasa, D. Cellulose-Derivatives-Based Hydrogels as Vehicles for Dermal and Transdermal Drug Delivery. In Emerging Concepts in Analysis and Applications of Hydrogels; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Hashemnejad, S.M.; Badruddoza, A.Z.M.; Zarket, B.; Ricardo Castaneda, C.; Doyle, P.S. Thermoresponsive Nanoemulsion-Based Gel Synthesized through a Low-Energy Process. Nat. Commun. 2019, 10, 2749. [Google Scholar] [CrossRef] [Green Version]
- Perale, G.; Veglianese, P.; Rossi, F.; Peviani, M.; Santoro, M.; Llupi, D.; Micotti, E.; Forloni, G.; Masi, M. In Situ Agar–Carbomer Hydrogel Polycondensation: A Chemical Approach to Regenerative Medicine. Mater. Lett. 2011, 65, 1688–1692. [Google Scholar] [CrossRef]
- Braun, S. Encapsulation of Cells (Cellular Delivery) Using Sol–Gel Systems. Compr. Biomater. 2011, 4, 529–543. [Google Scholar] [CrossRef]
- Daood, N.M.; Jassim, Z.E.; Ghareeb, M.M.; Zeki, H. Studying the Effect of Different Gelling Agent on The Preparation and Characterization of Metronidazole as Topical Emulgel. Asian J. Pharm. Clin. Res. 2019, 12, 571–577. [Google Scholar] [CrossRef]
- Kathe, K.; Kathpalia, H. Film Forming Systems for Topical and Transdermal Drug Delivery. Asian J. Pharm. Sci. 2017, 12, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Rapalli, V.K.; Mahmood, A.; Waghule, T.; Gorantla, S.; Kumar Dubey, S.; Alexander, A.; Singhvi, G. Revisiting techniques to evaluate drug permeation through skin. Expert Opin. Drug Deliv. 2021, 18, 1829–1842. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.M.; Shehata, T.M. The Enhancement of Transdermal Permeability of Water Soluble Drug by Niosome-Emulgel Combination. J. Drug Deliv. Sci. Technol. 2012, 22, 353–359. [Google Scholar] [CrossRef]
- Dixit, A.S.; Charyulu, N.; Nayari, H. Design and Evaluation of Novel Emulgel Containing Acyclovir for Herpes Simplex Keratitis. Lat. Am. J. Pharm. 2011, 30, 844–852. [Google Scholar]
- Salem, H.F.; Kharshoum, R.M.; Abou-Taleb, H.A.; Naguib, D.M. Nanosized Nasal Emulgel of Resveratrol: Preparation, Optimization, in Vitro Evaluation and in Vivo Pharmacokinetic Study. Drug Dev. Ind. Pharm. 2019, 45, 1624–1634. [Google Scholar] [CrossRef] [PubMed]
- De Souza Ferreira, S.B.; Bruschi, M.L. Investigation of the Physicochemical Stability of Emulgels Composed of Poloxamer 407 and Different Oil Phases Using the Quality by Design Approach. J. Mol. Liq. 2021, 332, 115856. [Google Scholar] [CrossRef]
- Shahin, M.; Abdel Hady, S.; Hammad, M.; Mortada, N. Novel Jojoba Oil-Based Emulsion Gel Formulations for Clotrimazole Delivery. AAPS PharmSciTech 2011, 12, 239–247. [Google Scholar] [CrossRef] [PubMed]
- El-Setouhy, D.A.; Ahmed El-Ashmony, S.M. Ketorolac Trometamol Topical Formulations: Release Behaviour, Physical Characterization, Skin Permeation, Efficacy and Gastric Safety. J. Pharm. Pharmacol. 2010, 62, 25–34. [Google Scholar] [CrossRef]
- Anton, N.; Vandamme, T.F. The Universality of Low-Energy Nano-Emulsification. Int. J. Pharm. 2009, 377, 142–147. [Google Scholar] [CrossRef]
