Coatings of Cyclodextrin/Citric-Acid Biopolymer as Drug Delivery Systems: A Review
Abstract
:1. Introduction
2. Cyclodextrins
3. Cyclodextrin/Citric Acid Biopolymer
4. Coatings of Cyclodextrin/Citric Acid Biopolymer as Drug-Delivery Systems
5. Pretreatments on the Substrates
6. Mechanisms of Release of CD/CTR-Based Biopolymers
7. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lopes, J.H.; Tabary, N.; Hernandez-Montelongo, J. Editorial: Biomacromolecules Systems Applied to Medical Implants for the Release of Therapeutic Agents. Front. Bioeng. Biotechnol. 2022, 10, 910203. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Pathak, A.; Grover, P.; Bharadwaj, A.; Bhatia, D.; Tomar, R.; Kaurav, M. Different aspects of polymers—A review article. Mater. Today Proc. 2022, 64, 1490–1495. [Google Scholar] [CrossRef]
- Martel, B.; Weltrowski, M.; Ruffin, D.; Morcellet, M. Polycarboxylic acids as crosslinking agents for grafting cyclodextrins onto cotton and wool fabrics: Study of the process parameters. J. Appl. Polym. Sci. 2002, 83, 1449–1456. [Google Scholar] [CrossRef]
- Narayanan, G.; Shen, J.; Matai, I.; Sachdev, A.; Boy, R.; Tonelli, A.E. Cyclodextrin-based nanostructures. Prog. Mater. Sci. 2022, 124, 100869. [Google Scholar] [CrossRef]
- Iravani, S.; Varma, R.S. Nanosponges for Drug Delivery and Cancer Therapy: Recent Advances. Nanomaterials 2022, 12, 2440. [Google Scholar] [CrossRef]
- Ghorpade, V.S.; Yadav, A.V.; Dias, R.J. Citric acid crosslinked cyclodextrin/hydroxypropylmethylcellulose hydrogel films for hydrophobic drug delivery. Int. J. Biol. Macromol. 2016, 93, 75–86. [Google Scholar] [CrossRef]
- Ghorpade, V.S.; Yadav, A.V.; Dias, R.J. Citric acid crosslinked β-cyclodextrin/carboxymethylcellulose hydrogel films for controlled delivery of poorly soluble drugs. Carbohydr. Polym. 2017, 164, 339–348. [Google Scholar] [CrossRef]
- Pérez-Anes, A.; Gargouri, M.; Laure, W.; Berghe, H.V.D.; Courcot, E.; Sobocinski, J.; Tabary, N.; Chai, F.; Blach, J.F.; Addad, A.; et al. Bioinspired Titanium Drug Eluting Platforms Based on a Poly-β-cyclodextrin–Chitosan Layer-by-Layer Self-Assembly Targeting Infections. ACS Appl. Mater. Interfaces 2015, 7, 12882–12893. [Google Scholar] [CrossRef]
- Junthip, J.; Tabary, N.; Chai, F.; Leclercq, L.; Maton, M.; Cazaux, F.; Neut, C.; Paccou, L.; Guinet, Y.; Staelens, J.N.; et al. Layer-by-layer coating of textile with two oppositely charged cyclodextrin polyelectrolytes for extended drug delivery. J. Biomed. Mater. Res. Part A 2016, 104, 1408–1424. [Google Scholar] [CrossRef]
- Hernandez-Montelongo, J.; Naveas, N.; Degoutin, S.; Tabary, N.; Chai, F.; Spampinato, V.; Ceccone, G.; Rossi, F.; Torres-Costa, V.; Manso-Silvan, M.; et al. Porous silicon-cyclodextrin based polymer composites for drug delivery applications. Carbohydr. Polym. 2014, 110, 238–252. [Google Scholar] [CrossRef]
- Smith, P.A. Carbon Fiber Reinforced Plastics—Properties. Compr. Compos. Mater. 2000, 2, 107–150. [Google Scholar] [CrossRef]
- Korsmeyer, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983, 15, 25–35. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Hernandez-Montelongo, R.; Salazar-Araya, J.; Hernandez-Montelongo, J.; Garcia-Sandoval, J.P. Mathematical Modeling of Recursive Drug Delivery with Diffusion, Equilibrium, and Convection Coupling. Mathematics 2022, 10, 2171. [Google Scholar] [CrossRef]
- Bakshi, P.R.; Londhe, V.Y. Widespread applications of host-guest interactive cyclodextrin functionalized polymer nanocomposites: Its meta-analysis and review. Carbohydr. Polym. 2020, 242, 116430. [Google Scholar] [CrossRef] [PubMed]
- Saji, V.S. Supramolecular Chemistry in Corrosion and Biofouling Protection; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar] [CrossRef]
- Davis, M.E.; Brewster, M.E. Cyclodextrin-based pharmaceutics: Past, present and future. Nat. Rev. Drug Discov. 2004, 3, 1023–1035. [Google Scholar] [CrossRef]
- Sherje, A.P.; Dravyakar, B.R.; Kadam, D.; Jadhav, M. Cyclodextrin-based nanosponges: A critical review. Carbohydr. Polym. 2017, 173, 37–49. [Google Scholar] [CrossRef]
- Zhang, D.; Lv, P.; Zhou, C.; Zhao, Y.; Liao, X.; Yang, B. Cyclodextrin-based delivery systems for cancer treatment. Mater. Sci. Eng. C 2019, 96, 872–886. [Google Scholar] [CrossRef]
- Ioele, G.; De Luca, M.; Garofalo, A.; Ragno, G. Photosensitive drugs: A review on their photoprotection by liposomes and cyclodextrins. Drug Deliv. 2017, 24, 33–44. [Google Scholar] [CrossRef]
