Liposomes as Carriers of GHK-Cu Tripeptide for Cosmetic Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Empty and GHK-Cu-Loaded Liposomes
2.3. The Physicochemical Properties of Liposomes
2.3.1. Size Analysis of Prepared Liposomes
2.3.2. Transmission Electron Microscopy (TEM) Imaging of Liposomes
2.3.3. The Fluidity of the Vesicle Bilayer
2.3.4. Encapsulation Efficiency (EE) of GHK-Cu in Liposomes
2.3.5. Release Kinetics of GHK-Cu Tripeptide from Liposomal Dispersions
2.4. Tyrosinase Inhibition Assay
2.5. Elastase Inhibition Assay
2.6. The Cytotoxicity Study
3. Results and Discussion
3.1. The Physicochemical Properties and Stability of Liposomes
3.2. Encapsulation Efficiency of GHK-Cu in Liposomes
3.3. Release Kinetics of GHK-Cu Tripeptide from Liposomal Dispersions
3.4. Enzyme Inhibition Assays
3.5. Study of GHK-Cu Cytotoxicity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pennington, M.W.; Czerwinski, A.; Norton, R.S. Peptide Therapeutics from Venom: Current Status and Potential. Bioorg. Med. Chem. 2018, 26, 2738–2758. [Google Scholar] [CrossRef] [PubMed]
- Lupo, M.P.; Cole, A.L. Cosmeceutical Peptides. Dermatol. Ther. 2007, 20, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Kamoun, A.; Landeau, J.M.; Godeau, G.; Wallach, J.; Duchesnay, A.; Pellat, B.; Hornebeck, W. Growth Stimulation of Human Skin Fibroblasts by Elastin-Derived Peptides. Cell Commun. Adhes. 1995, 3, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Njieha, F.K.; Morikawa, T.; Tuderman, L.; Prockop, D.J. Partial Purification of a Procollagen C-Proteinase. Inhibition by Synthetic Peptides and Sequential Cleavage of Type I Procollagen. Biochemistry 1982, 21, 757–764. [Google Scholar] [CrossRef]
- Yamauchi, P.S.; Lowe, N.J. Botulinum Toxin Types A and B: Comparison of Efficacy, Duration, and Dose-Ranging Studies for the Treatment of Facial Rhytides and Hyperhidrosis. Clin. Dermatol. 2004, 22, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Pickart, L.; Margolina, A. Regenerative and Protective Actions of the GHK-Cu Peptide in the Light of the New Gene Data. Int. J. Mol. Sci. 2018, 19, 1987. [Google Scholar] [CrossRef]
- Pickart, L.; Vasquez-Soltero, J.M.; Margolina, A. GHK-Cu May Prevent Oxidative Stress in Skin by Regulating Copper and Modifying Expression of Numerous Antioxidant Genes. Cosmetics 2015, 2, 236–247. [Google Scholar] [CrossRef]
- Schlesinger, D.H.; Pickart, L.; Thaler, M.M. Growth-Modulating Serum Tripeptide Is Glycyl-Histidyl-Lysine. Experientia 1977, 33, 324–325. [Google Scholar] [CrossRef]
- Alshammari, N.; Platts, J.A. Theoretical Study of Copper Binding to GHK Peptide. Comput. Biol. Chem. 2020, 86, 107265. [Google Scholar] [CrossRef]
- Hostynek, J.J.; Dreher, F.; Maibach, H.I. Human Skin Retention and Penetration of a Copper Tripeptide In Vitro as Function of Skin Layer towards Anti-Inflammatory Therapy. Inflamm. Res. 2010, 59, 983–988. [Google Scholar] [CrossRef]
- Mazurowska, L.; Mojski, M. Biological Activities of Selected Peptides: Skin Penetration Ability of Copper Complexes with Peptides. J. Cosmet. Sci. 2008, 59, 59–69. [Google Scholar]
