Application of Box-Behnken Design in the Preparation, Optimization, and In-Vivo Pharmacokinetic Evaluation of Oral Tadalafil-Loaded Niosomal Film
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Statistical Optimization of Tadalafil-Loaded Nanovesicles
2.1.1. Preparation of Tadalafil-Loaded Niosomes
2.1.2. Box–Behnken Design (BBD) Experiment
2.1.3. Particle Size, Polydispersity Index, and Zeta Potential
2.1.4. Entrapment Efficiency
2.2. Preparation and Characterization of Tadalafil-Loaded Noisomal Fast Dissolving Films
2.2.1. Preparation of Tadalafil-Loaded Niosomal Oral Film
2.2.2. Vesicle Size Analysis of the Niosomal Film
2.2.3. In-Vitro Assessment
2.2.4. In-Vitro Release Study
2.3. In-Vivo Assessment
2.3.1. Experimental Animals
2.3.2. In-Vivo Pharmacokinetic Study
2.3.3. Extraction of Tadalafil from Plasma
2.3.4. HPLC Analysis
2.3.5. Pharmacokinetic Parameters
2.4. Stability Study
2.5. Statistical Analysis
3. Results and Discussion
3.1. Box-Behnken Statistical Optimization of Tadalafil-Loaded Niosomal Formulation
3.2. Entrapment Efficiency
3.3. Vesicle Size Analysis of the Niosomal Film
3.4. In-Vitro Assessment of Tadalafil-Loaded Niosomal Oral Film
3.5. In-Vitro Release of Tadalafil from the Optimized Niosomal Film
3.6. In-Vivo Pharmacokinetic Assessment
3.7. Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chapple, C.R.; Roehrborn, C.G.; McVary, K.; Ilo, D.; Henneges, C.; Viktrup, L. Effect of Tadalafil on Male Lower Urinary Tract Symptoms: An Integrated Analysis of Storage and Voiding International Prostate Symptom Subscores from Four Randomised Controlled Trials. Eur. Urol. 2015, 67, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.-J.; Yan, H.-L.; Xu, F.-H.; Chao, H.-C.; Deng, L.-H.; Xu, X.-D.; Huang, J.-B.; Zeng, T. Efficacy and Side Effects of Drugs Commonly Used for the Treatment of Lower Urinary Tract Symptoms Associated with Enign Prostatic Hyperplasia. Front. Pharmacol. 2020, 11, 658. [Google Scholar] [CrossRef] [PubMed]
- Ventura, S.; Oliver, V.L.; White, C.W.; Xie, J.H.; Haynes, J.M.; Exintaris, B. Novel Drug Targets for the Pharmacotherapy of Benign Prostatic Hyperplasia (BPH). Br. J. Pharmacol. 2011, 163, 891–907. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.K.; Pearle, M.S.; Cadeddu, J.A. Rendering Stone Fragments Paramagnetic with Iron-Oxide Microparticles to Improve the Efficiency of Endoscopic Stone Fragment Retrieval. Curr. Opin. Urol. 2012, 22, 144–147. [Google Scholar] [CrossRef] [PubMed]
- Tinel, H.; Stelte-Ludwig, B.; Hütter, J.; Sandner, P. Pre-Clinical Evidence for the Use of Phosphodiesterase-5 Inhibitors for Treating Benign Prostatic Hyperplasia and Lower Urinary Tract Symptoms. BJU Int. 2006, 98, 1259–1263. [Google Scholar] [CrossRef] [PubMed]
- Porst, H. IC351 (Tadalafil, Cialis): Update on Clinical Experience. Int. J. Impot. Res. 2002, 14, S57–S64. [Google Scholar] [CrossRef]
- Toque, H.A.; Priviero, F.B.M.; Teixeira, C.E.; Claudino, M.A.; Baracat, J.S.; Fregonesi, A.; De Nucci, G.; Antunes, E. Comparative Relaxing Effects of Sildenafil, Vardenafil, and Tadalafil in Human Corpus Cavernosum: Contribution of Endogenous Nitric Oxide Release. Urology 2009, 74, 216–221. [Google Scholar] [CrossRef]