- Sharma, V.; Nayak, S.K.; Paul, S.R.; Choudhary, B.; Ray, S.S.; Pal, K. Emulgels. In Polymeric Gels; Woodhead Publishing: Sawston, UK, 2018; pp. 251–264. [Google Scholar] [CrossRef]
- Lupi, F.R.; Gabriele, D.; Seta, L.; Baldino, N.; de Cindio, B.; Marino, R. Rheological Investigation of Pectin-Based Emulsion Gels for Pharmaceutical and Cosmetic Uses. Rheol. Acta 2015, 54, 41–52. [Google Scholar] [CrossRef]
- Dong, L.; Liu, C.; Cun, D.; Fang, L. The Effect of Rheological Behavior and Microstructure of the Emulgels on the Release and Permeation Profiles of Terpinen-4-Ol. Eur. J. Pharm. Sci. 2015, 78, 140–150. [Google Scholar] [CrossRef]
- Solè, I.; Pey, C.M.; Maestro, A.; González, C.; Porras, M.; Solans, C.; Gutiérrez, J.M. Nano-Emulsions Prepared by the Phase Inversion Composition Method: Preparation Variables and Scale Up. J. Colloid Interface Sci. 2010, 344, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Lovelyn, C.; Attama, A.A.; Lovelyn, C.; Attama, A.A. Current State of Nanoemulsions in Drug Delivery. J. Biomater. Nanobiotechnol. 2011, 2, 626–639. [Google Scholar] [CrossRef] [Green Version]
- Van der Schaaf, U.S.; Nanoemulsions, H.K. Fabrication of Nanoemulsions by Rotor-Stator Emulsification. In Nanoemulsions; Academic Press: Cambridge, MA, USA, 2018; pp. 141–174. [Google Scholar] [CrossRef]
- Kotta, S.; Khan, A.W.; Ansari, S.H.; Sharma, R.K.; Ali, J. Formulation of Nanoemulsion: A Comparison between Phase Inversion Composition Method and High-Pressure Homogenization Method. Drug Deliv. 2015, 22, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Juttulapa, M.; Piriyaprasarth, S.; Takeuchi, H.; Sriamornsak, P. Effect of High-Pressure Homogenization on Stability of Emulsions Containing Zein and Pectin. Asian J. Pharm. Sci. 2017, 12, 21–27. [Google Scholar] [CrossRef]
- Bei, D.; Meng, J.; Youan, B.B.C. Engineering Nanomedicines for Improved Melanoma Therapy: Progress and Promises. Nanomedicine 2010, 5, 1385–1399. [Google Scholar] [CrossRef] [Green Version]
- Gorantla, S.; Singhvi, G.; Rapalli, V.K.; Waghule, T.; Dubey, S.K.; Saha, R.N. Targeted Drug-Delivery Systems in the Treatment of Rheumatoid Arthritis: Recent Advancement and Clinical Status. Ther. Deliv. 2020, 11, 269–284. [Google Scholar] [CrossRef]
- Prathyusha, E.; Prabakaran, A.; Ahmed, H.; Dethe, M.R.; Agrawal, M.; Gangipangi, V.; Sudhagar, S.; Krishna, K.V.; Dubey, S.K.; Pemmaraju, D.B.; et al. Investigation of ROS Generating Capacity of Curcumin-Loaded Liposomes and Its in Vitro Cytotoxicity on MCF-7 Cell Lines Using Photodynamic Therapy. Photodiagnosis Photodyn. Ther. 2022, 40, 103091. [Google Scholar] [CrossRef]
- Mulia, K.; Ramadhan, R.M.A.; Krisanti, E.A. Formulation and Characterization of Nanoemulgel Mangosteen Extract in Virgin Coconut Oil for Topical Formulation. MATEC Web Conf. 2018, 156, 01013. [Google Scholar] [CrossRef] [Green Version]
- Chellapa, P.; Eid, A.M.; Elmarzugi, N.A. Preparation and Characterization of Virgin Coconut Oil Nanoemulgel. J. Chem. Pharm. Res. 2015, 7, 787–793. Available online: https://www.jocpr.com (accessed on 1 December 2022).
