Development and Evaluation of Solid Lipid Nanoparticles for the Clearance of Aβ in Alzheimer’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Molecular Docking Studies of TMPS and MeHCl
2.2.2. In Vitro Aβ Fibrillation Studies
2.2.3. Neuroprotective Effects of MeHCl & TMPS
Neuronal Cell Line Procurement and Maintenance
Cell Viability of Aβ1-42
In-Vitro Cytotoxicity Studies
Simultaneous Combination Assay
Memantine Hydrochloride (MeHCl)
Tramiprosate (TMPS)
2.2.4. Formulation of Solid Lipid Nanoparticles
2.2.5. Experimental Design
2.3. Evaluation of Drug Loaded SLNs
2.3.1. %Drug Entrapment Efficiency (%DEE)
2.3.2. In Vitro Drug Release Studies
2.3.3. Transmission Electron Microscopy (TEM)
2.3.4. Atomic Force Microscopy (AFM)
2.4. Animals
2.5. Pharmacokinetics and Bio-Distribution
2.6. Pharmacodynamics
2.6.1. Morris Water Maze Test
2.6.2. Histopathology
2.6.3. ELISA
3. Results
3.1. Docking Analysis
3.2. In Vitro Aβ Fibrillation Studies
3.3. Neuroprotective Effects of MeHCl & TMPS
3.3.1. Aβ1-42
3.3.2. MeHCl
3.3.3. TMPS
3.3.4. Simultaneous Estimation
3.4. Formulation of Solid Lipid Nanoparticles
3.4.1. Model Fitting
3.4.2. Effect of Independent Variables on Responses
3.4.3. Verification of the Model
3.5. Evaluation of Drug Loaded SLNs
3.5.1. %Drug Entrapment Efficiency (%DEE)
3.5.2. Determination of Particle Size (PS), Polydispersity Index (PDI), and Zeta Potential of Optimized Formulation
3.5.3. Transmission Electron Microscopy (TEM)
3.5.4. In-Vitro Cumulative % Drug Release Study
3.5.5. AFM
3.5.6. Stability Studies
3.6. Pharmacokinetics
3.7. Bio Distribution
3.8. Pharmacodynamics
3.8.1. Morris Water Maze (MWM)
3.8.2. ELISA
3.8.3. Histopathology
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sadigh-Eteghad, S.; Sabermarouf, B.; Majdi, A.; Talebi, M.; Farhoudi, M.; Mahmoudi, J. Amyloid-Beta: A Crucial Factor in Alzheimer’s Disease. Med. Princ. Pract. 2015, 24, 1–10. [Google Scholar] [CrossRef]
- Dementia. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 17 July 2020).
- Morley, J.E.; Farr, S.A.; Nguyen, A.D.; Xu, F. What Is the Physiological Function of Amyloid-Beta Protein? J. Nutr. Health Aging 2019, 23, 225–226. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, R.J.; Wong, P.C. Amyloid Precursor Protein Processing and Alzheimer’s Disease. Annu. Rev. Neurosci. 2011, 34, 185–204. [Google Scholar] [CrossRef] [Green Version]
- Scarpini, E.; Schelterns, P.; Feldman, H. Treatment of Alzheimer’s Disease; Current Status and New Perspectives. Lancet Neurol. 2003, 2, 539–547. [Google Scholar] [CrossRef]
- Nisticò, R.; Borg, J.J. Aducanumab for Alzheimer’s Disease: A Regulatory Perspective. Pharmacol. Res. 2021, 171, 105754. [Google Scholar] [CrossRef]
- Zenaro, E.; Piacentino, G.; Constantin, G. The Blood-Brain Barrier in Alzheimer’s Disease. Neurobiol. Dis. 2017, 107, 41–56. [Google Scholar] [CrossRef] [Green Version]
- Leszek, J.; Md Ashraf, G.; Tse, W.H.; Zhang, J.; Gasiorowski, K.; Fidel Avila-Rodriguez, M.; Tarasov, V.V.; Barreto, E.G.; Klochkov, G.S.; Bachurin, O.S.; et al. Nanotechnology for Alzheimer Disease. Curr. Alzheimer Res. 2017, 14, 1182–1189. [Google Scholar] [CrossRef]