- Siméon, A.; Monier, F.; Emonard, H.; Gillery, P.; Birembaut, P.; Hornebeck, W.; Maquart, F.X. Expression and Activation of Matrix Metalloproteinases in Wounds: Modulation by the Tripeptide-Copper Complex Glycyl-L-Histidyl-L-Lysine-Cu2+. J. Investig. Dermatol. 1999, 112, 957–964. [Google Scholar] [CrossRef]
- Pešáková, V.; Novotná, J.; Milan, A. Effect of the Tripeptide Glycyl-l-Histidyl-l-Lysine on the Proliferation and Synthetic Activity of Chick Embryo Chondrocytes. Biomaterials 1995, 16, 911–915. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Wu, Y.; Liu, Z.; Hong, M.; Huang, Y. Synergy of GHK-Cu and Hyaluronic Acid on Collagen IV Upregulation via Fibroblast and Ex-Vivo Skin Tests. J. Cosmet. Dermatol. 2023, 22, 2598–2604. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.E. Skin Penetration Enhancers. Int. J. Pharm. 2013, 447, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, S.M.; Moghimi, H.R. Skin Permeability, a Dismissed Necessity for Anti-wrinkle Peptide Performance. Int. J. Cosmet. Sci. 2022, 44, 232–248. [Google Scholar] [CrossRef]
- Chen, J.; Bian, J.; Hantash, B.M.; Albakr, L.; Hibbs, D.E.; Xiang, X.; Xie, P.; Wu, C.; Kang, L. Enhanced Skin Retention and Permeation of a Novel Peptide via Structural Modification, Chemical Enhancement, and Microneedles. Int. J. Pharm. 2021, 606, 120868. [Google Scholar] [CrossRef]
- Almiñana, N.; Alsina, M.A.; Reig, F. New GHK Hydrophobic Derivatives: Interaction with Phospholipid Bilayers. Colloids Surf. B Biointerfaces 2007, 57, 243–249. [Google Scholar] [CrossRef]
- Chirita, R.I.; Chaimbault, P.; Archambault, J.C.; Robert, I.; Elfakir, C. Development of a LC-MS/MS Method to Monitor Palmitoyl Peptides Content in Anti-Wrinkle Cosmetics. Anal. Chim. Acta 2009, 641, 95–100. [Google Scholar] [CrossRef]
- Oliveira, C.; Coelho, C.; Teixeira, J.A.; Ferreira-Santos, P.; Botelho, C.M. Nanocarriers as Active Ingredients Enhancers in the Cosmetic Industry—The European and North America Regulation Challenges. Molecules 2022, 27, 1669. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, Preparation, and Applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef]
- Maja, L.; Željko, K.; Mateja, P. Sustainable Technologies for Liposome Preparation. J. Supercrit. Fluids 2020, 165, 104984. [Google Scholar] [CrossRef]
- Shade, C.W. Liposomes as Advanced Delivery Systems for Nutraceuticals. Integr. Med. 2016, 15, 33–36. [Google Scholar]
- Eloy, J.O.; Claro de Souza, M.; Petrilli, R.; Barcellos, J.P.A.; Lee, R.J.; Marchetti, J.M. Liposomes as Carriers of Hydrophilic Small Molecule Drugs: Strategies to Enhance Encapsulation and Delivery. Colloids Surf. B Biointerfaces 2014, 123, 345–363. [Google Scholar] [CrossRef] [PubMed]
- Dymek, M.; Sikora, E. Liposomes as Biocompatible and Smart Delivery Systems—The Current State. Adv. Colloid Interface Sci. 2022, 309, 102757. [Google Scholar] [CrossRef]
- Song, F.; Chen, J.; Zheng, A.; Tian, S. Effect of Sterols on Liposomes: Membrane Characteristics and Physicochemical Changes during Storage. LWT 2022, 164, 113558. [Google Scholar] [CrossRef]