- Bhattacharya, S.; Prajapati, B.G. Formulation and Optimization of Celecoxib Nanoemulgel. Asian J. Pharm. Clin. Res. 2017, 10, 353–365. [Google Scholar] [CrossRef] [Green Version]
- Chin, L.Y.; Tan, J.Y.P.; Choudhury, H.; Pandey, M.; Sisinthy, S.P.; Gorain, B. Development and Optimization of Chitosan Coated Nanoemulgel of Telmisartan for Intranasal Delivery: A Comparative Study. J. Drug Deliv. Sci. Technol. 2021, 62, 102341. [Google Scholar] [CrossRef]
- Khullar, R.; Kumar, D.; Seth, N.; Saini, S. Formulation and Evaluation of Mefenamic Acid Emulgel for Topical Delivery. Saudi Pharm. J. 2012, 20, 63–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clogston, J.D.; Patri, A.K. Zeta Potential Measurement. Methods Mol. Biol. 2011, 697, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Krishna, K.V.; Saha, R.N.; Dubey, S.K. Biophysical, Biochemical, and Behavioral Implications of ApoE3 Conjugated Donepezil Nanomedicine in a Aβ1-42Induced Alzheimer’s Disease Rat Model. ACS Chem. Neurosci. 2020, 11, 4139–4151. [Google Scholar] [CrossRef]
- Khosa, A.; Krishna, K.V.; Saha, R.N.; Dubey, S.K.; Reddi, S. A Simplified and Sensitive Validated RP-HPLC Method for Determination of Temozolomide in Rat Plasma and Its Application to a Pharmacokinetic Study. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 692–697. [Google Scholar] [CrossRef]
- Manus Maguire, C.; Rösslein, M.; Wick, P.; Prina-Mello, A. Characterisation of Particles in Solution–a Perspective on Light Scattering and Comparative Technologies. Taylor Fr. 2018, 19, 732–745. [Google Scholar] [CrossRef] [Green Version]
- Sneha, K.; Kumar, A. Nanoemulsions: Techniques for the Preparation and the Recent Advances in Their Food Applications. Innov. Food Sci. Emerg. Technol. 2022, 76, 102914. [Google Scholar] [CrossRef]
- Khosa, A.; Krishna, K.V.; Dubey, S.K.; Saha, R.N. Lipid Nanocarriers for Enhanced Delivery of Temozolomide to the Brain. Methods Mol. Biol. 2020, 2059, 285–298. [Google Scholar] [CrossRef]
- Garg, A.; Aggarwal, D.; Garg, S.; America, A.S.-T.N. Spreading of Semisolid Formulations: An Update. Pharm. Technol. N. Am. 2002, 26, 84. [Google Scholar]
- Nikumbh, K.V.; Sevankar, S.G.; Patil, M.P. Formulation Development, in Vitro and in Vivo Evaluation of Microemulsion-Based Gel Loaded with Ketoprofen. Drug Deliv. 2015, 22, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.P.; Simona Miron, D.; Ștefan Rădulescu, F.; Cardot, J.M.; Maibach, H.I. In Vitro Release Test (IVRT): Principles and Applications. Int. J. Pharm. 2022, 626, 122159. [Google Scholar] [CrossRef]
- Sheshala, R.; Anuar, N.K.; Abu Samah, N.H.; Wong, T.W. In Vitro Drug Dissolution/Permeation Testing of Nanocarriers for Skin Application: A Comprehensive Review. AAPS PharmSciTech 2019, 20, 164. [Google Scholar] [CrossRef] [PubMed]
- Kanfer, I.; Rath, S.; Purazi, P.; Mudyahoto, N.A. In Vitro Release Testing of Semi-Solid Dosage Forms. Dissolut. Technol. 2017, 24, 52–60. [Google Scholar] [CrossRef]
- Shaikh, R.; Raj Singh, T.; Garland, M.; Woolfson, A.; Donnelly, R. Mucoadhesive Drug Delivery Systems. J. Pharm. Bioallied Sci. 2011, 3, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Amorós-Galicia, L.; Nardi-Ricart, A.; Verdugo-González, C.; Arroyo-García, C.M.; García-Montoya, E.; Pérez-Lozano, P.; Suñé-Negre, J.M.; Suñé-Pou, M. Development of a Standardized Method for Measuring Bioadhesion and Mucoadhesion That Is Applicable to Various Pharmaceutical Dosage Forms. Pharmaceutics 2022, 14, 1995. [Google Scholar] [CrossRef]
