Safety of Rifampicin at High Dose for Difficult-to-Treat Tuberculosis: Protocol for RIAlta Phase 2b/c Trial
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Objectives and Endpoints
2.3. Study Setting
2.4. Study Population and Eligibility
2.5. Recruitment
2.6. Intervention
2.7. Rifampicin Dosing Strategies
2.8. Assessment of Study Outcomes, Analysis Groups, and Duration of Follow-Up
2.9. Sample Size Assumptions and Justification
2.10. Main Outcomes Analysis
2.11. Secondary Objectives
2.11.1. Microbiological Evaluation
2.11.2. Pharmacokinetics
2.11.3. Pharmacogenetics
2.11.4. Health Economics and Quality of Life
2.12. Ethical Approvals
2.13. Sharing of Trial Findings
2.14. Participant and Public Engagement
2.15. Strengths and Weaknesses of the Design
3. Discussion
4. Conclusions
5. Trial Status
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Dorman, S.E.; Nahid, P.; Kurbatova, E.V.; Phillips, P.P.J.; Bryant, K.; Dooley, K.E.; Engle, M.; Goldberg, S.V.; Phan, H.T.; Hakim, J.; et al. Four-Month Rifapentine Regimens with or without Moxifloxacin for Tuberculosis. N. Engl. J. Med. 2021, 384, 1705–1718. [Google Scholar] [CrossRef] [PubMed]
- Van Ingen, J.; Aarnoutse, R.E.; Donald, P.R.; Diacon, A.H.; Dawson, R.; Plemper van Balen, G.; Gillespie, S.H.; Boeree, M.J. Why Do We Use 600 mg of Rifampicin in Tuberculosis Treatment? Clin. Infect. Dis. 2011, 52, e194–e199. [Google Scholar] [CrossRef] [PubMed]
- Fox, W.; Ellard, G.A.; Mitchison, D.A. Studies on the treatment of tuberculosis undertaken by the British Medical Research Council tuberculosis units, 1946-1986, with relevant subsequent publications. Int. J. Tuberc. Lung Dis. 1999, 3 (Suppl. 2), S231–S279. [Google Scholar] [PubMed]
- Sotgiu, G.; Centis, R.; Migliori, G.B.; Giovanni, T.; Rosella, C.; Battista, M.G. Tuberculosis management and determinants of recurrence. Int. J. Tuberc. Lung Dis. 2016, 20, 3. [Google Scholar] [CrossRef]
- WHO. Global Tuberculosis Report 2022; WHO Press: Geneva, Switzerland, 2022. [Google Scholar]
- Gülbay, B.E.; Gürkan, O.U.; Yildız, O.A.; Onen, Z.P.; Erkekol, F.O.; Baççioğlu, A.; Acıcan, T. Side effects due to primary antituberculosis drugs during the initial phase of therapy in 1149 hospitalized patients for tuberculosis. Respir. Med. 2006, 100, 1834–1842. [Google Scholar] [CrossRef]
- Boeree, M.J.; Diacon, A.H.; Dawson, R.; Narunsky, K.; du Bois, J.; Venter, A.; Phillips, P.P.J.; Gillespie, S.H.; McHugh, T.D.; Hoelscher, M.; et al. A Dose-Ranging Trial to Optimize the Dose of Rifampin in the Treatment of Tuberculosis. Am. J. Respir. Crit. Care Med. 2015, 191, 1058–1065. [Google Scholar] [CrossRef]
- Te Brake, L.H.; de Jager, V.; Narunsky, K.; Vanker, N.; Svensson, E.M.; Phillips, P.P.; Gillespie, S.H.; Heinrich, N.; Hoelscher, M.; Dawson, R.; et al. Increased bactericidal activity but dose-limiting intolerability at 50 mg·kg−1 rifampicin. Eur. Respir. J. 2021, 58, 2000955. [Google Scholar] [CrossRef]
- Diacon, A.H.; Patientia, R.F.; Venter, A.; van Helden, P.D.; Smith, P.J.; McIlleron, H.; Maritz, J.S.; Donald, P.R. Early Bactericidal Activity of High-Dose Rifampin in Patients with Pulmonary Tuberculosis Evidenced by Positive Sputum Smears. Antimicrob. Agents Chemother. 2007, 51, 2994–2996. [Google Scholar] [CrossRef]