- De Leo, V.; Milano, F.; Agostiano, A.; Catucci, L. Recent Advancements in Polymer/Liposome Assembly for Drug Delivery: From Surface Modifications to Hybrid Vesicles. Polymers 2021, 13, 1027. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cong, H.; Wang, S.; Yu, B.; Shen, Y. Liposomes Modified with Bio-Substances for Cancer Treatment. Biomater. Sci. 2020, 8, 6442–6468. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chen, Z.; Li, W.; Liu, X.; Tang, S.; Jiang, L.; Li, M.; Peng, H.; Lian, M. Influences of Different Sugar Ligands on Targeted Delivery of Liposomes. J. Drug Target. 2020, 28, 789–801. [Google Scholar] [CrossRef]
- Maione-Silva, L.; de Castro, E.G.; Nascimento, T.L.; Cintra, E.R.; Moreira, L.C.; Cintra, B.A.S.; Valadares, M.C.; Lima, E.M. Ascorbic Acid Encapsulated into Negatively Charged Liposomes Exhibits Increased Skin Permeation, Retention and Enhances Collagen Synthesis by Fibroblasts. Sci. Rep. 2019, 9, 522. [Google Scholar] [CrossRef]
- Shah, V.M.; Nguyen, D.X.; Patel, P.; Cote, B.; Al-Fatease, A.; Pham, Y.; Huynh, M.G.; Woo, Y.; Alani, A.W. Liposomes Produced by Microfluidics and Extrusion: A Comparison for Scale-up Purposes. Nanomed. Nanotechnol. Biol. Med. 2019, 18, 146–156. [Google Scholar] [CrossRef]
- Hofmann, C.; Kaiser, B.; Maerkl, S.; Duerkop, A.; Baeumner, A.J. Cationic Liposomes for Generic Signal Amplification Strategies in Bioassays. Anal. Bioanal. Chem. 2020, 412, 3383–3393. [Google Scholar] [CrossRef]
- Toniazzo, T.; Peres, M.S.; Ramos, A.P.; Pinho, S.C. Encapsulation of Quercetin in Liposomes by Ethanol Injection and Physicochemical Characterization of Dispersions and Lyophilized Vesicles. Food Biosci. 2017, 19, 17–25. [Google Scholar] [CrossRef]
- Erdem, S.; Türkoǧlu, M. Glycyl-l-Histidyl-l-Liysine-Cu2+ Loaded Liposome Formulations. Marmara Pharm. J. 2010, 14, 91–97. [Google Scholar] [CrossRef]
- Wang, X.; Liu, B.; Xu, Q.; Sun, H.; Shi, M.; Wang, D.; Guo, M.; Yu, J.; Zhao, C.; Feng, B. GHK-Cu-Liposomes Accelerate Scald Wound Healing in Mice by Promoting Cell Proliferation and Angiogenesis. Wound Repair Regen. 2017, 25, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Zaru, M.; Sinico, C.; De Logu, A.; Caddeo, C.; Lai, F.; Manca, M.L.; Fadda, A.M. Rifampicin-Loaded Liposomes for the Passive Targeting to Alveolar Macrophages: In Vitro and In Vivo Evaluation. J. Liposome Res. 2009, 19, 68–76. [Google Scholar] [CrossRef]
- Kapoor, M.S.; D’Souza, A.; Aibani, N.; Nair, S.S.; Sandbhor, P.; Kumari, D.; Banerjee, R. Stable Liposome in Cosmetic Platforms for Transdermal Folic Acid Delivery for Fortification and Treatment of Micronutrient Deficiencies. Sci. Rep. 2018, 8, 16122. [Google Scholar] [CrossRef]
- Lentz, B.R. Membrane “Fluidity” as Detected by Diphenylhexatriene Probes. Chem. Phys. Lipids 1989, 50, 171–190. [Google Scholar] [CrossRef]
- Manconi, M.; Manca, M.L.; Escribano-Ferrer, E.; Coma-Cros, E.M.; Biosca, A.; Lantero, E.; Fernàndez-Busquets, X.; Fadda, A.M.; Caddeo, C. Nanoformulation of Curcumin-Loaded Eudragit-Nutriosomes to Counteract Malaria Infection by a Dual Strategy: Improving Antioxidant Intestinal Activity and Systemic Efficacy. Int. J. Pharm. 2019, 556, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Manca, M.L.; Ferraro, M.; Pace, E.; Di Vincenzo, S.; Valenti, D.; Fernàndez-Busquets, X.; Peptu, C.A.; Manconi, M. Loading of Beclomethasone in Liposomes and Hyalurosomes Improved with Mucin as Effective Approach to Counteract the Oxidative Stress Generated by Cigarette Smoke Extract. Nanomaterials 2021, 11, 850. [Google Scholar] [CrossRef]