- Bruzziches, R.; Francomano, D.; Gareri, P.; Lenzi, A.; Aversa, A. An Update on Pharmacological Treatment of Erectile Dysfunction with Phosphodiesterase Type 5 Inhibitors. Expert Opin. Pharmacother. 2013, 14, 1333–1344. [Google Scholar] [CrossRef]
- Su, M.; Xia, Y.; Shen, Y.; Heng, W.; Wei, Y.; Zhang, L.; Gao, Y.; Zhang, J.; Qian, S. A Novel Drug-Drug Coamorphous System without Molecular Interactions: Improve the Physicochemical Properties of Tadalafil and Repaglinide. RSC Adv. 2019, 10, 565–583. [Google Scholar] [CrossRef] [Green Version]
- Mehanna, M.M.; Abla, K.K.; Domiati, S.; Elmaradny, H. Superiority of Microemulsion-Based Hydrogel for Non-Steroidal Anti-Inflammatory Drug Transdermal Delivery: A Comparative Safety and Anti-Nociceptive Efficacy Study. Int. J. Pharm. 2022, 622, 121830. [Google Scholar] [CrossRef]
- Mehanna, M.M.; Abla, K.K.; Elmaradny, H.A. Tailored Limonene-Based Nanosized Microemulsion: Formulation, Physicochemical Characterization and in-Vivo Skin Irritation Assessment. Adv. Pharm. Bull. 2020, 11, 274–285. [Google Scholar] [CrossRef]
- Mehanna, M.M.; Abla, K.K. SiRNA Nanohybrid Systems: False Hope or Feasible Answer in Cancer Management. Ther. Deliv. 2022, 13, 109–133. [Google Scholar] [CrossRef] [PubMed]
- Alwattar, J.K.; Mneimneh, A.T.; Abla, K.K.; Mehanna, M.M.; Allam, A.N. Smart Stimuli-Responsive Liposomal Nanohybrid Systems: A Critical Review of Theranostic Behavior in Cancer. Pharmaceutics 2021, 13, 355. [Google Scholar] [CrossRef]
- Vinesh, V.; Sevukarajan, M.; Rajalakshmi, R.; Thulasi Chowdary, G. Enhancement of Solubility of Tadalafil by Cocrystal Approach. Int. Res. J. Pharm. 2013, 4, 218–223. [Google Scholar] [CrossRef]
- Mehanna, M.M.; Mneimneh, A.T.; Domiati, S.; Allam, A.N. Tadalafil-Loaded Limonene-Based Orodispersible Tablets: Formulation, in Vitro Characterization and in Vivo Appraisal of Gastroprotective Activity. Int. J. Nanomed. 2020, 15, 10099–10112. [Google Scholar] [CrossRef]
- Mehanna, M.M.; Alwattar, J.K.; Habchi, R. Electrohydrodynamic Atomization, a Promising Avenue for Fast-Dissolving Drug Delivery System: Lessons from Tadalafil-Loaded Composite Nanofibers. J. Appl. Pharm. Sci. 2020, 10, 33–45. [Google Scholar] [CrossRef]
- Badr-Eldin, S.M.; Elkheshen, S.A.; Ghorab, M.M. Inclusion Complexes of Tadalafil with Natural and Chemically Modified β-Cyclodextrins. I: Preparation and in-Vitro Evaluation. Eur. J. Pharm. Biopharm. 2008, 70, 819–827. [Google Scholar] [CrossRef]
- Mehanna, M.M.; Motawaa, A.M.; Samaha, M.W. Tadalafil Inclusion in Microporous Silica as Effective Dissolution Enhancer: Optimization of Loading Procedure and Molecular State Characterization. J. Pharm. Sci. 2012, 101, 2271–2280. [Google Scholar] [CrossRef] [PubMed]
- Mehanna, M.M.; Mneimneh, A.T. Formulation and Applications of Lipid-Based Nanovehicles: Spotlight on Self-Emulsifying Systems. Adv. Pharm. Bull. 2021, 11, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, P.; Tripathi, P.; Gupta, R.; Pandey, S. Niosomes: A Review on Niosomal Research in the Last Decade. J. Drug Deliv. Sci. Technol. 2020, 56, 101581. [Google Scholar] [CrossRef]