- Yuan, C.; Xu, Z.Z.; Fan, M.; Liu, H.; Xie, Y.; Zhu, T. Study on Characteristics and Harm of Surfactants. J. Chem. Pharm. Res. 2014, 6, 2233–2237. [Google Scholar]
- Lewis, M.A. Chronic Toxicities of Surfactants and Detergent Builders to Algae: A Review and Risk Assessment. Ecotoxicol. Environ. Saf. 1990, 20, 123–140. [Google Scholar] [CrossRef]
- James-Smith, M.A.; Hellner, B.; Annunziato, N.; Mitragotri, S. Effect of Surfactant Mixtures on Skin Structure and Barrier Properties. Ann. Biomed. Eng. 2011, 39, 1215–1223. [Google Scholar] [CrossRef] [Green Version]
- Azeem, A.; Ahmad, F.J.; Khar, R.K.; Talegaonkar, S. Nanocarrier for the Transdermal Delivery of an Antiparkinsonian Drug. AAPS PharmSciTech 2009, 10, 1093–1103. [Google Scholar] [CrossRef]
- Patel, B.B.; Patel, J.K.; Chakraborty, S.; Shukla, D. Revealing Facts behind Spray Dried Solid Dispersion Technology Used for Solubility Enhancement. Saudi Pharm. J. 2015, 23, 352–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Hui, P.C.L.; Kan, C.W. Functionalized Textile Based Therapy for the Treatment of Atopic Dermatitis. Coatings 2017, 7, 82. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, J.M.; González, C.; Maestro, A.; Solè, I.; Pey, C.M.; Nolla, J. Nano-Emulsions: New Applications and Optimization of Their Preparation. Curr. Opin. Colloid Interface Sci. 2008, 13, 245–251. [Google Scholar] [CrossRef]
- Sallam, A.A.N.; Younes, H.M. Transdermal Non-Aqueous Nanoemulgels for Systemic Delivery of Aromatase Inhibitor. EP3727363A1, 28 October 2020. [Google Scholar]
- Kaufman, R.C. Methods of Treating Inflammatory Disorders and Global Inflammation with Compositions Comprising Phospholipid Nanoparticle Encapsulations of NSAIDS 2018. CA2970917C, 17 September 2019. [Google Scholar]
- Xiaoling, F.; Xiao, W.; Xianyi, S. Tripterygium Glycoside-Containing Micro-Emulsified Gel Transdermal Preparation and Preparation Method Thereof. CN107303263B, 31 July 2020. [Google Scholar]
- Sengupta, S.; Chawrai, S.R.; Ghosh, S.; Ghosh, S.; Jain, N.; Sadhasivam, S.; Buchta, R.; Bhattacharyya, A. Besifloxacin for the Treatment of Resistant Acne. EP3099301B1, 18 December 2019. [Google Scholar]
- Bhalerao, H.; Koteshwara, K.; Chandran, S. Design, Optimisation and Evaluation of in Situ Gelling Nanoemulsion Formulations of Brinzolamide. Drug Deliv. Transl. Res. 2020, 10, 529–547. [Google Scholar] [CrossRef] [PubMed]
- Suresh, S.; Rathod, S.; Devasani, R. Minoxidil and Castor Oil Nanoemulgel for Alopecia. WO2020121329A1, 16 June 2020. [Google Scholar]
- Somvico, R.R.P.O.C.S.J.M.R.C.P. Nanoemulgel Based on Ucúuba Fat (Virola Surinamensis) for Transungual Administration of Antimicotics. BR102019014044A2, 13 October 2021. [Google Scholar]
Properties | Conditions |
---|---|
t1/2 | ≤10 h |
Molecular mass | ≤500 Daltons The limit can be exceeded by altering the permeability of skin |
Molecular size | Small |
Polarity | Non-polar is desirable |
Log P | 0.8–5 |
pKa | Higher |
Irritation on skin | Non-irritating |
Skin Permeability coefficient | ≥0.5 × 10–3 cm/h |
Parameter | Conventional Emulgel | Nano-Emulgel |
---|---|---|
Thermodynamic stability | Not stable because of natural tendence of coalescence leading to sedimentation or creaming [61] | Stable–because of their smaller particle size, Brownian motion provides enough stability against gravity, preventing sedimentation or creaming [54] |
Particle size | Greater than >500 nm [18] | Less than 100 nm [62] |
Bioavailability | Comparatively less bioavailable than Nano-emulgel [63] | Enhanced bioavailability, attributed to small size and large surface area [64] |
Permeation | Comparatively lower permeation [65] | High permeation owing to its lower particle size [54,65] |