- Ghanbarzadeh, S.; Valizadeh, H.; Zakeri-Milani, P. Application of Response Surface Methodology in Development of Sirolimus Liposomes Prepared by Thin Film Hydration Technique. BioImpacts 2013, 3, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Levchenko, T.S.; Torchilin, V.P. Encapsulation of ATP into Liposomes by Different Methods: Optimization of the Procedure. J. Microencapsul. 2004, 21, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Mura, P.; Maestrelli, F.; González-Rodríguez, M.L.; Michelacci, I.; Ghelardini, C.; Rabasco, A.M. Development, Characterization and In Vivo Evaluation of Benzocaine-Loaded Liposomes. Eur. J. Pharm. Biopharm. 2007, 67, 86–95. [Google Scholar] [CrossRef]
- Moyá, M.L.; López-López, M.; Lebrón, J.A.; Ostos, F.J.; Pérez, D.; Camacho, V.; Beck, I.; Merino-Bohórquez, V.; Camean, M.; Madinabeitia, N.; et al. Preparation and Characterization of New Liposomes. Bactericidal Activity of Cefepime Encapsulated into Cationic Liposomes. Pharmaceutics 2019, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Dymek, M.; Sikora, E. Emulsions as Vehicles for the Controlled Release of Astaxanthin in Topical Application. Chem. Process Eng. 2021, 42, 439–450. [Google Scholar] [CrossRef]
- Costa, P.; Sousa Lobo, J.M. Modeling and Comparison of Dissolution Profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. [Google Scholar] [CrossRef]
- Higuchi, T. Mechanism of Sustained-action Medication. Theoretical Analysis of Rate of Release of Solid Drugs Dispersed in Solid Matrices. J. Pharm. Sci. 1963, 52, 1145–1149. [Google Scholar] [CrossRef]
- Higuchi, T. Rate of Release of Medicaments from Ointment Bases Containing Drugs in Suspension. J. Pharm. Sci. 1961, 50, 874–875. [Google Scholar] [CrossRef]
- Peppas, N.A.; Sahlin, J.J. A Simple Equation for the Description of Solute Release. III. Coupling of Diffusion and Relaxation. Int. J. Pharm. 1989, 57, 169–172. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A Simple Equation for Description of Solute Release I. Fickian and Non-Fickian Release from Non-Swellable Devices in the Form of Slabs, Spheres, Cylinders or Discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Neeley, E.; Fritch, G.; Fuller, A.; Wolfe, J.; Wright, J.; Flurkey, W. Variations in IC50 Values with Purity of Mushroom Tyrosinase. Int. J. Mol. Sci. 2009, 10, 3811–3823. [Google Scholar] [CrossRef]
- Kandárová, H.; Hayden, P.; Klausner, M.; Kubilus, J.; Sheasgreen, J. An in Vitro Skin Irritation Test (SIT) Using the EpiDerm Reconstructed Human Epidermal (RHE) Model. J. Vis. Exp. 2009, 29, e1366. [Google Scholar] [CrossRef]
- Malinowska, M.; Miroslaw, B.; Sikora, E.; Ogonowski, J.; Wojtkiewicz, A.M.; Szaleniec, M.; Pasikowska-Piwko, M.; Eris, I. New Lupeol Esters as Active Substances in the Treatment of Skin Damage. PLoS ONE 2019, 14, e0214216. [Google Scholar] [CrossRef]