- Saenger, W. Cyclodextrin inclusion compounds in research and industry. Angew. Chem. Int. Ed. Engl. 1980, 19, 344–362. [Google Scholar] [CrossRef]
- Buschmann, H.J.; Denter, U.; Knittel, D.; Schollmeyer, E. The use of cyclodextrins in textile processes—an overview. J. Text. Inst. 1998, 89, 554–561. [Google Scholar] [CrossRef]
- Szente, L.; Fenyvesi, É. Cyclodextrin-enabled polymer composites for packaging. Molecules 2018, 23, 1556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Chen, S.; Gu, Z.; Chen, J.; Wu, J. Alpha-cyclodextrin: Enzymatic production and food applications. Trends Food Sci. Technol. 2014, 35, 151–160. [Google Scholar] [CrossRef]
- Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998, 98, 1743–1754. [Google Scholar] [CrossRef]
- Tang, W.; Zou, C.; Da, C.; Cao, Y.; Peng, H. A review on the recent development of cyclodextrin-based materials used in oilfield applications. Carbohydr. Polym. 2020, 240, 116321. [Google Scholar] [CrossRef]
- Erdogar, N.; Varan, G.; Varan, C.; Bilensoy, E. Chapter 19—Cyclodextrin-based polymeric nanosystems. In Drug Targeting and Stimuli Sensitive Drug Delivery Systems; William Andrew: Norwich, NY, USA, 2018; pp. 715–748. [Google Scholar] [CrossRef]
- Parmar, V.; Patel, G.; Abu-Thabit, N.Y. 20—Responsive cyclodextrins as polymeric carriers for drug delivery applications. In Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, Volume 1; Woodhead Publishing: Sawston, CA, USA, 2018; pp. 555–580. [Google Scholar] [CrossRef]
- Taha, M.; Chai, F.; Blanchemain, N.; Goube, M.; Martel, B.; Hildebrand, H.F. Validating the poly-cyclodextrins based local drug delivery system on plasma-sprayed hydroxyapatite coated orthopedic implant with toluidine blue O. Mater. Sci. Eng. C 2013, 33, 2639–2647. [Google Scholar] [CrossRef]
- Concheiro, A.; Alvarez-Lorenzo, C. Chemically cross-linked and grafted cyclodextrin hydrogels: From nanostructures to drug-eluting medical devices. Adv. Drug Deliv. Rev. 2013, 65, 1188–1203. [Google Scholar] [CrossRef]
- Martel, B.; Ruffin, D.; Weltrowski, M.; Lekchiri, Y.; Morcellet, M. Water-soluble polymers and gels from the polycondensation between cyclodextrins and poly(carboxylic acid)s: A study of the preparation parameters. J. Appl. Polym. Sci. 2005, 97, 433–442. [Google Scholar] [CrossRef]
- García-Fernández, M.J.; Tabary, N.; Martel, B.; Cazaux, F.; Oliva, A.; Taboada, P.; Concheiro, A.; Alvarez-Lorenzo, C. Poly-(cyclo)dextrins as ethoxzolamide carriers in ophthalmic solutions and in contact lenses. Carbohydr. Polym. 2013, 98, 1343–1352. [Google Scholar] [CrossRef]
- Seligra, P.G.; Jaramillo, C.M.; Famá, L.; Goyanes, S. Biodegradable and non-retrogradable eco-films based on starch–glycerol with citric acid as crosslinking agent. Carbohydr. Polym. 2016, 138, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Jahangard, N.; Baghbanian, S.M.; Khaksarmaghami, S. Poly (β-Cyclodextrin-co-citric Acid) Functionalized Natural Nanozeolite: An Eco-Friendly Platform for IB Delivery. Appl. Sci. 2022, 12, 8241. [Google Scholar] [CrossRef]
- Welch, C.M. Tetracarboxylic Acids as Formaldehyde-Free Durable Press Finishing Agents: Part I: Catalyst, Additive, and Durability Studies1. Text. Res. J. 1988, 58, 480–486. [Google Scholar] [CrossRef]
- Yang, C.Q.; Wang, X. Infrared spectroscopy studies of the cyclic anhydride as the intermediate for the ester crosslinking of cotton cellulose by polycarboxylic acids. II. Comparison of different polycarboxylic acids. J. Polym. Sci. Part A Polym. Chem. 1996, 34, 1573–1580. [Google Scholar] [CrossRef]
- Martel, B.; Thuaut, P.L.; Bertini, S.; Crini, G.; Bacquet, M.; Torri, G.; Morcellet, M. Grafting of cyclodextrins onto polypropylene nonwoven fabrics for the manufacture of reactive filters. III. Study of the sorption properties. J. Appl. Polym. Sci. 2002, 85, 1771–1778. [Google Scholar] [CrossRef]
- Thi, T.H.H.; Chai, F.; Lepretre, S.; Blanchemain, N.; Martel, B.; Siepmann, F.; Hildebrand, H.F.; Siepmann, J.; Flament, M.P. Bone implants modified with cyclodextrin: Study of drug release in bulk fluid and into agarose gel. Int. J. Pharm. 2010, 400, 74–85. [Google Scholar] [CrossRef]
- Ghoul, Y.E.; Martel, B.; Achari, A.E.; Campagne, C.; Razafimahefa, L.; Vroman, I. Improved dyeability of polypropylene fabrics finished with β-cyclodextrin–citric acid polymer. Polym. J. 2010, 42, 804–811. [Google Scholar] [CrossRef] [Green Version]
- Sharma, Y.C.; Srivastava, V.; Singh, V.K.; Kaul, S.N.; Weng, C.H. Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environ. Technol. 2009, 30, 583–609. [Google Scholar] [CrossRef]