- Dara, T.; Vatanara, A.; Sharifzadeh, M.; Khani, S.; Vakilinezhad, M.A.; Vakhshiteh, F.; Nabi Meybodi, M.; Sadegh Malvajerd, S.; Hassani, S.; Mosaddegh, M.H. Improvement of Memory Deficits in the Rat Model of Alzheimer’s Disease by Erythropoietin-Loaded Solid Lipid Nanoparticles. Neurobiol. Learn. Mem. 2019, 166, 107082. [Google Scholar] [CrossRef]
- Vakilinezhad, M.A.; Amini, A.; Akbari Javar, H.; Baha’addini Beigi Zarandi, B.F.; Montaseri, H.; Dinarvand, R. Nicotinamide Loaded Functionalized Solid Lipid Nanoparticles Improves Cognition in Alzheimer’s Disease Animal Model by Reducing Tau Hyperphosphorylation. DARU J. Pharm. Sci. 2018, 26, 165–177. [Google Scholar] [CrossRef]
- Loureiro, J.A.; Andrade, S.; Duarte, A.; Neves, A.R.; Queiroz, J.F.; Nunes, C.; Sevin, E.; Fenart, L.; Gosselet, F.; Coelho, M.A.N.; et al. Resveratrol and Grape Extract-Loaded Solid Lipid Nanoparticles for the Treatment of Alzheimer’s Disease. Molecules 2017, 22, 277. [Google Scholar] [CrossRef]
- Campos, J.R.; Severino, P.; Santini, A.; Silva, A.M.; Shegokar, R.; Souto, S.B.; Souto, E.B. Chapter 1—Solid Lipid Nanoparticles (SLN): Prediction of Toxicity, Metabolism, Fate and Physicochemical Properties. In Nanopharmaceuticals; Shegokar, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–15. ISBN 978-0-12-817778-5. [Google Scholar]
- Scioli Montoto, S.; Muraca, G.; Ruiz, M.E. Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Front. Mol. Biosci. 2020, 7, 587997. [Google Scholar] [CrossRef] [PubMed]
- Satapathy, M.K.; Yen, T.-L.; Jan, J.-S.; Tang, R.-D.; Wang, J.-Y.; Taliyan, R.; Yang, C.-H. Solid Lipid Nanoparticles (SLNs): An Advanced Drug Delivery System Targeting Brain through BBB. Pharmaceutics 2021, 13, 1183. [Google Scholar] [CrossRef]
- Pizzol, C.D.; Filippin-Monteiro, F.B.; Restrepo, J.A.S.; Pittella, F.; Silva, A.H.; Alves de Souza, P.; Machado de Campos, A.; Creczynski-Pasa, T.B. Influence of Surfactant and Lipid Type on the Physicochemical Properties and Biocompatibility of Solid Lipid Nanoparticles. Int. J. Environ. Res. Public. Health 2014, 11, 8581–8596. [Google Scholar] [CrossRef] [Green Version]
- Karn-orachai, K.; Smith, S.M.; Saesoo, S.; Treethong, A.; Puttipipatkhachorn, S.; Pratontep, S.; Ruktanonchai, U.R. Surfactant Effect on the Physicochemical Characteristics of γ-Oryanol-Containing Solid Lipid Nanoparticles. Colloids Surf. Physicochem. Eng. Asp. 2016, 488, 118–128. [Google Scholar] [CrossRef]
- Sonkusare, S.K.; Kaul, C.L.; Ramarao, P. Dementia of Alzheimer’s Disease and Other Neurodegenerative Disorders—Memantine, a New Hope. Pharmacol. Res. 2005, 51, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Kocis, P.; Tolar, M.; Yu, J.; Sinko, W.; Ray, S.; Blennow, K.; Fillit, H.; Hey, J.A. Elucidating the Aβ42 Anti-Aggregation Mechanism of Action of Tramiprosate in Alzheimer’s Disease: Integrating Molecular Analytical Methods, Pharmacokinetic and Clinical Data. CNS Drugs 2017, 31, 495–509. [Google Scholar] [CrossRef]
- Sathya, S.; Shanmuganathan, B.; Saranya, S.; Vaidevi, S.; Ruckmani, K.; Pandima Devi, K. Phytol-Loaded PLGA Nanoparticle as a Modulator of Alzheimer’s Toxic Aβ Peptide Aggregation and Fibrillation Associated with Impaired Neuronal Cell Function. Artif. Cells Nanomed. Biotechnol. 2017, 46, 1719–1730. [Google Scholar] [CrossRef] [Green Version]