- Boer, M.; Duchnik, E.; Maleszka, R.; Marchlewicz, M. Structural and Biophysical Characteristics of Human Skin in Maintaining Proper Epidermal Barrier Function. Postep. Dermatologii Alergol. 2016, 33, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Fresta, M.; Puglisi, G. Corticosteroid Dermal Delivery with Skin-Lipid Liposomes. J. Control. Release 1997, 44, 141–151. [Google Scholar] [CrossRef]
- Németh, Z.; Csóka, I.; Semnani Jazani, R.; Sipos, B.; Haspel, H.; Kozma, G.; Kónya, Z.; Dobó, D.G. Quality by Design-Driven Zeta Potential Optimisation Study of Liposomes with Charge Imparting Membrane Additives. Pharmaceutics 2022, 14, 1798. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.D.; Verma, S.; Blume, G.; Fahr, A. Particle Size of Liposomes Influences Dermal Delivery of Substances into Skin. Int. J. Pharm. 2003, 258, 141–151. [Google Scholar] [CrossRef]
- Sepúlveda, C.T.; Alemán, A.; Zapata, J.E.; Montero, M.P.; Gómez-Guillén, M.C. Characterization and Storage Stability of Spray Dried Soy-Rapeseed Lecithin/Trehalose Liposomes Loaded with a Tilapia Viscera Hydrolysate. Innov. Food Sci. Emerg. Technol. 2021, 71, 102708. [Google Scholar] [CrossRef]
- Chaves, M.A.; Pinho, S.C. Unpurified Soybean Lecithins Impact on the Chemistry of Proliposomes and Liposome Dispersions Encapsulating Vitamin D3. Food Biosci. 2020, 37, 100700. [Google Scholar] [CrossRef]
- Mohan, A.; Rajendran, S.R.C.K.; Thibodeau, J.; Bazinet, L.; Udenigwe, C.C. Liposome Encapsulation of Anionic and Cationic Whey Peptides: Influence of Peptide Net Charge on Properties of the Nanovesicles. LWT 2018, 87, 40–46. [Google Scholar] [CrossRef]
- Knudsen, N.Ø.; Jorgensen, L.; Hansen, J.; Vermehren, C.; Frokjaer, S.; Foged, C. Targeting of Liposome-Associated Calcipotriol to the Skin: Effect of Liposomal Membrane Fluidity and Skin Barrier Integrity. Int. J. Pharm. 2011, 416, 478–485. [Google Scholar] [CrossRef]
- Subongkot, T.; Ngawhirunpat, T. Effect of Liposomal Fluidity on Skin Permeation of Sodium Fluorescein Entrapped in Liposomes. Int. J. Nanomed. 2015, 10, 4581–4592. [Google Scholar] [CrossRef]
- Park, S.H.; Oh, S.G.; Mun, J.Y.; Han, S.S. Loading of Gold Nanoparticles inside the DPPC Bilayers of Liposome and Their Effects on Membrane Fluidities. Colloids Surf. B Biointerfaces 2006, 48, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Połeć, K.; Olechowska, K.; Klejdysz, A.; Dymek, M.; Rachwalik, R.; Sikora, E.; Hąc-Wydro, K. The Influence of Ergosterol on the Action of the Hop Oil and Its Major Terpenes on Model Fungi Membranes. Towards Understanding the Mechanism of Action of Phytocompounds for Food and Plant Protection. Chem. Phys. Lipids 2021, 238, 105092. [Google Scholar] [CrossRef] [PubMed]
- Połeć, K.; Barnaś, B.; Kowalska, M.; Dymek, M.; Rachwalik, R.; Sikora, E.; Biela, A.; Kobiałka, M.; Wójcik, K.; Hąc-Wydro, K. The Influence of the Essential Oil Extracted from Hops on Monolayers and Bilayers Imitating Plant Pathogen Bacteria Membranes. Colloids Surf. B Biointerfaces 2019, 173, 672–680. [Google Scholar] [CrossRef]