- Aboubakr, E.M.; Mohammed, H.A.; Hassan, A.S.; Mohamed, H.B.; El Dosoky, M.I.; Ahmad, A.M. Glutathione-Loaded Non-Ionic Surfactant Niosomes: A New Approach to Improve Oral Bioavailability and Hepatoprotective Efficacy of Glutathione. Nanotechnol. Rev. 2021, 11, 117–137. [Google Scholar] [CrossRef]
- Slavkova, M.; Breitkreutz, J. Orodispersible Drug Formulations for Children and Elderly. Eur. J. Pharm. Sci. 2015, 75, 2–9. [Google Scholar] [CrossRef]
- Hoffmann, E.M.; Breitenbach, A.; Breitkreutz, J. Advances in Orodispersible Films for Drug Delivery. Expert Opin. Drug Deliv. 2011, 8, 299–316. [Google Scholar] [CrossRef]
- Visser, J.C.; Wibier, L.; Mekhaeil, M.; Woerdenbag, H.J.; Taxis, K. Orodispersible Films as a Personalized Dosage Form for Nursing Home Residents, an Exploratory Study. Int. J. Clin. Pharm. 2020, 42, 436–444. [Google Scholar] [CrossRef] [Green Version]
- Jadhav, Y.G.; Galgatte, U.C.; Chaudhari, P.D. Overcoming Poor Solubility of Dimenhydrinate: Development, Optimization and Evaluation of Fast Dissolving Oral Film. Adv. Pharm. Bull. 2018, 8, 721–725. [Google Scholar] [CrossRef]
- Allam, A.; Fetih, G. Sublingual Fast Dissolving Niosomal Films for Enhanced Bioavailability and Prolonged Effect of Metoprolol Tartrate. Drug Des. Dev. Ther. 2016, 10, 2421–2433. [Google Scholar] [CrossRef] [Green Version]
- Abd El Azim, H.; Nafee, N.; Ramadan, A.; Khalafallah, N. Liposomal Buccal Mucoadhesive Film for Improved Delivery and Permeation of Water-Soluble Vitamins. Int. J. Pharm. 2015, 488, 78–85. [Google Scholar] [CrossRef]
- Bendas, E.R.; Abdullah, H.; El-Komy, M.H.M.; Kassem, M.A.A. Hydroxychloroquine Niosomes: A New Trend in Topical Management of Oral Lichen Planus. Int. J. Pharm. 2013, 458, 287–295. [Google Scholar] [CrossRef]
- Mehanna, M.M.; Motawaa, A.M.; Samaha, M.W. Nanovesicular Carrier-Mediated Transdermal Delivery of Tadalafil: I- Formulation and Physicsochemical Characterization. Drug Dev. Ind. Pharm. 2015, 41, 714–721. [Google Scholar] [CrossRef]
- Liu, C.; Chang, D.; Zhang, X.; Sui, H.; Kong, Y.; Zhu, R.; Wang, W. Oral Fast-Dissolving Films Containing Lutein Nanocrystals for Improved Bioavailability: Formulation Development, in Vitro and in Vivo Evaluation. AAPS PharmSciTech 2017, 18, 2957–2964. [Google Scholar] [CrossRef]
- Bala, R.; Khanna, S.; Pawar, P.; Arora, S. Orally Dissolving Strips: A New Approach to Oral Drug Delivery System. Int. J. Pharm. Investig. 2013, 3, 67. [Google Scholar] [CrossRef] [Green Version]
- Panraksa, P.; Jantrawut, P.; Tipduangta, P.; Jantanasakulwong, K. Formulation of Orally Disintegrating Films as an Amorphous Solid Solution of a Poorly Water-Soluble Drug. Membranes 2020, 10, 376. [Google Scholar] [CrossRef]
- El-Feky, Y.A.; Mostafa, D.A.; Al-Sawahli, M.M.; El-Telbany, R.F.A.; Zakaria, S.; Fayez, A.M.; Ahmed, K.A.; Alolayan, E.M.; El-Telbany, D.F.A. Reduction of Intraocular Pressure Using Timolol Orally Dissolving Strips in the Treatment of Induced Primary Open-Angle Glaucoma in Rabbits. J. Pharm. Pharmacol. 2020, 72, 682–698. [Google Scholar] [CrossRef]