- Gobbi, M.; Re, F.; Canovi, M.; Beeg, M.; Gregori, M.; Sesana, S.; Sonnino, S.; Brogioli, D.; Musicanti, C.; Gasco, P.; et al. Lipid-Based Nanoparticles with High Binding Affinity for Amyloid-Beta1-42 Peptide. Biomaterials 2010, 31, 6519–6529. [Google Scholar] [CrossRef]
- Akel, H.; Ismail, R.; Csóka, I. Progress and Perspectives of Brain-Targeting Lipid-Based Nanosystems via the Nasal Route in Alzheimer’s Disease. Eur. J. Pharm. Biopharm. 2020, 148, 38–53. [Google Scholar] [CrossRef]
- Greenberg, S.M.; Rosand, J.; Schneider, A.T.; Creed Pettigrew, L.; Gandy, S.E.; Rovner, B.; Fitzsimmons, B.-F.; Smith, E.E.; Edip Gurol, M.; Schwab, K.; et al. A Phase 2 Study of Tramiprosate for Cerebral Amyloid Angiopathy. Alzheimer Dis. Assoc. Disord. 2006, 20, 269–274. [Google Scholar] [CrossRef]
- Jokar, S.; Erfani, M.; Bavi, O.; Khazaei, S.; Sharifzadeh, M.; Hajiramezanali, M.; Beiki, D.; Shamloo, A. Design of Peptide-Based Inhibitor Agent against Amyloid-β Aggregation: Molecular Docking, Synthesis and in Vitro Evaluation. Bioorg. Chem. 2020, 102, 104050. [Google Scholar] [CrossRef] [PubMed]
- Giannousi, K.; Geromichalos, G.; Kakolyri, D.; Mourdikoudis, S.; Dendrinou-Samara, C. Interaction of ZnO Nanostructures with Proteins: In Vitro Fibrillation/Antifibrillation Studies and in Silico Molecular Docking Simulations. ACS Chem. Neurosci. 2020, 11, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Tarozzi, A.; Merlicco, A.; Morroni, F.; Franco, F.; Cantelli-Forti, G.; Teti, G.; Falconi, M.; Hrelia, P. Cyanidin 3-O-Glucopyranoside Protects and Rescues SH-SY5Y Cells against Amyloid-Beta Peptide-Induced Toxicity. NeuroReport 2008, 19, 1483–1486. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Huang, C.; Wu, J.; Sun, L.; Hao, W.; Leung, L.K.; Huang, J. The Neuroprotective Effects of Ipriflavone against H2O2 and Amyloid Beta Induced Toxicity in Human Neuroblastoma SH-SY5Y Cells. Eur. J. Pharmacol. 2013, 721, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Abdul Manap, A.S.; Wei Tan, A.C.; Leong, W.H.; Yin Chia, A.Y.; Vijayabalan, S.; Arya, A.; Wong, E.H.; Rizwan, F.; Bindal, U.; Koshy, S.; et al. Synergistic Effects of Curcumin and Piperine as Potent Acetylcholine and Amyloidogenic Inhibitors With Significant Neuroprotective Activity in SH-SY5Y Cells via Computational Molecular Modeling and in Vitro Assay. Front. Aging Neurosci. 2019, 11, 206. [Google Scholar] [CrossRef] [Green Version]
- Aljaeid, B.M.; Hosny, K.M. Miconazole-Loaded Solid Lipid Nanoparticles: Formulation and Evaluation of a Novel Formula with High Bioavailability and Antifungal Activity. Int. J. Nanomed. 2016, 11, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Taylor, E.N.; Kummer, K.M.; Dyondi, D.; Webster, T.J.; Banerjee, R. Multi-Scale Strategy to Eradicate Pseudomonas Aeruginosa on Surfaces Using Solid Lipid Nanoparticles Loaded with Free Fatty Acids. Nanoscale 2013, 6, 825–832. [Google Scholar] [CrossRef]
- Rao, R.N.; Maurya, P.K.; Shinde, D.D.; Khalid, S. Precolumn Derivatization Followed by Liquid Chromatographic Separation and Determination of Tramiprosate in Rat Plasma by Fluorescence Detector: Application to Pharmacokinetics. J. Pharm. Biomed. Anal. 2011, 55, 282–287. [Google Scholar] [CrossRef]