- Wieszczycka, K.; Staszak, K.; Woźniak-Budych, M.J.; Litowczenko, J.; Maciejewska, B.M.; Jurga, S. Surface functionalization—The way for advanced applications of smart materials. Coord. Chem. Rev. 2021, 436, 213846. [Google Scholar] [CrossRef]
- Thatiparti, T.R.; Shoffstall, A.J.; von Recum, H.A. Cyclodextrin-based device coatings for affinity-based release of antibiotics. Biomaterials 2010, 31, 2335–2347. [Google Scholar] [CrossRef]
- Cyphert, E.L.; Zuckerman, S.T.; Korley, J.N.; von Recum, H.A. Affinity interactions drive post-implantation drug filling, even in the presence of bacterial biofilm. Acta Biomater. 2017, 57, 95–102. [Google Scholar] [CrossRef]
- Vermet, G.; Degoutin, S.; Chai, F.; Maton, M.; Bria, M.; Danel, C.; Hildebrand, H.F.; Blanchemain, N.; Martel, B. Visceral mesh modified with cyclodextrin for the local sustained delivery of ropivacaine. Int. J. Pharm. 2014, 476, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Haley, R.M.; Qian, V.R.; Learn, G.D.; von Recum, H.A. Use of affinity allows anti-inflammatory and anti-microbial dual release that matches suture wound resolution. J. Biomed. Mater. Res. Part A 2019, 107, 1434–1442. [Google Scholar] [CrossRef] [PubMed]
- Chai, F.; Maton, M.; Degoutin, S.; Vermet, G.; Simon, N.; Rousseaux, C.; Martel, B.; Blanchemain, N. In vivo evaluation of post-operative pain reduction on rat model after implantation of intraperitoneal PET meshes functionalised with cyclodextrins and loaded with ropivacaine. Biomaterials 2019, 192, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Romi, R.; Nostro, P.L.; Bocci, E.; Ridi, F.; Baglioni, P. Bioengineering of a Cellulosic Fabric for Insecticide Delivery via Grafted Cyclodextrin. Biotechnol. Prog. 2005, 21, 1724–1730. [Google Scholar] [CrossRef] [PubMed]
- Abdelkader, M.B.; Azizi, N.; Baffoun, A.; Chevalier, Y.; Majdoub, M. Fragrant Microcapsules Based on β-Cyclodextrin for Cosmetotextile Application. J. Renew. Mater. 2019, 7, 1347–1362. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Guo, S.; Zhang, B.; Fang, J.; Zhu, L. Interfacially crosslinked β-cyclodextrin polymer composite porous membranes for fast removal of organic micropollutants from water by flow-through adsorption. J. Hazard. Mater. 2020, 384, 121187. [Google Scholar] [CrossRef]
- Bezerra, F.M.; Lis, M.J.; Firmino, H.B.; da Silva, J.G.; de Cassia Siqueira Curto Valle, R.; Valle, J.A.B.; Scacchetti, F.A.P.; Tessaro, A.L. The Role of β-Cyclodextrin in the Textile Industry—Review. Molecules 2020, 25, 3624. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, X.; Chen, X.; Zhou, M.; Xu, R.; Zhang, X. Smart surface coating of drug nanoparticles with cross-linkable polyethylene glycol for bio-responsive and highly efficient drug delivery. Nanoscale 2016, 8, 8118–8125. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Jiao, H.; Sun, J.; Lu, X.; Yu, S.; Cheng, L.; Wang, Q.; Liu, H.; Biranje, S.; Wang, J.; et al. Functionalization of nanocellulose applied with biological molecules for biomedical application: A review. Carbohydr. Polym. 2022, 285, 119208. [Google Scholar] [CrossRef]
- Sanità, G.; Carrese, B.; Lamberti, A. Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization. Front. Mol. Biosci. 2020, 7, 587012. [Google Scholar] [CrossRef]
- Boschin, F.; Blanchemain, N.; Bria, M.; Delcourt-Debruyne, E.; Morcellet, M.; Hildebrand, H.; Martel, B. Improved drug delivery properties of PVDF membranes functionalized with β-cyclodextrin—Application to guided tissue regeneration in periodontology. J. Biomed. Mater. Res. Part A 2006, 79A, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Lepretre, S.; Boschin, F.; Tabary, N.; Bria, M.; Martel, B.; Blanchemain, N.; Hildebrand, H.F.; Morcellet, M.; Delcourt-Debruyne, E. Guided tissue regeneration membranes with controlled delivery properties of chlorhexidine by their functionalization with cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, 297–302. [Google Scholar] [CrossRef]
- Blanchemain, N.; Laurent, T.; Chai, F.; Neut, C.; Haulon, S.; Krump-konvalinkova, V.; Morcellet, M.; Martel, B.; Kirkpatrick, C.J.; Hildebrand, H.F. Polyester vascular prostheses coated with a cyclodextrin polymer and activated with antibiotics: Cytotoxicity and microbiological evaluation. Acta Biomater. 2008, 4, 1725–1733. [Google Scholar] [CrossRef] [PubMed]
- El Ghoul, Y.; Blanchemain, N.; Laurent, T.; Campagne, C.; El Achari, A.; Roudesli, S.; Morcellet, M.; Martel, B.; Hildebrand, H. Chemical, biological and microbiological evaluation of cyclodextrin finished polyamide inguinal meshes. Acta Biomater. 2008, 4, 1392–1400. [Google Scholar] [CrossRef]