- Aarnoutse, R.E.; Kibiki, G.S.; Reither, K.; Semvua, H.H.; Haraka, F.; Mtabho, C.M.; Mpagama, S.G.; van den Boogaard, J.; Sumari-de Boer, I.M.; Magis-Escurra, C.; et al. Pharmacokinetics, Tolerability, and Bacteriological Response of Rifampin Administered at 600, 900, and 1,200 Milligrams Daily in Patients with Pulmonary Tuberculosis. Antimicrob. Agents Chemother. 2017, 61, e01054–e01117. [Google Scholar] [CrossRef]
- Arbiv, O.A.; Kim, J.M.; Yan, M.; Romanowski, K.; Campbell, J.R.; Trajman, A.; Asadi, L.; Fregonese, F.; Winters, N.; Menzies, D.; et al. High-dose rifamycins in the treatment of TB: A systematic review and meta-analysis. Thorax 2022, 77, 1210–1218. [Google Scholar] [CrossRef]
- Ruslami, R.; Nijland, H.; Aarnoutse, R.; Alisjahbana, B.; Soeroto, A.Y.; Ewalds, S.; van Crevel, R. Evaluation of High- versus Standard-Dose Rifampin in Indonesian Patients with Pulmonary Tuberculosis. Antimicrob. Agents Chemother. 2006, 50, 822–823. [Google Scholar] [CrossRef]
- Abulfathi, A.A.; Decloedt, E.H.; Svensson, E.M.; Diacon, A.H.; Donald, P.; Reuter, H. Clinical Pharmacokinetics and Pharmacodynamics of Rifampicin in Human Tuberculosis. Clin. Pharmacokinet. 2019, 58, 1103–1129. [Google Scholar] [CrossRef]
- Sturkenboom, M.G.; Mulder, L.W.; de Jager, A.; van Altena, R.; Aarnoutse, R.E.; de Lange, W.C.; Proost, J.H.; Kosterink, J.G.; van der Werf, T.S.; Alffenaar, J.W.C. Pharmacokinetic modeling and optimal sampling strategies for therapeutic drug monitoring of rifampin in patients with tuberculosis. Antimicrob. Agents Chemother. 2015, 59, 4907–4913. [Google Scholar] [CrossRef]
- Boeree, M.J.; Heinrich, N.; Aarnoutse, R.; Diacon, A.H.; Dawson, R.; Rehal, S.; Kibiki, G.S.; Churchyard, G.; Sanne, I.; Ntinginya, N.E.; et al. High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: A multi-arm, multi-stage randomised controlled trial. Lancet Infect. Dis. 2017, 17, 39–49. [Google Scholar] [CrossRef]
- Velásquez, G.E.; Brooks, M.B.; Coit, J.M.; Pertinez, H.; Vásquez, D.V.; Garavito, E.S.; Calderón, R.I.; Jiménez, J.; Tintaya, K.; Peloquin, C.A.; et al. Efficacy and Safety of High-Dose Rifampin in Pulmonary Tuberculosis. A Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2018, 198, 657–666. [Google Scholar] [CrossRef]
- Ruslami, R.; Ganiem, A.R.; Dian, S.; Apriani, L.; Achmad, T.H.; van der Ven, A.J.; Borm, G.; Aarnoutse, R.E.; van Crevel, R. Intensified regimen containing rifampicin and moxifloxacin for tuberculous meningitis: An open-label, randomised controlled phase 2 trial. Lancet Infect. Dis. 2013, 13, 27–35. [Google Scholar] [CrossRef]
- Atwine, D.; Orikiriza, P.; Taremwa, I.; Ayebare, A.; Logoose, S.; Mwanga-Amumpaire, J.; Jindani, A.; Bonnet, M. Predictors of delayed culture conversion among Ugandan patients. BMC Infect. Dis. 2017, 17, 299. [Google Scholar] [CrossRef]
- Phillips, P.P.J.; Dooley, K.E.; Gillespie, S.H.; Heinrich, N.; Stout, J.E.; Nahid, P.; Diacon, A.H.; Aarnoutse, R.E.; Kibiki, G.S.; Boeree, M.J.; et al. A new trial design to accelerate tuberculosis drug development: The Phase IIC Selection Trial with Extended Post-treatment follow-up (STEP). BMC Med. 2016, 14, 51. [Google Scholar] [CrossRef]