- Biruss, B.; Valenta, C. Comparative Characterization of the Physicochemical Behavior and Skin Permeation of Extruded DPPC Liposomes Modified by Selected Additives. J. Pharm. Sci. 2007, 96, 2171–2176. [Google Scholar] [CrossRef]
- Manosroi, A.; Kongkaneramit, L.; Manosroi, J. Characterization of Amphotericin B Liposome Formulations. Drug Dev. Ind. Pharm. 2004, 30, 535–543. [Google Scholar] [CrossRef]
- Costa, A.P.; Xu, X.; Burgess, D.J. Freeze-Anneal-Thaw Cycling of Unilamellar Liposomes: Effect on Encapsulation Efficiency. Pharm. Res. 2014, 31, 97–103. [Google Scholar] [CrossRef]
- Llu, L.; Yonetani, T. Preparation and Characterization of Liposome-Encapsulated Haemoglobin by a Freeze-Thaw Method. J. Microencapsul. 1994, 11, 409–421. [Google Scholar] [CrossRef]
- Colletier, J.P.; Chaize, B.; Winterhalter, M.; Fournier, D. Protein Encapsulation in Liposomes: Efficiency Depends on Interactions between Protein and Phospholipid Bilayer. BMC Biotechnol. 2002, 2, 9. [Google Scholar] [CrossRef]
- Xu, X.; Costa, A.; Burgess, D.J. Protein Encapsulation in Unilamellar Liposomes: High Encapsulation Efficiency and a Novel Technique to Assess Lipid-Protein Interaction. Pharm. Res. 2012, 29, 1919–1931. [Google Scholar] [CrossRef] [PubMed]
- Chaize, B.; Colletier, J.P.; Winterhalter, M.; Fournier, D. Encapsulation of Enzymes in Liposomes: High Encapsulation Efficiency and Control of Substrate Permeability. Artif. Cells Blood Substit. Immobil. Biotechnol. 2004, 32, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Ohsawa, T.; Miura, H.; Harada, K. Improvement of Encapsulation Efficiency of Water-Soluble Drugs in Liposomes Formed by the Freeze-Thawing Method. Chem. Pharm. Bull. 1985, 33, 3945–3952. [Google Scholar] [CrossRef] [PubMed]
- Kozlowski, L.P. IPC—Isoelectric Point Calculator. Biol. Direct 2016, 11, 1–16. [Google Scholar] [CrossRef]
- Heuts, J.; Varypataki, E.M.; van der Maaden, K.; Romeijn, S.; Drijfhout, J.W.; van Scheltinga, A.T.; Ossendorp, F.; Jiskoot, W. Cationic Liposomes: A Flexible Vaccine Delivery System for Physicochemically Diverse Antigenic Peptides. Pharm. Res. 2018, 35, 207. [Google Scholar] [CrossRef]
- Popov, M.; Abu Hammad, I.; Bachar, T.; Grinberg, S.; Linder, C.; Stepensky, D.; Heldman, E. Delivery of Analgesic Peptides to the Brain by Nano-Sized Bolaamphiphilic Vesicles Made of Monolayer Membranes. Eur. J. Pharm. Biopharm. 2013, 85, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Mori, T.; Tomita, M.; Tsumoto, K. PH Switching That Crosses over the Isoelectric Point (PI) Can Improve the Entrapment of Proteins within Giant Liposomes by Enhancing Protein-Membrane Interaction. Langmuir 2014, 30, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Suleiman, E.; Damm, D.; Batzoni, M.; Temchura, V.; Wagner, A.; Überla, K.; Vorauer-Uhl, K. Electrostatically Driven Encapsulation of Hydrophilic, Non-Conformational Peptide Epitopes into Liposomes. Pharmaceutics 2019, 11, 619. [Google Scholar] [CrossRef] [PubMed]
- Badenhorst, T.; Svirskis, D.; Merrilees, M. Effects of GHK-Cu on MMP and TIMP Expression, Collagen and Elastin Production, and Facial Wrinkle Parameters. J. Aging Sci. 2016, 4, 166. [Google Scholar] [CrossRef]