- Leprêtre, S.; Chai, F.; Hornez, J.C.; Vermet, G.; Neut, C.; Descamps, M.; Hildebrand, H.F.; Martel, B. Prolonged local antibiotics delivery from hydroxyapatite functionalised with cyclodextrin polymers. Biomaterials 2009, 30, 6086–6093. [Google Scholar] [CrossRef]
- Laurent, T.; Kacem, I.; Blanchemain, N.; Cazaux, F.; Neut, C.; Hildebrand, H.F.; Martel, B. Cyclodextrin and maltodextrin finishing of a polypropylene abdominal wall implant for the prolonged delivery of ciprofloxacin. Acta Biomater. 2011, 7, 3141–3149. [Google Scholar] [CrossRef]
- Cusola, O.; Tabary, N.; Belgacem, M.N.; Bras, J. Cyclodextrin functionalization of several cellulosic substrates for prolonged release of antibacterial agents. J. Appl. Polym. Sci. 2013, 129, 604–613. [Google Scholar] [CrossRef]
- Martin, A.; Tabary, N.; Leclercq, L.; Junthip, J.; Degoutin, S.; Aubert-Viard, F.; Cazaux, F.; Lyskawa, J.; Janus, L.; Bria, M.; et al. Multilayered textile coating based on a β-cyclodextrin polyelectrolyte for the controlled release of drugs. Carbohydr. Polym. 2013, 93, 718–730. [Google Scholar] [CrossRef]
- Martin, A.; Tabary, N.; Chai, F.; Leclercq, L.; Junthip, J.; Aubert-Viard, F.; Neut, C.; Weltrowski, M.; Blanchemain, N.; Martel, B. Build-up of an antimicrobial multilayer coating on a textile support based on a methylene blue–poly(cyclodextrin) complex. Biomed. Mater. 2013, 8, 065006. [Google Scholar] [CrossRef]
- Lavoine, N.; Givord, C.; Tabary, N.; Desloges, I.; Martel, B.; Bras, J. Elaboration of a new antibacterial bio-nano-material for food-packaging by synergistic action of cyclodextrin and microfibrillated cellulose. Innov. Food Sci. Emerg. Technol. 2014, 26, 330–340. [Google Scholar] [CrossRef]
- Sobocinski, J.; Laure, W.; Taha, M.; Courcot, E.; Chai, F.; Simon, N.; Addad, A.; Martel, B.; Haulon, S.; Woisel, P.; et al. Mussel Inspired Coating of a Biocompatible Cyclodextrin Based Polymer onto CoCr Vascular Stents. ACS Appl. Mater. Interfaces 2014, 6, 3575–3586. [Google Scholar] [CrossRef] [PubMed]
- Tabary, N.; Chai, F.; Blanchemain, N.; Neut, C.; Pauchet, L.; Bertini, S.; Delcourt-Debruyne, E.; Hildebrand, H.F.; Martel, B. A chlorhexidine-loaded biodegradable cellulosic device for periodontal pockets treatment. Acta Biomater. 2014, 10, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Vermet, G.; Degoutin, S.; Chai, F.; Maton, M.; Flores, C.; Neut, C.; Danjou, P.E.; Martel, B.; Blanchemain, N. Cyclodextrin modified PLLA parietal reinforcement implant with prolonged antibacterial activity. Acta Biomater. 2017, 53, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Montelongo, J.; Oria, L.; Cárdenas, A.B.; Benito, N.; Romero-Sáez, M.; Recio-Sánchez, G. Nanoporous Silicon Composite as Potential System for Sustained Delivery of Florfenicol Drug. Phys. Status Solidi (b) 2018, 255, 1700626. [Google Scholar] [CrossRef]
- Garcia-Fernandez, M.J.; Maton, M.; Benzine, Y.; Tabary, N.; Baptiste, E.J.; Gargouri, M.; Bria, M.; Blanchemain, N.; Karrout, Y. Ciprofloxacin loaded vascular prostheses functionalized with poly-methylbeta- cyclodextrin: The importance of in vitro release conditions. J. Drug Deliv. Sci. Technol. 2019, 53, 101166. [Google Scholar] [CrossRef]
- Guzmán-Oyarzo, D.; Plaza, T.; Recio-Sánchez, G.; Abdalla, D.S.P.; Salazar, L.A.; Hernández-Montelongo, J. Use of nPSi-βCD Composite Microparticles for the Controlled Release of Caffeic Acid and Pinocembrin, Two Main Polyphenolic Compounds Found in a Chilean Propolis. Pharmaceutics 2019, 11, 289. [Google Scholar] [CrossRef] [Green Version]
- Junthip, J.; Tabary, N.; Maton, M.; Ouerghemmi, S.; Staelens, J.N.; Cazaux, F.; Neut, C.; Blanchemain, N.; Martel, B. Release-killing properties of a textile modified by a layer-by-layer coating based on two oppositely charged cyclodextrin polyelectrolytes. Int. J. Pharm. 2020, 587, 119730. [Google Scholar] [CrossRef]
- Kersani, D.; Mougin, J.; Lopez, M.; Degoutin, S.; Tabary, N.; Cazaux, F.; Janus, L.; Maton, M.; Chai, F.; Sobocinski, J.; et al. Stent coating by electrospinning with chitosan/poly-cyclodextrin based nanofibers loaded with simvastatin for restenosis prevention. Eur. J. Pharm. Biopharm. 2020, 150, 156–167. [Google Scholar] [CrossRef]
- Zhang, J.; Qu, L.; Lin, Y.; Guo, Z.; Cai, Z.; Ge, F. The preparation of antibacterial eco-friendly bio-based PTT-based β-cyclodextrin by complexation of copper and zinc ions. Text. Res. J. 2021, 92, 2800–2807. [Google Scholar] [CrossRef]