- Jalalizadeh, H.; Raei, M.; Tafti, R.F.; Farsam, H.; Kebriaeezadeh, A.; Souri, E. A Stability-Indicating HPLC Method for the Determination of Memantine Hydrochloride in Dosage Forms through Derivatization with 1-Fluoro-2,4-Dinitrobenzene. Sci. Pharm. 2014, 82, 265–279. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhang, M.; Ahmed, M.; Surapaneni, K.M.; Veeraraghavan, V.P.; Arulselvan, P. Neuroprotective Effects of Ononin against the Aluminium Chloride-Induced Alzheimer’s Disease in Rats. Saudi J. Biol. Sci. 2021, 28, 4232–4239. [Google Scholar] [CrossRef]
- Scearce-Levie, K. Monitoring Spatial Learning and Memory in Alzheimer’s Disease Mouse Models Using the Morris Water Maze. Methods Mol. Biol. Clifton NJ 2011, 670, 191–205. [Google Scholar] [CrossRef]
- Yakupova, E.I.; Bobyleva, L.G.; Vikhlyantsev, I.M.; Bobylev, A.G. Congo Red and Amyloids: History and Relationship. Biosci. Rep. 2019, 39, BSR20181415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cacciatore, I.; Ciulla, M.; Fornasari, E.; Marinelli, L.; Di Stefano, A. Solid Lipid Nanoparticles as a Drug Delivery System for the Treatment of Neurodegenerative Diseases. Expert Opin. Drug Deliv. 2016, 13, 1121–1131. [Google Scholar] [CrossRef] [PubMed]
- Alley, G.M.; Bailey, J.A.; Chen, D.; Ray, B.; Puli, L.K.; Tanila, H.; Banerjee, P.K.; Lahiri, D.K. Memantine Lowers Amyloid-Beta Peptide Levels in Neuronal Cultures and in APP/PS1 Transgenic Mice. J. Neurosci. Res. 2010, 88, 143–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gervais, F.; Paquette, J.; Morissette, C.; Krzywkowski, P.; Yu, M.; Azzi, M.; Lacombe, D.; Kong, X.; Aman, A.; Laurin, J.; et al. Targeting Soluble Aβ Peptide with Tramiprosate for the Treatment of Brain Amyloidosis. Neurobiol. Aging 2007, 28, 537–547. [Google Scholar] [CrossRef]
- Neves, A.R.; Queiroz, J.F.; Weksler, B.; Romero, I.A.; Couraud, P.-O.; Reis, S. Solid Lipid Nanoparticles as a Vehicle for Brain-Targeted Drug Delivery: Two New Strategies of Functionalization with Apolipoprotein E. Nanotechnology 2015, 26, 495103. [Google Scholar] [CrossRef]
- Clogston, J.D.; Patri, A.K. Zeta Potential Measurement. Methods Mol. Biol. Clifton NJ 2011, 697, 63–70. [Google Scholar] [CrossRef]
- Se Thoe, E.; Fauzi, A.; Tang, Y.Q.; Chamyuang, S.; Chia, A.Y.Y. A Review on Advances of Treatment Modalities for Alzheimer’s Disease. Life Sci. 2021, 276, 119129. [Google Scholar] [CrossRef]
- Han, L.; Jiang, C. Evolution of Blood–Brain Barrier in Brain Diseases and Related Systemic Nanoscale Brain-Targeting Drug Delivery Strategies. Acta Pharm. Sin. B 2021, 11, 2306–2325. [Google Scholar] [CrossRef]
- Ju, Y.; Tam, K.Y. Pathological Mechanisms and Therapeutic Strategies for Alzheimer’s Disease. Neural Regen. Res. 2021, 17, 543–549. [Google Scholar] [CrossRef]
Source | Log Worth | p Value | |
---|---|---|---|
Homogenization speed*Homogenization speed | 3.612 | 0.00024 | |
Homogenization time*Homogenization time | 3.492 | 0.00032 | |
Homogenization speed (10,20) | 3.475 | 0.00033 | ^ |
Smix*Homogenization time | 2.669 | 0.00214 | |
Homogenization time*homogenization speed | 2.3922 | 0.00406 | |