- Noubiap, J.J.; Nansseu, J.R.; Nyaga, U.F.; Nkeck, J.R.; Endomba, F.T.; Kaze, A.D.; Agbor, V.N.; Bigna, J.J. Global prevalence of diabetes in active tuberculosis: A systematic review and meta-analysis of data from 2·3 million patients with tuberculosis. Lancet Glob. Health 2019, 7, e448–e460. [Google Scholar] [CrossRef]
- Nooredinvand, H.A.; Connell, D.W.; Asgheddi, M.; Abdullah, M.; O’Donoghue, M.; Campbell, L. Viral hepatitis prevalence in patients with active and latent tuberculosis. World J. Gastroenterol. 2015, 21, 8920–88926. [Google Scholar] [CrossRef]
- Onorato, L.; Gentile, V.; Russo, A.; Di Caprio, G.; Alessio, L.; Chiodini, P.; Coppola, N. Standard versus high dose of rifampicin in the treatment of pulmonary tuberculosis: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Pocock, S.J. The combination of randomized and historical controls in clinical trials. J. Chronic Dis. 1976, 29, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Charlie, L.; Abay, S.M.; Tesfaye, A.; Mlera, R.N.; Mwango, S.; Goretti, M. Safety and efficacy of high-dose rifampicin in the management of tuberculosis meningitis: Systematic review and meta-analysis. Int. J. Mycobacteriol. 2021, 10, 312–319. [Google Scholar] [PubMed]
- Seijger, C.; Hoefsloot, W.; Guchteneire, I.B.-D.; Brake, L.T.; Van Ingen, J.; Kuipers, S.; Van Crevel, R.; Aarnoutse, R.; Boeree, M.; Magis-Escurra, C. High-dose rifampicin in tuberculosis: Experiences from a Dutch tuberculosis centre. PLoS ONE 2019, 14, e0213718. [Google Scholar] [CrossRef] [PubMed]
- Bowness, R.; Boeree, M.J.; Aarnoutse, R.; Dawson, R.; Diacon, A.; Mangu, C.; Heinrich, N.; Ntinginya, N.E.; Kohlenberg, A.; Mtafya, B.; et al. The relationship between Mycobacterium tuberculosis MGIT time to positivity and cfu in sputum samples demonstrates changing bacterial phenotypes potentially reflecting the impact of chemotherapy on critical sub-populations. J. Antimicrob. Chemother. 2015, 70, 448–455. [Google Scholar] [CrossRef]
- Coronel, T.R.; Rodríguez, M.; Jiménez de Romero, N.; Bruins, M.; Gómez, R.; Yntema, J.B. The potential of a portable, point-of-care electronic nose to diagnose tuberculosis. J. Infect. 2017, 75, 441–447. [Google Scholar] [CrossRef]
- Magis-Escurra, C.; Later-Nijland, H.; Alffenaar, J.; Broeders, J.; Burger, D.; van Crevel, R.; Boeree, M.; Donders, A.; van Altena, R.; van der Werf, T.; et al. Population pharmacokinetics and limited sampling strategy for first-line tuberculosis drugs and moxifloxacin. Int. J. Antimicrob. Agents 2014, 44, 229–234. [Google Scholar] [CrossRef]
- Su, Q.; Liu, Q.; Liu, J.; Fu, L.; Liu, T.; Liang, J.; Peng, H.; Pan, X. Study on the associations between liver damage and antituberculosis drug rifampicin and relative metabolic enzyme gene polymorphisms. Bioengineered 2021, 12, 11700–11708. [Google Scholar] [CrossRef]
- Zhou, Y.; Ingelman-Sundberg, M.; Lauschke, V. Worldwide Distribution of Cytochrome P450 Alleles: A Meta-analysis of Population-scale Sequencing Projects. Clin. Pharmacol. Ther. 2017, 102, 688–700. [Google Scholar] [CrossRef]
- Naidoo, A.; Chirehwa, M.; Ramsuran, V.; McIlleron, H.; Naidoo, K.; Yende-Zuma, N.; Singh, R.; Ncgapu, S.; Adamson, J.; Govender, K.; et al. Effects of genetic variability on rifampicin and isoniazid pharmacokinetics in South African patients with recurrent tuberculosis. Pharmacogenomics 2019, 20, 225–240. [Google Scholar] [CrossRef]