- Auda, S.H.; El-Badry, M.; Ibrahim, M.A. Design, Formulation and Characterization of Fast Dissolving Films Containing Dextromethorphan. Dig. J. Nanomater. Biostruct. 2014, 9, 133–141. [Google Scholar]
- Londhe, V.; Shirsat, R. Formulation and Characterization of Fast-Dissolving Sublingual Film of Iloperidone Using Box-Behnken Design for Enhancement of Oral Bioavailability. AAPS PharmSciTech 2018, 19, 1392–1400. [Google Scholar] [CrossRef]
- Kathpalia, H.; Patil, A. Formulation and Evaluation of Orally Disintegrating Films of Levocetirizine Dihydrochloride. Indian J. Pharm. Sci. 2017, 79, 204–211. [Google Scholar] [CrossRef]
- Elshafeey, A.H.; El-Dahmy, R.M. Formulation and Development of Oral Fast-Dissolving Films Loaded with Nanosuspension to Augment Paroxetine Bioavailability: In Vitro Characterization, Ex Vivo Permeation, and Pharmacokinetic Evaluation in Healthy Human Volunteers. Pharmaceutics 2021, 13, 1869. [Google Scholar] [CrossRef]
- Maheswari, K.M.; Devineni, P.K.; Deekonda, S.; Shaik, S.; Uppala, N.P.; Nalluri, B.N. Development and Evaluation of Mouth Dissolving Films of Amlodipine Besylate for Enhanced Therapeutic Efficacy. J. Pharm. 2014, 2014, 520949. [Google Scholar] [CrossRef]
- Kulkarni, P.; Rawtani, D. Application of Box-Behnken Design in the Preparation, Optimization, and in Vitro Evaluation of Self-Assembly–Based Tamoxifen- and Doxorubicin-Loaded and Dual Drug–Loaded Niosomes for Combinatorial Breast Cancer Treatment. J. Pharm. Sci. 2019, 108, 2643–2653. [Google Scholar] [CrossRef]
- Shilakari Asthana, G.; Sharma, P.K.; Asthana, A. In Vitro and In Vivo Evaluation of Niosomal Formulation for Controlled Delivery of Clarithromycin. Scientifica 2016, 2016, 6492953. [Google Scholar] [CrossRef] [Green Version]
- Allam, A.N.; Naggar, V.F.; El Gamal, S.S. Preparation, Formulation and physicochemical characterization of chitosan/acyclovir co-crystals. Pharm. Dev. Technol. 2013, 18, 856–865. [Google Scholar] [CrossRef] [PubMed]
- Alsofany, J.M.; Hamza, M.Y.; Abdelbary, A.A. Fabrication of Nanosuspension Directly Loaded Fast-Dissolving Films for Enhanced Oral Bioavailability of Olmesartan Medoxomil: In Vitro Characterization and Pharmacokinetic Evaluation in Healthy Human Volunteers. AAPS PharmSciTech 2018, 19, 2118–2132. [Google Scholar] [CrossRef]
- Bojanapu, A.; Subramaniam, A.T.; Munusamy, J.; Dhanapal, K.; Chennakesavalu, J.; Sellappan, M.; Jayaprakash, V. Validation and Method Development of Tadalafil in Bulk and Tablet Dosage Form by RP-HPLC. Drug Res. 2014, 65, 82–85. [Google Scholar] [CrossRef]
- Moin, A.; Gangadharappa, H.W.; Adnan, M.; Rizvi, S.M.; Ashraf, S.A.; Patel, M.; Abu Lila, A.S.; Allam, A.N. Modulation of drug release from natural polymer matrices by response surface methodology: In vitro and in vivo evaluation. Drug. Design Dev. Ther. 2020, 14, 5325–5336. [Google Scholar] [CrossRef]
- Ravalika, V.; Sailaja, A.K. Formulation and Evaluation of Etoricoxib Niosomes by Thin Film Hydration Technique and Ether Injection Method. Nano Biomed. Eng. 2017, 9, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Ruckmani, K.; Sankar, V. Formulation and Optimization of Zidovudine Niosomes. AAPS PharmSciTech 2010, 11, 1119–1127. [Google Scholar] [CrossRef] [Green Version]