- Guzmán-Oyarzo, D.; Hernández-Montelongo, J.; Rosas, C.; Leal, P.; Weber, H.; Alvear, M.; Salazar, L.A. Controlled Release of Caffeic Acid and Pinocembrin by Use of nPSi-βCD Composites Improves Their Antiangiogenic Activity. Pharmaceutics 2022, 14, 484. [Google Scholar] [CrossRef]
- Folch-Cano, C.; Yazdani-Pedram, M.; Olea-Azar, C. Inclusion and functionalization of polymers with cyclodextrins: Current applications and future prospects. Molecules 2014, 19, 14066–14079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jean-Baptiste, E.; Blanchemain, N.; Martel, B.; Neut, C.; Hildebrand, H.; Haulon, S. Safety, healing, and efficacy of vascular prostheses coated with hydroxypropyl-β-cyclodextrin polymer: Experimental in vitro and animal studies. Eur. J. Vasc. Endovasc. Surg. 2012, 43, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Liu, H.; Li, L.; Liu, K.; Liu, J.; Tang, T.; Jiang, W. Green synthesis of citric acid-crosslinked β-cyclodextrin for highly efficient removal of uranium (VI) from aqueous solution. J. Radioanal. Nucl. Chem. 2019, 322, 2033–2042. [Google Scholar] [CrossRef]
- Rubin Pedrazzo, A.; Smarra, A.; Caldera, F.; Musso, G.; Dhakar, N.K.; Cecone, C.; Hamedi, A.; Corsi, I.; Trotta, F. Eco-friendly β-cyclodextrin and linecaps polymers for the removal of heavy metals. Polymers 2019, 11, 1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, D.; Zhao, L.; Zhu, C.S.; Huang, W.Q.; Hu, J.L. Water-insoluble β-cyclodextrin polymer crosslinked by citric acid: Synthesis and adsorption properties toward phenol and methylene blue. J. Incl. Phenom. Macrocycl. Chem. 2009, 63, 195–201. [Google Scholar] [CrossRef]
- Huang, W.; Hu, Y.; Li, Y.; Zhou, Y.; Niu, D.; Lei, Z.; Zhang, Z. Citric acid-crosslinked β-cyclodextrin for simultaneous removal of bisphenol A, methylene blue and copper: The roles of cavity and surface functional groups. J. Taiwan Inst. Chem. Eng. 2018, 82, 189–197. [Google Scholar] [CrossRef]
- Zhou, Y.; Gu, X.; Zhang, R.; Lu, J. Removal of aniline from aqueous solution using pine sawdust modified with citric acid and β-cyclodextrin. Ind. Eng. Chem. Res. 2014, 53, 887–894. [Google Scholar] [CrossRef]
- Tcheumi, H.L.; Tassontio, V.N.; Tonle, I.K.; Ngameni, E. Surface functionalization of smectite-type clay by facile polymerization of β-cyclodextrin using citric acid cross linker: Application as sensing material for the electrochemical determination of paraquat. Appl. Clay Sci. 2019, 173, 97–106. [Google Scholar] [CrossRef]
- Li, L.S.; Zhang, Y.X.; Gong, W.; Li, J. Novel β-cyclodextrin doped carbon dots for host–guest recognition-assisted sensing of isoniazid and cell imaging. RSC Adv. 2022, 12, 30104–30112. [Google Scholar] [CrossRef]
- Naveas, N.; Costa, V.T.; Gallach, D.; Hernandez-Montelongo, J.; Palma, R.J.M.; Garcia-Ruiz, J.P.; Manso-Silvan, M. Chemical stabilization of porous silicon for enhanced biofunctionalization with immunoglobulin. Sci. Technol. Adv. Mater. 2012, 13. [Google Scholar] [CrossRef] [Green Version]
- Richardson, J.J.; Björnmalm, M.; Caruso, F. Technology-driven layer-by-layer assembly of nanofilms. Science 2015, 348, aaa2491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzgerald, R.; Bass, L.M.; Goldberg, D.J.; Graivier, M.H.; Lorenc, Z.P. Physiochemical Characteristics of Poly-L-Lactic Acid (PLLA). Aesthet. Surg. J. 2018, 38, S13–S17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, B.S.; Shin, B.H.; Huh, B.K.; Kim, B.H.; Kim, S.N.; Ji, H.B.; Lee, S.H.; Im Kang, S.; Shim, J.H.; Kang, S.M.; et al. Silicone implants capable of the local, controlled delivery of triamcinolone for the prevention of fibrosis with minimized drug side effects. J. Ind. Eng. Chem. 2018, 63, 168–180. [Google Scholar] [CrossRef]
- Barr, S.; Topps, A.; Barnes, N.; Henderson, J.; Hignett, S.; Teasdale, R.; McKenna, A.; Harvey, J.; Kirwan, C.; Collaborative, N.B.S.R. Infection prevention in breast implant surgery—A review of the surgical evidence, guidelines and a checklist. Eur. J. Surg. Oncol. (EJSO) 2016, 42, 591–603. [Google Scholar] [CrossRef]
- Arredondo Peñaranda, A.; Londoño López, M.E. Hydrogels: Potentials Biomaterials for Controlled Drug Delivery. Rev. Ing. Biomédica 2009, 3, 83–94. [Google Scholar]
- Sukhova, I.; Müller, D.; Eisenmann-Klein, M.; Machens, H.G.; Schantz, J.T. Quo vadis? Brustimplantate–aktuelle Entwicklungen und neue Konzepte. Handchir. Mikrochir. Plast. Chir. 2012, 44, 240–253. [Google Scholar]