- Loffredo, E.; Traversa, A.; Senesi, N. Biodecontamination of Water from Bisphenol a Using Ligninolytic Fungi and the Modulation Role of Humic Acids. Ecotoxicol. Environ. Saf. 2012, 79, 288–293. [Google Scholar] [CrossRef]
- Risbud, M.V.; Bhonde, R.R. Suitability of Cellulose Molecular Dialysis Membrane for Bioartificial Pancreas: In Vitro Biocompatibility Studies. J. Biomed. Mater. Res. 2001, 54, 436–444. [Google Scholar] [CrossRef]
- Leypoldt, J.K.; Gilson, J.F.; Blindauer, K.M.; Cheung, A.K. Macromolecule Adsorption to Hemodialysis Membranes Depends on Molecular Size. Blood Purif. 1992, 10, 53–60. [Google Scholar] [CrossRef]
- Lee, M.Y.; Hong, K.J.; Kajiuchi, T.; Yang, J.W. Synthesis of Chitosan-Based Polymeric Surfactants and Their Adsorption Properties for Heavy Metals and Fatty Acids. Int. J. Biol. Macromol. 2005, 36, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Kaddah, S.; Khreich, N.; Kaddah, F.; Charcosset, C.; Greige-Gerges, H. Cholesterol Modulates the Liposome Membrane Fluidity and Permeability for a Hydrophilic Molecule. Food Chem. Toxicol. 2018, 113, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Nian, S.; Huang, Q. Assembly of Kafirin/Carboxymethyl Chitosan Nanoparticles to Enhance the Cellular Uptake of Curcumin. Food Hydrocoll. 2015, 51, 166–175. [Google Scholar] [CrossRef]
- Polatoğlu, İ.; Karataş, D. Modeling of Molecular Interaction between Catechol and Tyrosinase by DFT. J. Mol. Struct. 2020, 1202, 127192. [Google Scholar] [CrossRef]
- Jiratchayamaethasakul, C.; Ding, Y.; Hwang, O.; Im, S.T.; Jang, Y.; Myung, S.W.; Lee, J.M.; Kim, H.S.; Ko, S.C.; Lee, S.H. In Vitro Screening of Elastase, Collagenase, Hyaluronidase, and Tyrosinase Inhibitory and Antioxidant Activities of 22 Halophyte Plant Extracts for Novel Cosmeceuticals. Fish. Aquat. Sci. 2020, 23, 6. [Google Scholar] [CrossRef]
- Thring, T.S.A.; Hili, P.; Naughton, D.P. Anti-Collagenase, Anti-Elastase and Anti-Oxidant Activities of Extracts from 21 Plants. BMC Complement. Altern. Med. 2009, 9, 27. [Google Scholar] [CrossRef]
- Kim, M.S.; Chun, K.E.; Lee, D.K.; Song, S.H. Evaluation of the Efficacy of an Elastin-Inducing Composition Containing Amino Acids, Copper, and Hyaluronic Acid: Results of an Open Single-Center Clinical Trial Study. Cosmetics 2022, 9, 51. [Google Scholar] [CrossRef]
- Rucker, R.B.; Kosonen, T.; Clegg, M.S.; Mitchell, A.E.; Rucker, B.R.; Uriu-Hare, J.Y.; Keen, C.L. Copper, Lysyl Oxidase, and Extracellular Matrix Protein Cross-Linking. Am. J. Clin. Nutr. 1998, 67, 996S–1002S. [Google Scholar] [CrossRef]
- Tseu, G.Y.W.; Kamaruzaman, K.A. A Review of Different Types of Liposomes and Their Advancements as a Form of Gene Therapy Treatment for Breast Cancer. Molecules 2023, 28, 1498. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Wang, Y.; Gong, Y.; Lin, X.; Zhao, Y.; Zhi, D.; Zhou, Q.; Zhang, S. Correlation of the Cytotoxic Effects of Cationic Lipids with Their Headgroups. Toxicol. Res. 2018, 7, 473–479. [Google Scholar] [CrossRef] [PubMed]
Sample | Concentration [% wt.] | |
---|---|---|
DCP | SA | |