- Alyami, H.; Abdelaziz, K.; Dahmash, E.Z.; Iyire, A. Nonionic Surfactant Vesicles (Niosomes) for Ocular Drug Delivery: Development, Evaluation and Toxicological Profiling. J. Drug Deliv. Sci. Technol. 2020, 60, 102069. [Google Scholar] [CrossRef]
- Shah, P.; Goodyear, B.; Haq, A.; Puri, V.; Michniak-Kohn, B. Evaluations of Quality by Design (QbD) Elements Impact for Developing Niosomes as a Promising Topical Drug Delivery Platform. Pharmaceutics 2020, 12, 246. [Google Scholar] [CrossRef] [Green Version]
- Ruckmani, K.; Jayakar, B.; Ghosal, S.K. Nonionic Surfactant Vesicles (Niosomes) of Cytarabine Hydrochloride for Effective Treatment of Leukemias: Encapsulation, Storage, and in Vitro Release. Drug Dev. Ind. Pharm. 2000, 26, 217–222. [Google Scholar] [CrossRef]
- Okore, V.C.; Attama, A.A.; Ofokansi, K.C.; Esimone, C.O.; Onuigbo, E.B. Formulation and Evaluation of Niosomes. Indian J. Pharm. Sci. 2011, 73, 323–328. [Google Scholar] [CrossRef]
- Sailaja, A.K.; Shreya, M. Preparation and Characterization of Naproxen Loaded Niosomes by Ether Injection Method. Nano Biomed. Eng. 2018, 10, 174–180. [Google Scholar] [CrossRef]
- Sezgin-Bayindir, Z.; Antep, M.N.; Yuksel, N. Development and Characterization of Mixed Niosomes for Oral Delivery Using Candesartan Cilexetil as a Model Poorly Water-Soluble Drug. AAPS PharmSciTech 2014, 16, 108–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guinedi, A.S.; Mortada, N.D.; Mansour, S.; Hathout, R.M. Preparation and Evaluation of Reverse-Phase Evaporation and Multilamellar Niosomes as Ophthalmic Carriers of Acetazolamide. Int. J. Pharm. 2005, 306, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.D.; Shen, C.Y.; Yuan, X.D.; Bai, J.X.; Lv, Q.Y.; Xu, H.; Dai, L.; Yu, C.; Han, J.; Yuan, H.L. Development and Characterization of an Orodispersible Film Containing Drug Nanoparticles. Eur. J. Pharm. Biopharm. 2013, 85, 1348–1356. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, S. Oral Films: A Look Back. Clin. Pharmacol. Biopharm. 2016, 5, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Wadetwar, R.N.; Ali, F.; Kanojiya, P. Formulation and Evaluation of Fast Dissolving Sublingual Film of Paroxetine Hydrochloride for Treatment of Depression. Asian J. Pharm. Clin. Res. 2019, 12, 126–132. [Google Scholar] [CrossRef]
- Sevinç Özakar, R.; Özakar, E. Current Overview of Oral Thin Films. Turk. J. Pharm. Sci. 2021, 18, 111–121. [Google Scholar] [CrossRef]
- Vijaykumar, G.; Koyyada, K.; Rao, K.R.S.S. Design, Evaluation and Comparitive Studies of Oral Thin Films of Alendronate. Int. J. Pharm. Anal. Res. 2016, 5, 95–107. [Google Scholar]
- Karki, S.; Kim, H.; Na, S.-J.; Shin, D.; Jo, K.; Lee, J. Thin Films as an Emerging Platform for Drug Delivery. Asian J. Pharm. Sci. 2016, 11, 559–574. [Google Scholar] [CrossRef] [Green Version]
- Auda, S.H.; Mahrous, G.M.; El-Badry, M.; Fathalla, D. Development, Preparation and Evaluation of Oral Dissolving Films Containing Metoclopramide. Lat. Am. J. Pharm. 2014, 33, 1027–1033. [Google Scholar]