- Costagliola, M.; Atiyeh, B.S.; Rampillon, F. An innovative procedure for the treatment of primary and recurrent capsular contracture (CC) following breast augmentation. Aesthetic Surg. J. 2013, 33, 1008–1017. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.X.; von Recum, H.A. Affinity-based drug delivery. Macromol. Biosci. 2011, 11, 321–332. [Google Scholar] [CrossRef]
- Siepmann, J.; Siepmann, F. Mathematical modeling of drug delivery. Int. J. Pharm. 2008, 364, 328–343. [Google Scholar] [CrossRef]
- Paarakh, M.P.; Jose, P.A.; Setty, C.; Christoper, G. Release kinetics–concepts and applications. Int. J. Pharm. Res. Technol. 2018, 8, 12–20. [Google Scholar]
- Klech, C.M.; Simonelli, A.P. Examination of the moving boundaries associated with non-fickian water swelling of glassy gelatin beads: Effect of solution pH. J. Membr. Sci. 1989, 43, 87–101. [Google Scholar] [CrossRef]
- Gupta, B.; Chaurasia, U.; Chakraborty, P. Design and development of oral transmucosal film for delivery of salbutamol sulphate. J. Pharm. Chem. Biol. Sci. 2014, 2, 118–129. [Google Scholar]
- Bruschi, M.L. Mathematical models of drug release. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Elsevier: Amsterdam, The Netherlands, 2015; pp. 63–86. [Google Scholar] [CrossRef]
- Lucht, L.M.; Peppas, N.A. Transport of penetrants in the macromolecular structure of coals. V. Anomalous transport in pretreated coal particles. J. Appl. Polym. Sci. 1987, 33, 1557–1566. [Google Scholar] [CrossRef]
Property | -CD | -CD | -CD |
---|---|---|---|
D-glucopyranose units | 6 | 7 | 8 |
Molecular weight (g/mol) | 972 | 1135 | 1297 |
Solubility in water at 25 °C (% w/v) | 14.5 | 1.85 | 23.2 |
Outer diameter (Å) | 14.6 | 15.4 | 17.5 |
Cavity diameter (Å) | 4.7–5.3 | 6.0–6.5 | 7.5–8.3 |
Height (Å) | 7.9 | 7.9 | 7.9 |
Property | -CD | HP--CD | RM--CD | SBE--CD |
---|---|---|---|---|
Number of substituted units | 0 | 0.65 | 1.8 | 0.9 |
Molecular weight (g/mol) | 1135 | 1400 | 1312 | 2163 |
Solubility in water at 25 °C (% w/v) | 1.85 | >600 | >500 | >500 |
Coating | Substrate | Drug | Application | Key Results | Ref. |
---|---|---|---|---|---|
-CD/CTR | Polyvinylidene difluoride (PVDF) membranes for periodontology | Doxycyclin (DOX) and chlorhexidine (CHX), antimicrobial agents | A membrane for guided tissue regeneration applicable in periodontology | Grafted membranes, delivered DOX and CHX in larger quantities within 24 h and 10 days, respectively, in comparison with raw membranes than delivered low amounts of both molecules within the first few hours of tests; treated membranes showed biocompatibility to L132 cells | [54], 2006 |
-CD/CTR, HP--CD/CTR, -CD/CTR and HP--CD/CTR | Polyvinylidene difluoride (PVDF) membranes for periodontology | Chlorhexidine diacetate (CHX), an antiseptic | To cure periodontal lesions | Grafted membranes released CHX during 60–80 days, more than tenfold of raw membranes | [55], 2007 |
HP--CD/CTR | Polyester vascular prostheses | Ciprofloxacin, vancomycin, rifampicin; antibiotics | To minimize the risk of infection of arteries replacement surgeries | Higher amounts of the antibiotics were absorbed in the coated prostheses compared to the pristine ones, which was reflected in the microbiological tests (S. aureus, E. coli and Enteroccocus sp.); coated samples showed proliferation of HPMEC cells | [56], 2008 |
-CD/CTR, HP--CD/CTR, -CD/CTR and HP--CD/CTR | Polyamide inguinal meshes | Ciprofloxacin (CFX), an antibiotic | To avoid bacterial contamination of inguinal wounds | Meshes grafted with HP--CD/CTR presented a 10-fold CFX absorption than raw samples, and also showed a longer antimicrobial effect (S. aureus, S. epidermidis, E. coli); fibroblastic cells proliferated on grafted samples | [57], 2008 |
HP--CD/CTR | Microporous hydro-xyapatite (HA) | Ciprofloxacin (CFX) and vancomycin (VCM), antibiotics | To prevent preoperative infection in bone-graft surgeries | Functionalized HA showed prolonged antibiotics release and higher antibacterial activity against S. aureus than pristine HA; treated samples presented cytocompatibility to osteoblasts | [58], 2009 |
HP--CD/CTR | Polypropylene (PP) meshes for the treatment of hernias | Ciprofloxacin (CFX), an antibiotic | To prevent abdominal postoperative wound infections | Microbiological tests using S. aureus, S. epidermidis, E. coli confirmed the higher sustained antibacterial activity of the coated meshes than uncoated samples; treated samples did not affect fibroblast proliferation | [59], 2011 |
-CD/CTR | Three papers used for sterilization: noncoated paper, a 10% cotton-based medical bandage, and a medical crepe paper | Chlorhexidine digluconate (digCHX), an antiseptic agent | To provide bactericidal properties to cellulose-based materials of medical use | All functionalized papers maintained the release for periods up to 20 days | [60], 2013 |