AL-DCP-5 | 5 | - |
AL-DCP-7 | 7 | - |
AL-DCP-10 | 10 | - |
AL-DCP-15 | 15 | - |
CL-SA-7 | - | 7 |
CL-SA-10 | - | 10 |
CL-SA-15 | - | 15 |
Sample | DCP [% wt.] | SA [% wt.] | Mean Diameter ± SD [nm] | Zeta Potential ± SD [mV] | PDI ± SD |
---|---|---|---|---|---|
AL-DCP-5 | 5 | - | 92 ± 0 | −25.3 ± 0.5 | 0.038 ± 0.012 |
AL-DCP-7 | 7 | - | 96 ± 0 | −31.5 ± 1.5 | 0.041 ± 0.005 |
AL-DCP-10 | 10 | - | 102 ± 1 | −34.8 ± 1.1 | 0.060 ± 0.015 |
AL-DCP-15 | 15 | - | 87 ± 0 | −40.5 ± 2.1 | 0.080 ± 0.011 |
CL-SA-7 | - | 7 | 128 ± 1 | 48.8 ± 1.9 | 0.139 ± 0.014 |
CL-SA-10 | - | 10 | 131 ± 0 | 45.5 ± 2.8 | 0.056 ± 0.006 |
CL-SA-15 | - | 15 | 120 ± 1 | 42.3 ± 1.8 | 0.111 ± 0.014 |
Sample | GHK-Cu Concentration [mg/cm3] | Mean Diameter ± SD [nm] | Zeta Potential ± SD [mV] | PDI ± SD |
---|---|---|---|---|
AL-DCP-15 | - | 87 ± 0 | −40.5 ± 2.1 | 0.08 ± 0.011 |
AL-DCP-15-GHK-1 | 1 | 89 ± 1 | −37.9 ± 1.4 | 0.087 ± 0.014 |
AL-DCP-15-GHK-5 | 5 | 109 ± 0 | −38.1 ± 4.7 | 0.075 ± 0.017 |
AL-DCP-15-GHK-10 | 10 | 91 ± 0 | −28.4 ± 1.2 | 0.084 ± 0.009 |
CL-SA-7 | - | 128 ± 1 | 48.8 ± 1.9 | 0.139 ± 0.014 |
CL-SA-7-GHK-5 | 5 | 107 ± 1 | 36.9 ± 0.7 | 0.082 ± 0.027 |
Sample | Fluorescence Anisotropy |
---|---|
AL-DCP-15 | 0.165 |
CL-SA-7 | 0.059 |
Sample | GHK-Cu Concentration [mg/cm3] | Encapsulation Efficiency ± SD [%] | ||
---|---|---|---|---|
Total Lipid Concentration | ||||
10 mg/cm3 | 25 mg/cm3 | 50 mg/cm3 | ||
AL-DCP15-GHK-0.5 | 0.5 | 17.3 ± 0.6 | 31.7 ± 0.9 | 33.4 ± 0.9 |
AL-DCP15-GHK-5 | 5 | - | 17.5 ± 1.3 | - |
CL-SA7-GHK-0.5 | 0.5 | 15.7 ± 0.7 | 20.0 ± 2.8 | - |
CL-SA7-GHK-5 | 5 | - | 6.9 ± 1.1 | - |
Kinetic Model | Parameter | Sample | ||
---|---|---|---|---|
AL-DCP15-GHK-0.5 | CL-SA7-GHK-0.5 | GHK-0.5 | ||
Zero-order | R2 | 0.513 | 0.490 | 0 |
K0·101 [h−1] | 1.46 | 1.79 | 2.21 | |
Higuchi | R2 | 0.938 | 0.934 | 0.718 |
KH·101 [h−0.5] | 3.17 | 3.88 | 4.90 | |
Korsmeyer–Peppas | R2 | 0.943 | 0.973 | 0.823 |
KKP·101 [h−n] | 2.84 | 13.2 | 7.18 | |
n | 0.511 | 0.190 | 0.318 |
Degree of Inhibition [%] ± SD | |
---|---|
Tyrosinase | Elastase |
10.23 ± 3.03 | 48.90 ± 2.50 |
Sample | Viability [%] ± SD |
---|---|
GHK-Cu-0.5 | 93.1 ± 11.0 |
AL-DCP15-GHK-0.5 | 96.6 ± 6.1 |
NC | 100.0 ± 0.8 |
PC | 6.2 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dymek, M.; Olechowska, K.; Hąc-Wydro, K.; Sikora, E. Liposomes as Carriers of GHK-Cu Tripeptide for Cosmetic Application. Pharmaceutics 2023, 15, 2485. https://doi.org/10.3390/pharmaceutics15102485
Dymek M, Olechowska K, Hąc-Wydro K, Sikora E. Liposomes as Carriers of GHK-Cu Tripeptide for Cosmetic Application. Pharmaceutics. 2023; 15(10):2485. https://doi.org/10.3390/pharmaceutics15102485
Chicago/Turabian StyleDymek, Michał, Karolina Olechowska, Katarzyna Hąc-Wydro, and Elżbieta Sikora. 2023. "Liposomes as Carriers of GHK-Cu Tripeptide for Cosmetic Application" Pharmaceutics 15, no. 10: 2485. https://doi.org/10.3390/pharmaceutics15102485
APA StyleDymek, M., Olechowska, K., Hąc-Wydro, K., & Sikora, E. (2023). Liposomes as Carriers of GHK-Cu Tripeptide for Cosmetic Application. Pharmaceutics, 15(10), 2485. https://doi.org/10.3390/pharmaceutics15102485