- Irfan, M.; Rabel, S.; Bukhtar, Q.; Qadir, M.I.; Jabeen, F.; Khan, A. Orally Disintegrating Films: A Modern Expansion in Drug Delivery System. Saudi Pharm. J. 2016, 24, 537–546. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.; Kaur, M.; Verma, H. Optimization and Evaluation of Desloratadine Oral Strip: An Innovation in Paediatric Medication. Sci. World J. 2013, 2013, 395681. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.B.; Kumria, R.; Harsha, S.; Attimarad, M.; Al-Dhubiab, B.E.; Alhaider, I.A. In Vitro Techniques to Evaluate Buccal Films. J. Control. Release 2013, 166, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Linku, A.; Sijimol, J. Formulation and Evaluation of Fast Dissolving Oral Film of Anti-Allergic Drug. Asian J. Pharm. Res. Dev. 2018, 6, 5–16. [Google Scholar] [CrossRef]
- Mukherjee, D.; Bharath, S. Design and Characterization of Double Layered Mucoadhesive System Containing Bisphosphonate Derivative. ISRN Pharm. 2013, 2013, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Talekar, S.D.; Haware, R.V.; Dave, R.H. Evaluation of Self-Nanoemulsifying Drug Delivery Systems Using Multivariate Methods to Optimize Permeability of Captopril Oral Films. Eur. J. Pharm. Sci. 2019, 130, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Foroughi-Dahr, M.; Mostoufi, N.; Sotudeh-Gharebagh, R.; Chaouki, J. Particle Coating in Fluidized Beds. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–89. ISBN 978-0-12-409547-2. [Google Scholar]
- Arafa, M.G.; Ghalwash, D.; El-Kersh, D.M.; Elmazar, M.M. Propolis-Based Niosomes as Oromuco-Adhesive Films: A Randomized Clinical Trial of a Therapeutic Drug Delivery Platform for the Treatment of Oral Recurrent Aphthous Ulcers. Sci. Rep. 2018, 8, 2459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, D.H.; Bashir, S.; Khan, M.I.; Figueiredo, P.; Santos, H.A.; Peltonen, L. Formulation Optimization and in Vitro Characterization of Rifampicin and Ceftriaxone Dual Drug Loaded Niosomes with High Energy Probe Sonication Technique. J. Drug Deliv. Sci. Technol. 2020, 58, 101763. [Google Scholar] [CrossRef]
- Serrano, D.R.; Fernandez-Garcia, R.; Mele, M.; Healy, A.M.; Lalatsa, A. Designing Fast-Dissolving Orodispersible Films of Amphotericin b for Oropharyngeal Candidiasis. Pharmaceutics 2019, 11, 369. [Google Scholar] [CrossRef] [Green Version]
- Rasul, A.; Khan, M.I.; Rehman, M.U.; Abbas, G.; Aslam, N.; Ahmad, S.; Abbas, K.; Shah, P.A.; Iqbal, M.; Al Subari, A.M.A.; et al. In Vitro Characterization and Release Studies of Combined Nonionic Surfactant-Based Vesicles for the Prolonged Delivery of an Immunosuppressant Model Drug. Int. J. Nanomed. 2020, 15, 7937–7949. [Google Scholar] [CrossRef]
- Danyuo, Y.; Ani, C.J.; Salifu, A.A.; Obayemi, J.D.; Dozie-Nwachukwu, S.; Obanawu, V.O.; Akpan, U.M.; Odusanya, O.S.; Abade-Abugre, M.; McBagonluri, F.; et al. Anomalous Release Kinetics of Prodigiosin from Poly-N-Isopropyl-Acrylamid Based Hydrogels for the Treatment of Triple Negative Breast Cancer. Sci. Rep. 2019, 9, 3862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allam, A.N.; Mehanna, M.M. Formulation, physicochemical characterization and in-vivo evaluation of ion-sensitive metformin loaded-biopolymeric beads. Drug. Dev. Ind. Pharm. 2016, 42, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.M.; Kellaway, I.W.; Murdan, S. Fast-Dissolving Microparticles Fail to Show Improved Oral Bioavailability. J. Pharm. Pharmacol. 2010, 58, 1319–1326. [Google Scholar] [CrossRef]