Homogenization time (4,8) | 1.916 | 0.01212 | ^ |
Smix*Smix | 1.811 | 0.01545 | |
Smix*Homogenization speed | 1.401 | 0.03970 | |
Smix (10,20) | 1.158 | 0.06957 | ^ |
Pattern | Smix | Homogenization Time | Homogenization Speed | Particle Size * (Mean ± SD) | PDI * (Mean ± SD) |
---|---|---|---|---|---|
0 | 15 | 6 | 15 | 159.9 ± 0.569 | 0.154 ± 0.04 |
0 | 15 | 6 | 15 | 163 ± 0.070 | 0.192 ± 0.0007 |
+0− | 20 | 6 | 10 | 252 ± 0.212 | 0.259 ± 0.0007 |
0−+ | 15 | 4 | 20 | 106.5 ± 0.424 | 0.399 ± 0.0007 |
−−0 | 10 | 4 | 15 | 576 ± 0.572 | 0.284 ± 0.0014 |
−0− | 10 | 6 | 10 | 65.04 ± 0.282 | 0.397 ± 0.0007 |
0 | 15 | 6 | 15 | 333 ± 0.424 | 0.123 ± 0.0007 |
+0+ | 20 | 6 | 20 | 157 ± 0.282 | 0.149 ± 0.0007 |
+−0 | 20 | 4 | 15 | 282.1 ± 1.414 | 0.274 ± 0.0028 |
−0+ | 10 | 6 | 20 | 295.4 ± 0.353 | 0.196 ± 0.0014 |
0 | 15 | 6 | 15 | 158 ± 0.282 | 0.12 ± 0.0028 |
0 | 20 | 8 | 15 | 490 ± 0.353 | 0.211 ± 0.0028 |
−+0 | 10 | 8 | 15 | 174.1 ± 0.353 | 0.213 ± 0.0014 |
0+− | 15 | 8 | 10 | 70.43 ± 0.296 | 0.455 ± 0.0028 |
0 | 15 | 6 | 15 | 155 ± 0.424 | 0.144 ± 0.0028 |
0++ | 15 | 8 | 20 | 280.4 ± 0.141 | 0.175 ± 0.0028 |
M + T PD | M + T SLN | |||
---|---|---|---|---|
Parameters | MeHCl PD * | TMPS PD * | MeHCl SLN * | TMPS SLN * |
Cmax | 144.601 ± 0.354 | 57.018 ± 0.2029 | 204.79 ± 0.042 | 65.618 ± 0.292 |
Tmax | 1 ± 0 | 1 ± 0 | 4 ± 0 | 4 ± 0 |
Cl | 7.509 ± 0.099 | 20.239 ± 0.1166 | 4.465 ± 0.134 | 12.05 ± 0.113 |
MRT | 16.634 ± 0.475 | 10.437 ± 0.236 | 18.31 ± 0.241 | 15.22 ± 0.229 |
AUC0-ꚙ | 2635.268 ± 0.118 | 491.537 ± 0.731 | 4573.705 ± 0.12 | 835.45 ± 0.478 |
AUC0-48 | 1854.468 ± 0.103 | 412.285 ± 0.502 | 3401.657 ± 0.289 | 614.376 ± 0.288 |
Vz | 325.604 ± 0.113 | 798.56 ± 0.602 | 136.938 ± 0.101 | 538.887 ± 0.229 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shivananjegowda, M.G.; Hani, U.; Osmani, R.A.M.; Alamri, A.H.; Ghazwani, M.; Alhamhoom, Y.; Rahamathulla, M.; Paranthaman, S.; Gowda, D.V.; Siddiqua, A. Development and Evaluation of Solid Lipid Nanoparticles for the Clearance of Aβ in Alzheimer’s Disease. Pharmaceutics 2023, 15, 221. https://doi.org/10.3390/pharmaceutics15010221
Shivananjegowda MG, Hani U, Osmani RAM, Alamri AH, Ghazwani M, Alhamhoom Y, Rahamathulla M, Paranthaman S, Gowda DV, Siddiqua A. Development and Evaluation of Solid Lipid Nanoparticles for the Clearance of Aβ in Alzheimer’s Disease. Pharmaceutics. 2023; 15(1):221. https://doi.org/10.3390/pharmaceutics15010221
Chicago/Turabian StyleShivananjegowda, Meghana Goravinahalli, Umme Hani, Riyaz Ali M. Osmani, Ali H. Alamri, Mohammed Ghazwani, Yahya Alhamhoom, Mohamed Rahamathulla, Sathishbabu Paranthaman, Devegowda Vishakante Gowda, and Ayesha Siddiqua. 2023. "Development and Evaluation of Solid Lipid Nanoparticles for the Clearance of Aβ in Alzheimer’s Disease" Pharmaceutics 15, no. 1: 221. https://doi.org/10.3390/pharmaceutics15010221
APA StyleShivananjegowda, M. G., Hani, U., Osmani, R. A. M., Alamri, A. H., Ghazwani, M., Alhamhoom, Y., Rahamathulla, M., Paranthaman, S., Gowda, D. V., & Siddiqua, A. (2023). Development and Evaluation of Solid Lipid Nanoparticles for the Clearance of Aβ in Alzheimer’s Disease. Pharmaceutics, 15(1), 221. https://doi.org/10.3390/pharmaceutics15010221