- Guidoni, L.M.; Zandonade, E.; Fregona, G.; Negri LD, S.A.; do Valle Leone de Oliveira, S.M.; Prado TN, D.; Sales, C.M.M.; da Silveira Coimbra, R.; Galavote, H.S.; Maciel, E.L.N. Catastrophic costs and social sequels due to tuberculosis diagnosis and treatment in Brazil. Epidemiol. Serv. Saude. 2021, 30, e2020810. [Google Scholar]
- Mauch, V.; Woods, N.; Kirubi, B.; Kipruto, H.; Sitienei, J.; Klinkenberg, E. Assessing access barriers to tuberculosis care with the Tool to Estimate Patients’ Costs: Pilot results from two districts in Kenya. BMC Public Health 2011, 11, 43. [Google Scholar] [CrossRef]
- de Castro, N.; Mechaï, F.; Bachelet, D.; Canestri, A.; Joly, V.; Vandenhende, M.; Boutoille, D.; Kerjouan, M.; Veziris, N.; Molina, J.M.; et al. Treatment with a three-drug regimen for pulmonary tuberculosis based on rapid molecular detection of isoniazid resistance: A noninferiority randomized trial (FAST-TB). Open Forum Infect. Dis. 2022, 9, ofac353. [Google Scholar] [CrossRef]
Study | Trial ID | Design | Population | Key Exclusion Criteria | Arms | Max. Rifampicin (mg/kg/day) | Follow-Up (Weeks) |
---|---|---|---|---|---|---|---|
Ruslami 2013 | NCT01158755 | Phase 2b, open label, randomized | ≥15 years old with clinically suspected TB meningitis | Body weight < 30 kg, liver disease | 2 | 13 | 26 |
HR1 | NCT01392911 | Phase 2a, open label, sequential allocation | 18–65 years old with confirmed pulmonary DS-TB | High alcohol consumption, diabetes | 7 | 50 | 2 |
RIFATOX | ISRCTN55670677 | Phase 2b, open label, randomized | 18–65 years old with confirmed pulmonary DS-TB | High alcohol consumption, diabetes, HIV | 3 | 20 | 16 |
HIGH RIF-2 | NCT00760149 | Phase 2b, double blind, randomized | 18–65 years old with confirmed pulmonary DS-TB | Body weight < 50 kg, clinical hepatitis/cholestasis | 3 | 20 | 12 |
MAMS-TB | NCT01785186 | Phase 2b,c, open-label, randomized | ≥18 years old with confirmed pulmonary DS-TB | High alcohol consumption, HIV infection with <200 CD4 | 5 | 35 | 48 |
HIRIF | NCT01408914 | Phase 2b, double blind, randomized | 18–60 years old with confirmed pulmonary DS-TB | Body weight < 30 kg, viral hepatitis | 2 | 20 | 26 |
RifT | ISRCTN42218549 | Phase 2, open label, randomized | ≥18 years old with clinically suspected TB meningitis | Cirrhosis or clinical jaundice | 3 | 35 | 24 |
RIFAVIRENZ | NCT01986543 | Phase 2, open label, randomized | ≥15 years old with confirmed pulmonary DS-TB | AIDS-defining infection, pharmacological immunosuppression | 2 | 20 | 28 |
RIAlta | NCT04768231 | phase 2b,c, open label, historical controls | ≥60 or ≥18 years old (with HIV, HBV, HCV, DM), pulmonary and extrapulmonary TB | Decompensated chronic liver disease, oral anticoagulation | 1 | 35 | 72 |
Assessment | Primary Safety | Efficacy |
---|---|---|
1. Per protocol population | Includes participants who completed assigned follow-up AND were at least 80% adherent to study treatment. | Includes those participants who complete assigned follow-up AND were at least 80% adherent to study treatment. |
2. Intention to treat population | Includes all the participants that received at least one dose of anti-TB drugs. | Includes all the participants enrolled in the study. |