- Anjireddy, K.; Karpagam, S. Micro and Nanocrystalline Cellulose Based Oral Dispersible Film; Preparation and Evaluation of in Vitro/in Vivo Rapid Release Studies for Donepezil. Braz. J. Pharm. Sci. 2020, 56, 1–17. [Google Scholar] [CrossRef]
- Bharti, K.; Mittal, P.; Mishra, B. Formulation and Characterization of Fast Dissolving Oral Films Containing Buspirone Hydrochloride Nanoparticles Using Design of Experiment. J. Drug Deliv. Sci. Technol. 2019, 49, 420–432. [Google Scholar] [CrossRef]
- Nishimura, M.; Matsuura, K.; Tsukioka, T.; Yamashita, H.; Inagaki, N.; Sugiyama, T.; Itoh, Y. In Vitro and in Vivo Characteristics of Prochlorperazine Oral Disintegrating Film. Int. J. Pharm. 2009, 368, 98–102. [Google Scholar] [CrossRef]
Independent Variables | Levels | ||
---|---|---|---|
Low | Medium | High | |
X1 = Mixing time (min) | 15 | 22.5 | 30 |
X2 = Non-ionic surfactant to lipid ratio (w/w) | 1:2 | 1:0.8 | 2:1 |
X3 = Total weight of the preparation (mg) | 200 | 350 | 500 |
Transformed values | −1 | 0 | +1 |
Studied Responses | Goal | ||
Y1 = Particle size (nm) Y2 = Polydispersity index Y3 = Zeta potential (mV) | Minimize Minimize Maximize |
Surfactant | Particle Size (nm) | Polydispersity Index | Zeta Potential (mV) |
---|---|---|---|
Tween®80 | 147 ± 2.63 | 0.331 ± 0.022 | −31.3 ± 0.87 |
Span®60 | 340 ± 12.06 | 0.395 ± 0.033 | −8.2 ± 0.425 |
Poloxamer®407 | 217.1 ± 8.20 | 0.769 ± 0.088 | −39.4 ± 0.624 |
Response | Mathematical Model | Adequate Precision | R2 | Adjusted R2 | Predicted R2 | SD | %CV * | p-Value ** |
---|---|---|---|---|---|---|---|---|
Y1 | Quadratic | 23.772 | 0.987 | 0.964 | 0.796 | 7.510 | 4.13 | 0.0001 |
Y2 | Quadratic | 18.724 | 0.987 | 0.965 | 0.801 | 0.034 | 8.69 | 0.0009 |
Y3 | Quadratic | 19.724 | 0.988 | 0.967 | 0.832 | 0.865 | 2.71 | 0.0001 |
Formulation (F) | Mixing Time (min) | Surfactant to Lipid Ratio | Total Weight of the Preparation (mg) | Particle Size (nm) | Polydispersity Index | Zeta Potential (mV) |
---|---|---|---|---|---|---|
1 | 30 | 1:2 | 350 | 145.67 ± 2.34 | 0.236 ± 0.02 | −30.76 ± 3.76 |
2 | 22.5 | 1:0.8 | 350 | 153.00 ± 2.78 | 0.31 ± 0.07 | −30.00 ± 7.80 |
3 | 22.5 | 2:1 | 200 | 223.10 ± 4.77 | 0.760 ± 0.04 | −40.00 ± 8.09 |
4 | 22.5 | 1:0.8 | 350 | 157.54 ± 1.26 | 0.3 ± 1.53 | −29.00 ± 3.30 |
5 | 15 | 1:0.8 | 500 | 150.90 ± 3.11 | 0.341 ± 0.06 | −28.98 ± 5.81 |
6 | 22.5 | 2:1 | 500 | 267.70 ± 2.29 | 0.650 ± 0.01 | −39.87 ± 7.83 |
7 | 22.5 | 1:2 | 200 | 183.90 ± 8.56 | 0.276 ± 0.05 | −31.40 ± 9.52 |
8 | 15 | 1:0.8 | 200 | 161.50 ± 6.26 | 0.288 ± 0.16 | −27.98 ± 5.73 |
9 | 22.5 | 1:2 | 500 | 194.65 ± 4.76 | 0.343 ± 1.12 | −29.99 ± 7.49 |
10 | 15 | 2:1 | 350 | 235.87 ± 7.89 | 0.660 ± 2.45 | −38.87 ± 3.98 |
11 | 30 | 2:1 | 350 | 221.76 ± 1.12 | 0.657 ± 3.12 | −37.89 ± 6.17 |
12 | 15 | 1:2 | 350 | 189.34 ± 9.32 | 0.278 ± 0.03 | −32.56 ± 8.51 |