Preparation | Require high energy techniques [66] | It can be prepared either by using high or low energy techniques [20] |
Systemic absorption | Very minimal | Higher compared to conventional emulgel due to the small particle size and large surface area [54] |
Ability to cross BBB | Cannot cross BBB [67] | Can Cross BBB because of its small particle size [68] |
Marketed Product | Active Pharmaceutical Ingredient | Manufacturing Company |
---|---|---|
Voltaren Emulgel | Diclofenac diethylamine | GlaxoSmithKline |
Isofen Emulgel | Ibuprofen | Beit Jala Pharmaceutical Co. |
Benzolait Emulgel | Benzoyl peroxide & Biguanide | Roydermal |
Miconaz-H Emulgel | Miconazole nitrate & Hydrocartisone | Medical Union Pharmaceuticals |
Derma Feet | Urea | Herbitas |
Adwiflam Emulgel | Diclofenac diethylamine, Methyl Salicylate & Menthol | Saja Pharmaceuticals |
Nucoxia Emulgel | Etoricoxib | Zydus Cadila Healthcare LTD |
Active Ingredient | Composition | In Vivo Model | Route of Administration | Therapeutic Outcome | Reference |
---|---|---|---|---|---|
Curcumin | Oil: Labrofac PG + transcutol HP Surfactant mixture: Tween 20 + solutol HS15 Gelling agent: Carbopol 934 | BALB/c mice | Topical | Psoriatic mice treated with the curcumin nano-emulgel showed faster and earlier healing than those treated with curcumin plus betamethasone-17-valerate gel | [69] |
Thymoquinone | Oil: Black seed oil Surfactant mixture: Kolliphor EL + transcutol HP Gelling agent: Carbopol 940 | Wistar rat | Topical | Nano-emulgel administration of thymoquinone improves its therapeutic efficiency in wound healing studies in Wistar rats | [70] |
Curcumin and Resveratrol | Oil: Labrofac PG Surfactant mixture: Tween 80 Gelling agent: Carbopol | Wistar rat | Topical | Curcumin and resveratrol nano-emulgel technology revealed drastically increased curcumin and resveratrol deposition in skin layers. The in-vivo investigation revealed that the NEG formulation resulted in improved burn healing, with histological findings comparable to standard control skin. Thymoquinone nano-emulgel delivery method improves thymoquinone therapeutic effectiveness in wound healing studies in Wistar rats. | [71] |
Brucine | Oil: Myrrh oil Surfactant mixture: Tween 80 + PEG 400 Gelling agent: Carboxymethylcellulose sodium | BALB/c mice and Wistar rats | Topical | Brucine-loaded nanoemulgel has shown improved anti-inflammatory and anti-nociceptive efficacy. | [72] |
Curcumin | Oil: Labrofac PG Surfactant mixture: Tween 80 + PEG 400 Gelling agent: Carbopol 940 | Albino rats | Topical | Curcumin nanoemulgel improved the wound-healing efficacy of curcumin compared to the conventional gel formulation. | [69] |
Raloxifene hydrochloride | Oil: Peceol Surfactant mixture: Tween 20 + transcutol HP Gelling agent: Chitosan | Wistar rats | Topical | Raloxifene hydrochloride (RH) loaded nanoemulgel formulation for enhanced bioavailability and anti-anti-osteoporotic efficacy of RH. The bioavailability improved by 26-fold compared oral marketed product. | [73] |
Eprinomectin | Oil: Castor oil Surfactant mixture: Tween 80 + Labrasol Gelling agent: Carbomer 940-1 | Wistar rats | Topical | Naoemulgel formulation showed improved skin permeability of 1.45-fold compared to emulgel and had no skin-irritating property | [74] |
Amisulpride | Oil: Maisine CC Surfactant mixture: Labrosol + transcutol HP Gelling agent: Poloxamer 407, Gellan gum | Wistar rats | Intranasal | Improved pharmacokinetic profile. The Cmax of API in brain after administering through in-situ nano-emulgel improved by 3.39-fold compared to intravenous administration of nano-emulsion. | [75] |