-CD/CTR, -CD/CTR, -CD/CTR and HP--CD/CTR | Poly(2-hydroxyethyl methacrylate)-based contact lenses | Ethoxzolamide (ETOX), a carbonic anhydrase inhibitor | An ocular treatment for glaucoma | Ionic interactions between CD polymers and contact lenses sustained the ETOX release for several weeks | [32], 2013 |
LbL of chitosan and -CD/CTR | Nonwoven polyethylene terephthalate (PET) textile | 4-tert-butyl benzoic acid (TBBA), an antimicrobial agent | The release of antimicrobial agents and antiproliferative drugs in cancer therapies | TBBA release kinetics was controlled by the number of layers in the LbL system | [61], 2013 |
Coating | Substrate | Drug | Application | Key Results | Ref. |
---|---|---|---|---|---|
LbL of chitosan and -CD/CTR | Nonwoven polyethylene terephthalate (PET) textile | Methylene blue (MB), a cationic dye with antimicrobial properties | To design biomaterials to trap and release therapeutic molecules directly to targeted areas | LbL systems displayed sustained antibacterial effects against S. epidermidis of the textile through the MB prolonged release; samples were cytocompatible to human epithelial embryonic cells | [62], 2013 |
-CD/CTR | Layers of nanoporous and macroporous silicon (nPSi and mPSi) | Ciprofloxacin (CFX), an antibiotic; and prednisolone (PDN), an antiinflammatory | Intraocular drug delivery system for postophthalmic surgery | Both functionalized samples controlled released therapy concentrations of CFX and PDN required for an adult human eye. Treated samples presented cytocompatibility to L132 cells | [10], 2014 |
A bilayer of -CD/CTR and microfibrillated cellulose (MFC) | Food packaging paper | Carvacrol, an antibacterial molecule | A strategy to prolong food shelf-life | Treated paper sustained four times the drug than raw paper, and were antibacterial for 14 h against B. subtilis | [63], 2014 |
Me--CD/CTR | CoCr vascular stents | Paclitaxel (PTX), a highly hydrophobic anticancer agent | To obtain commercial stents that promote arterial wall healing | Coated stents held more PTX over time compared to the uncoated samples in human plasma, and were cytocompatible to HPMEC cells | [64], 2014 |
-CD/CTR | Paper points (PP) for endodontic therapies | Chlorhexidine digluconate (digCHX), an antiseptic agent for periodontal therapies | A treatment of the periodontal pocket by preventing its recolonization by the subgingival microflora | Coated PP showed a prolonged release of digCHX in human plasma and sustained antibacterial activity against four periodontal pathogens: F. nucleatum, P. melaninogenica, A. actinomycetemcomitans and P. gingivalis | [65], 2014 |
HP--CD/CTR | Visceral mesh of (polyethylene terephthalate, PET fibres | Ropivacaine, an anaesthetic | To reduce postoperatory pain | The coated meshes impregnated in 10 mg/mL ropivacaine solution adsorbed up to 17.7 mg/g of drug, with a prolonged release of 100 min; coated samples loaded with ropivacaine showed cytocompatibility with NIH3T3 cells (fibroblasts) | [44], 2014 |
LbL of chitosan and -CD/CTR | Titanium disks | Gentamicin, an antibiotic | To address perioperative infections | The amount of loaded drug was easily controlled by modulating the number of layers involved in the LbL system; coated disks exhibited microbial activity up to 6 days against S. aureus | [8], 2015 |
LbL of epichlorohydrin-glycidyltrimethyl-ammoniumchloride--CD and -CD/CTR | Non-woven polyethylene terephthalate (PET) textile | 4-tert-butyl benzoic acid (TBBA), an antimicrobial agent | To reduce the risk of infection in implantable PET biomaterials | Thermal cross-linking of the LbL system enhanced the stability and TBBA release kinetics, which was reflected in its high antibacterial effect against S. aureus, and E. coli; samples were noncytotoxic to L132 epithelial cells | [9], 2016 |
HP--CD/CTR | Poly-L-lactic acid (PLLA) parietal reinforcement | Ciprofloxacin (CFX), an antibiotic | To prevent bacterial infections in surgeries of hernias of the abdominal wall | The cytocompatibility with fibroblasts of meshes, and the antibacterial effect of CFX against S. aureus and E. coli., were found to be dependent on the degree of functionalization | [66], 2017 |
Coating | Substrate | Drug | Application | Key Results | Ref. |
---|---|---|---|---|---|