3. Modified intention to treat population | Includes a subset of intention-to-treat population with exclusion of some subjects in a justified way (subjects having non-tuberculous mycobacteria, early withdrawal of consent, etc.). | Includes subset of intention-to-treat population with exclusion of some subjects in a justified way (participants having non-tuberculous mycobacteria, early withdrawal of consent, etc.). |
4. Microbiological intention to treat population | Includes all the participants that received at least one dose of anti-TB drugs AND have culture confirmation of DS-TB. | Includes all the participants enrolled in the study AND have culture confirmation of DS-TB. |
5. Microbiological per-protocol population | Includes those participants who complete assigned follow-up AND were at least 80% adherent to study treatment AND have culture confirmation of DS-TB. | Includes those participants who complete assigned follow-up AND were at least 80% adherent to study treatment AND have culture confirmation of DS-TB. |
High Dose Rifampicin (35 mg/kg) | Weight-Band Dosing | |||||
---|---|---|---|---|---|---|
35–40 kg | 41–50 kg | 51–60 kg | 61–70 kg | 71–80 kg | ≥80 kg | |
Rifampicin tablets (300 mg) | 900 mg 3 tablets | 900 mg 3 tablets | 1500 mg 5 tablets | 1500 mg 5 tablets | 1800 mg 6 tablets | 2400 mg 8 tablets |
Rifampicin tablets (150 mg) | - | 150 mg 1 tablet | - | 150 mg 1 tablet | 150 mg 1 tablet | - |
Fixed dose combination (150 mg rifampicin, 75 mg isoniazid, 400 mg pyrazinamide, and 275 mg ethambutol) | 450 mg 3 tablets | 450 mg 3 tablets | 450 mg 3 tablets | 600 mg 4 tablets | 750 mg 5 tablets | 750 mg 5 tablets |
Total rifampicin dose | 1350 mg | 1500 mg | 1950 mg | 2250 mg | 2700 mg | 3150 mg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa-Pereiro, J.; Ghimire, S.; Sturkenboom, M.G.G.; Alffenaar, J.-W.C.; Tavares, M.; Aguirre, S.; Battaglia, A.; Molinas, G.; Tórtola, T.; Akkerman, O.W.; et al. Safety of Rifampicin at High Dose for Difficult-to-Treat Tuberculosis: Protocol for RIAlta Phase 2b/c Trial. Pharmaceutics 2023, 15, 9. https://doi.org/10.3390/pharmaceutics15010009
Espinosa-Pereiro J, Ghimire S, Sturkenboom MGG, Alffenaar J-WC, Tavares M, Aguirre S, Battaglia A, Molinas G, Tórtola T, Akkerman OW, et al. Safety of Rifampicin at High Dose for Difficult-to-Treat Tuberculosis: Protocol for RIAlta Phase 2b/c Trial. Pharmaceutics. 2023; 15(1):9. https://doi.org/10.3390/pharmaceutics15010009
Chicago/Turabian StyleEspinosa-Pereiro, Juan, Samiksha Ghimire, Marieke G. G. Sturkenboom, Jan-Willem C. Alffenaar, Margarida Tavares, Sarita Aguirre, Arturo Battaglia, Gladys Molinas, Teresa Tórtola, Onno W. Akkerman, and et al. 2023. "Safety of Rifampicin at High Dose for Difficult-to-Treat Tuberculosis: Protocol for RIAlta Phase 2b/c Trial" Pharmaceutics 15, no. 1: 9. https://doi.org/10.3390/pharmaceutics15010009
APA StyleEspinosa-Pereiro, J., Ghimire, S., Sturkenboom, M. G. G., Alffenaar, J. -W. C., Tavares, M., Aguirre, S., Battaglia, A., Molinas, G., Tórtola, T., Akkerman, O. W., Sanchez-Montalva, A., & Magis-Escurra, C. (2023). Safety of Rifampicin at High Dose for Difficult-to-Treat Tuberculosis: Protocol for RIAlta Phase 2b/c Trial. Pharmaceutics, 15(1), 9. https://doi.org/10.3390/pharmaceutics15010009