Disulfiram | Oil: Ethyl oleate Surfactant mixture: Tween 80 + transcutol HP Gelling agent: Deacetylated gellan gum | Sprague Dawley rats | Intranasal | Improved survival rate of rats and reduced tumor progression (Glioblastoma). The survival time of in-situ nano-emulgel treated group is 1.6 times higher than control group | [76] |
Identifier No | Active Constituent | Titile of the Study | Conditions | Referance |
---|---|---|---|---|
NCT05536193 | Metformin and salicylic acid | Topical Metformin Emulgel VS Salicylic Acid Peeling in Treatment of Acne Vulgaris | Acne Vulgaris | [77] |
NCT03074162 | Diclofenac sodium & Capsaicin | Comparison of the Bioavailability of Diclofenac in a Combination Product (Diclofenac 2% + Capsaicin 0.075% Topical Gel) With Two Diclofenac Only Products, Diclofenac Mono Gel 2% and Voltarol® 12 Hour Emulgel 2.32% Gel, in Healthy Volunteers | Inflammatory | [78] |
NCT04579991 | Visnadin, ethyl ximeninate, coleus barbatus | Effects of Visnadin, Ethyl Ximeninate, Coleus Barbatus and Millet in Emulgel on Sexual Function in Postmenopausal Women | Female Sexual FunctionVulvovaginal AtrophyPostmenopausal Atrophic Vaginitis | [79] |
NCT04110860 | Voriconazole | Clinical Assessment of Voriconazole Self Nano Emulsifying Drug Delivery System Intermediate Gel | Tinea Versicolor | [80] |
NCT04110834 | Itraconazole | Clinical Assessment of Itraconazole Self Nano Emulsifying Drug Delivery System Intermediate Gel | Tinea Versicolor | [81] |
NCT03492541 | Propylene glycol-based eye drops | Evaluation of the Clinical Efficacy and Tolerability of SYSTANE Complete in Adult Patients With Dry Eye Disease Following Topical Ocular Use for 4 Weeks: A Multicenter Trial | Dry eye disease | [82] |
NCT05641246 | Carbamide diclofenac | Effect of Topical Diclofenac on Clinical Outcome in Breast Cancer Patients Treated With Capecitabine: A Randomized Controlled Trial. | Hand and Foot Syndrome | [83] |
S.No | Disease/ Disorder | Active Pharmaceutical Ingredient | Composition | References | |||
---|---|---|---|---|---|---|---|
Oil | Surfactant | Co-Surfactant | Gelling Agent | ||||
1 | Anti-inflammatory | Curcumin | Emu oil | Cremophor RH40 | Labrafil M2125CS | Carbopol | [85] |
2 | Anti-inflammatory | Diclofenac sodium | Isopropyl myristate | Tween 20 | Labrafil M2125CS | Carbopol 980 | [86] |
3 | Anti-inflammatory | Meloxicam | Almond and peppermint oil (1:2) | Tween 80 | Ethanol | Carbopol 940 | [87] |
4 | Antimicrobial and Anti- Inflammatory | Quercetin | Cinnamon oil | Tween 80 | Carbitol | Poloxamer | [88] |
5 | Antifungal | Itraconazole | Eugenol | Labrasol | TranscutolP, Lecithin | Carbolpol | [89] |
6 | Antifungal | Fluconazole | Capmul MCM | Tween 80 | Transcutol P | Carbopol 934 | [90] |
7 | Anti-hyperglycemic | Glibenclamide | Labrafac: Triacetin (1:1) | Tween 80 | Diethylene glycol monoethyl ether | Carbopol 934 | [91] |
8 | Antihypertensive | Carvedilol | Oleic acid: IPM (3:1) | Tween 20 | Carbitol | Carbopol-934 | [92] |
9 | Immunosuppressive agent | Cyclosporine | Oleic acid | Tween 80 | Transcutol P | Guar gum. | [93] |
10 | Anti-cancer | Chrysin | Capryol 90 | Tween 80 | Transcutol HP | Pluronic F127 | [94] |
11 | Wound Healing | Atorvastatin Calcium | Liquid Paraffin | Tween 80 | Propylene glycol | Sodium carboxymethyl cellulose | [95] |
12 | Anti-inflammatory | Curcumin | Myrrh Oil | Tween 80 | Ethanol | Sodium carboxymethyl cellulose | [96] |
13 | Wound Healing | Curcumin | Labrofac PG | Tween 80 | Propylene glycol 400 | Carbopol 940 | [69] |