-CD/CTR | Nanoporous microparticles (nPSi) | Florfenicol (FF), the most important antibiotic employed in aquaculture | To efficientize the medical effect of ingested antimicrobials in salmon aquacultures | Treated samples allowed a major control in the drug time release kinetics compared to raw samples, in both distilled water and simulated seawater | [67], 2018 |
Me--CD/CTR | Woven polyethylene terephthalate (PET) vascular prostheses | Ciprofloxacin (CFX), an antibiotic | To reduce the risk of synthetic vascular graft infection (SVGI), a postoperative infection | CFX release from virgin prostheses was faster than from functionalized prostheses | [68], 2019 |
-CD/CTR | Nanoporous microparticles (nPSi) | Caffeic acid (CA) and pinocembrin (Pin), polyphenols | A safe alternative system for oral administration of polyphenols | Coated microparticles loaded higher amounts of both polyphenols, which also showed a better-controlled release than uncoated samples; treated microparticles presented cytocompatibility to HUVEC cells | [69], 2019 |
LbL of epichlorohydrin-glycidyltrimethyl-ammoniumchloride--CD and -CD/CTR | Nonwoven polyethylene terephthalate (PET) textile | Triclosan (TCS), a broad spectrum antimicrobial agent | To reduce the risk of infection in implantable PET biomaterials | Treated textile loaded TCS four times than control and displayed a high and constant level over at least 28 days that pristine textile; treated samples showed intrinsic contact killing property and also extrinsic release killing against S. aureus and E. coli | [70], 2020 |
Nanofibers (NFs) of chitosan and HP--CD/CTR produced by electrospinning | Auto-expansible NiTiNOL stents | Simvastatin (SV), a lipid-lowering medication | To prevent restenosis | The extension of the release time of SV depended on the duration of electrospinning and on the presence of HP--CD/CTR in the NFs matrix | [71], 2020 |
-CD/CTR | Polytrimethylene terephthalate (PTT) textiles | and as antibacterial metal ions | To obtain an ecofriendly biobased antibacterial system for PTT fabrics | Coated textile showed an antibacterial effect to S. aureus and E. coli; displayed a stronger antibacterial ability | [72], 2021 |
-CD/CTR | Nanoporous microparticles (nPSi) | Caffeic acid (CA) and pinocembrin (Pin), polyphenols | To improve the antiangiogenic and antioxidant activity of CA and Pin for the treatment of atherosclerosis | Coated microparticles showed higher antiangiogenic activity of CA and Pin than both in solution to treat HUVEC cells; in addition, coated microparticles presented a more time controlled antioxidant effect than uncoated samples | [73], 2022 |
-CD/CTR | Nanozeolite | Ibuprofen (IB), a nonsteroidal antiinflammatory drug | An ecofriendly platform for IB delivery | -CD/CTR-nanozeolite containing IB (30 wt%) showed the highest release at pH = 3.6 within the first 3–48 h of release time | [34], 2022 |
Release Mechanisms | Geometry | Release Exponent n |
---|---|---|
Quasi-Fickian | Planar (thin films) | n < 0.5 |
Cylinders | n < 0.45 | |
Spheres | n < 0.43 | |
Fickian diffusion (case I) | Planar (thin films) | 0.5 |
Cylinders | 0.45 | |
Spheres | 0.43 | |
Anomalous transport | Planar (thin films) | 0.5 < n < 1 |
Cylinders | 0.45 < n < 1 | |
Spheres | 0.43 < n < 1 | |
Zero order (case II) | Planar (thin films) | 1 |
Cylinders | 0.89 | |
Spheres | 0.85 | |
Super case II transport | Planar (thin films) | n > 1 |
Cylinders | n > 0.89 | |
Spheres | n > 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escobar, K.; Garrido-Miranda, K.A.; Pulido, R.; Naveas, N.; Manso-Silván, M.; Hernandez-Montelongo, J. Coatings of Cyclodextrin/Citric-Acid Biopolymer as Drug Delivery Systems: A Review. Pharmaceutics 2023, 15, 296. https://doi.org/10.3390/pharmaceutics15010296
Escobar K, Garrido-Miranda KA, Pulido R, Naveas N, Manso-Silván M, Hernandez-Montelongo J. Coatings of Cyclodextrin/Citric-Acid Biopolymer as Drug Delivery Systems: A Review. Pharmaceutics. 2023; 15(1):296. https://doi.org/10.3390/pharmaceutics15010296
Chicago/Turabian StyleEscobar, Karen, Karla A. Garrido-Miranda, Ruth Pulido, Nelson Naveas, Miguel Manso-Silván, and Jacobo Hernandez-Montelongo. 2023. "Coatings of Cyclodextrin/Citric-Acid Biopolymer as Drug Delivery Systems: A Review" Pharmaceutics 15, no. 1: 296. https://doi.org/10.3390/pharmaceutics15010296
APA StyleEscobar, K., Garrido-Miranda, K. A., Pulido, R., Naveas, N., Manso-Silván, M., & Hernandez-Montelongo, J. (2023). Coatings of Cyclodextrin/Citric-Acid Biopolymer as Drug Delivery Systems: A Review. Pharmaceutics, 15(1), 296. https://doi.org/10.3390/pharmaceutics15010296