13 | 22.5 | 1:0.8 | 350 | 159.00 ± 5.21 | 0.301 ± 3.12 | −29.90 ± 8.42 |
14 | 30 | 1:0.8 | 200 | 126.80 ± 2.11 | 0.224 ± 0.01 | −27.80 ± 2.91 |
15 | 30 | 1:0.8 | 500 | 155.90 ± 4.26 | 0.341 ± 0.09 | −25.60 ± 6.59 |
Factor | Optimized Level | ||
---|---|---|---|
X1 = Mixing time (min) | 29.42 | ||
X2 = Surfactant: Lipid (ratio) | 0.93 | ||
X3 = Total weight (mg) | 243.9 | ||
Response | Expected | Observed | Residual |
Y1 = Particle size (nm) | 122 | 126.8 | 4.8 |
Y2 = Polydispersity index | 0.178 | 0.224 | 0.046 |
Y3 = Zeta potential (mV) | −27.68 | −27.80 | 0.12 |
Test | Result |
---|---|
Appearance | Transparent and homogenous |
Thickness (µm) | 110 ± 10 * |
Weight variation (mg) | 5.74 ± 0.29 ** |
Content uniformity (w/w%) | 97.82 ± 0.33 ** |
Surface pH | 6.67 ± 0.49 * |
Moisture content (%) | 3.02 ± 0.60 * |
Folding endurance | 320 ± 26.47 * |
Tensile strength (MPa) | 0.079 ± 0.03 * |
Elongation (%) | 6.66 ± 0.12 * |
Disintegration time (seconds) | 30.27 ± 5.06 * |
Pharmacokinetic Parameters * | Oral Niosomal Film | Marketed Tablet | p-Value |
---|---|---|---|
Cmax (µg/mL) | 0.63 ± 0.03 | 0.45 ± 0.04 | 0.001 |
AUC0–24 (µg.h/mL) | 4.82 ± 0.51 | 4.07 ± 0.26 | 0.01 |
AUC0–∞ (µg.h/mL) | 8.90 ± 1.54 | 7.02 ± 0.83 | 0.009 |
K elimination (h−1) | 0.029 ± 0.001 | 0.034 ± 0.001 | 0.05 |
F | 0.71 | 0.63 | 0.05 |
Tmax (h) | 2 ± 0.5 | 3 ± 0.5 | 0.0001 |
t1/2 (h) | 23.87 ± 4.1 | 20.05 ± 3.2 | 0.0003 |
Relative bioavailability (%) | 118.4 |
Thickness (µm) * | Weight (mg) * | |||||||
---|---|---|---|---|---|---|---|---|
Conditions | Zero Week | 4 Weeks | 8 Weeks | 12 Weeks | Zero Week | 4 Weeks | 8 Weeks | 12 Weeks |
Ordinary | 110 ± 10 | 106.45 ± 11.32 | 105.89 ± 3.43 | 104.44 ± 2.01 | 5.74 ± 0.29 | 5.7 ± 1.98 | 5.66 ± 1.02 | 5.59 ± 1.89 |
Accelerated | 110 ± 10 | 105.65 ± 08.35 | 104.78 ± 7.67 | 104.18 ± 1.95 | 5.74 ± 0.29 | 5.64 ± 3.99 | 5.34 ± 4.98 | 5.31 ± 2.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abla, K.K.; Mneimneh, A.T.; Allam, A.N.; Mehanna, M.M. Application of Box-Behnken Design in the Preparation, Optimization, and In-Vivo Pharmacokinetic Evaluation of Oral Tadalafil-Loaded Niosomal Film. Pharmaceutics 2023, 15, 173. https://doi.org/10.3390/pharmaceutics15010173
Abla KK, Mneimneh AT, Allam AN, Mehanna MM. Application of Box-Behnken Design in the Preparation, Optimization, and In-Vivo Pharmacokinetic Evaluation of Oral Tadalafil-Loaded Niosomal Film. Pharmaceutics. 2023; 15(1):173. https://doi.org/10.3390/pharmaceutics15010173
Chicago/Turabian StyleAbla, Kawthar K., Amina T. Mneimneh, Ahmed N. Allam, and Mohammed M. Mehanna. 2023. "Application of Box-Behnken Design in the Preparation, Optimization, and In-Vivo Pharmacokinetic Evaluation of Oral Tadalafil-Loaded Niosomal Film" Pharmaceutics 15, no. 1: 173. https://doi.org/10.3390/pharmaceutics15010173
APA StyleAbla, K. K., Mneimneh, A. T., Allam, A. N., & Mehanna, M. M. (2023). Application of Box-Behnken Design in the Preparation, Optimization, and In-Vivo Pharmacokinetic Evaluation of Oral Tadalafil-Loaded Niosomal Film. Pharmaceutics, 15(1), 173. https://doi.org/10.3390/pharmaceutics15010173