14 | Anti-fungal | Terbinafine HCl | Peceol oil | Tween 80 | Propanol | Carbopol 940 | [97] |
15 | Anti-fungal | Ebselen | Captex | Kolliphor ELP | Dimethylacetamide | Soluphus (10% w/v) & HPMC K4M (2.5% w/v) | [98] |
Gelling Agent | Concentration Range (%w/w) | Pharmaceutical Adaptability | Reference |
---|---|---|---|
HPMC | 2–6% |
| [126,127] |
Carbomer (Carbopol) Grades–ETD 2020, 171, 910, 934, 934P, 940, 1342 NF, 1971P | 0.1–1.5% |
| [126,128] |
NaCMC | 3–6% |
| [129,130] |
Poloxamer Grades–124, 182, 188, 407 | 20–30% |
| [131,132] |
Combination of HPMC & Carbopol | 1.2% |
| [133,134] |
Clinical Portrayal | Grade |
---|---|
No erythema | 0 |
Slight erythema that is barely perceptible | 1 |
Moderate erythema that is visible | 2 |
Erythema and papules | 3 |
Severe Edema | 4 |
Erythema, edema, and papules | 5 |
Vesicular eruption | 6 |
Strong reaction spreading beyond the application sight | 7 |
Patent Number | API | Title | Disease Indication | Current Assignee/Inventors | Granted/Publication Year | Reference |
---|---|---|---|---|---|---|
US11185504B2 | Aromatase inhibitors | Transdermal non-aqueous nanoemulgels for systemic delivery of aromatase inhibitor | breast cancer | Qatar University | 2021 | [172] |
CA3050535C | Anti-inflammatory nutraceuticals e.g., resveratrol, cinnamaldehyde, green tea polyphenols, lipoic acid etc. | Methods of treating inflammatory disorders and global inflammation with compositions comprising phospholipid nanoparticle encapsulations of anti-inflammatory nutraceuticals | Inflammatory Disorders | Nanosphere Health Sciences Inc | 2021 | [173] |
CN107303263B | Tripterygium glycosides | Tripterygium glycosides nanoemulsion gel and preparation method thereof | Immune diseases e.g., clinical rheumatoid arthritis and psoriasis etc. | Second Military Medical University SMMU | 2020 | [174] |
EP3099301B1 | Besifloxacin | Besifloxacin for the treatment of resistant acne | Acne vulgaris | Vyome Therapeutics Ltd. | 2019 | [175] |
WO2020240451A1 | Brinzolamide | In-situ gelling nanoemulsion of brinzolamide | glaucoma | Hemant Hanumant BHALERAO, Sajeev Chandran | 2020 | [176] |
WO2020121329A1 | Minoxidil and castor oil | Minoxidil and castor oil nanoemulgel for alopecia | androgenic alopecia | Sudha suresh Dr. Rathodsoniya ramesh devasani | 2020 | [177] |
BR102019014044A2 | Ketoconazole | Nanoemulgel based on ucúuba fat (Virola surinamensis) for transungual administration of antimicotics | Onychomycosis | Rayanne Rocha Pereira et al. | 2021 | [178] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donthi, M.R.; Munnangi, S.R.; Krishna, K.V.; Saha, R.N.; Singhvi, G.; Dubey, S.K. Nanoemulgel: A Novel Nano Carrier as a Tool for Topical Drug Delivery. Pharmaceutics 2023, 15, 164. https://doi.org/10.3390/pharmaceutics15010164
Donthi MR, Munnangi SR, Krishna KV, Saha RN, Singhvi G, Dubey SK. Nanoemulgel: A Novel Nano Carrier as a Tool for Topical Drug Delivery. Pharmaceutics. 2023; 15(1):164. https://doi.org/10.3390/pharmaceutics15010164
Chicago/Turabian StyleDonthi, Mahipal Reddy, Siva Ram Munnangi, Kowthavarapu Venkata Krishna, Ranendra Narayan Saha, Gautam Singhvi, and Sunil Kumar Dubey. 2023. "Nanoemulgel: A Novel Nano Carrier as a Tool for Topical Drug Delivery" Pharmaceutics 15, no. 1: 164. https://doi.org/10.3390/pharmaceutics15010164
APA StyleDonthi, M. R., Munnangi, S. R., Krishna, K. V., Saha, R. N., Singhvi, G., & Dubey, S. K. (2023). Nanoemulgel: A Novel Nano Carrier as a Tool for Topical Drug Delivery. Pharmaceutics, 15(1), 164. https://doi.org/10.3390/pharmaceutics15010164