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Abstract: Physiologically based pharmacokinetic (PBPK) modeling is an approach to predicting drug
pharmacokinetics, using knowledge of the human physiology involved and drug physiochemical
properties. This approach is useful when predicting drug pharmacokinetics in under-studied popula-
tions, such as pediatrics. PBPK modeling is a particularly important tool for dose optimization for
the neonatal population, given that clinical trials rarely include this patient population. However,
important knowledge gaps exist for neonates, resulting in uncertainty with the model predictions.
This review aims to outline the sources of variability that should be considered with developing a
neonatal PBPK model, the data that are currently available for the neonatal ontogeny, and lastly to
highlight the data gaps where further research would be needed.

Keywords: neonates; PBPK modeling; pharmacokinetics; ontogeny

1. Introduction

The pharmacology modeling tools available for research, and translational to clinical
care, have expanded greatly in the past thirty years. Physiologically based pharmacoki-
netic (PBPK) modeling is a scientific approach allowing the incorporation of complex
physiologies in drug absorption, distribution, metabolism, and excretion to predict drug
pharmacokinetics. This modern modeling technique has been adopted by multiple stake-
holder groups, including academic researchers, industry, and regulatory agencies [1]. PBPK
modelling has been used for a variety of purposes, including, but not limited to, in sil-
ico prediction of exposure to choose doses for clinical trials, understanding the influence
on drug exposure of impaired organ function, predicting drug–drug interactions, and
predicting fetal exposure to maternal medications during pregnancy.

PBPK modeling is an important tool in understanding how to optimize dosing in
patient subpopulations who can either not be enrolled in clinical trials or for which there
is limited information from drug-development efforts. Examples of such subpopulations
include pregnant and lactating women, fetuses, neonates and infants, and other pediatric
groups [2–4]. A major cornerstone of PBPK modeling is the incorporation of unique patient
physiology, and it is thus a powerful tool for anticipating how drug PK could differ in
these populations compared to populations more extensively studied [5–7]. Additionally,
this tool can be used for in silico predictions aimed at the rational choosing of “first in
population” doses for these patients, when traditional allometric scaling may be less accu-
rate. This review will focus specifically on the potential for PBPK modeling to transform
pharmacology research and clinical implementation in neonates.

Neonates are typically defined as newborns at less than 1 month of life, but there is
actually a diverse patient population captured within this umbrella designation, which is
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illustrated in Figure 1. For example, a neonate can range in gestational age (GA) at birth
from 22 weeks (limit of viability) to 41 weeks (post-term), and in birth weight from 400 g to
4500 g. Neonates can have a wide range of developmentally programmed organ function
(gastrointestinal, renal, and hepatic) that can vary widely between GA and postnatal ages
(PNA) [8,9]. Since each of these neonatal subpopulations are small in number, large studies
are not feasible. Thus, PBPK models have great potential to use unique physiology and
drug characteristics to augment our understanding of the dose-exposure response. Addi-
tionally, PBPK models can help us understand tissue-specific drug exposure and unique
neonate-specific drug toxicities (i.e., neurodevelopmental sequelae of drug exposure in the
developing brain) [10]. Of note, because preterm infants are a very unique and vulnerable
neonatal subpopulation, many PBPK software groups have incorporated ontogeny profiles
specifically for this population.
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Figure 1. Sources of uncertainty when developing neonatal PBPK models (created with biorender.com).
The source of uncertainty may be related to variability in the neonatal population for an age category
(e.g., the developmental differences between preterm and term child whose postnatal age is one month).
Some sources of uncertainty are due to lack of data, e.g., drug target ontogeny whereas other sources of
uncertainty are due to the complexity of the question, such as the impact of co-medications and potential
DDIs in a neonate, or the impact of disease in neonates impacting drug PK and PD.

2. General Principles of Developing PBPK Models in Neonates

Currently, there are several software programs available to assist researchers in devel-
oping PBPK models in the neonatal populations. A non-exhaustive list of some commer-
cially available PBPK Modeling Software includes Simcyp® (Certara UK Limited, Sheffield,
UK), Gastroplus® (SimulationsPlus, Cognigen, Lancaster, CA, USA), PK-Sim® (Bayer Tech-
nology Services, Leverkusen, Germany), etc. The architecture of each program is not the
focus of this paper; however, it is worthwhile to describe the general approach and data
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that PBPK software use to simulate drug PK in special populations [11–18]. Readers are
encouraged to review the publications for each software for further details prior to building
any models. Ultimately, each PBPK software package simulates PK in special populations
using two categories of data: systems data (i.e., patient population data) and compound
data (i.e., drug and drug-formulation data). The systems data describes the physiological
parameters of a population that impact PK. Important physiological parameters include
plasma protein binding, organ volumes, organ function (e.g., kidney glomerular filtration
rate), blood flow, tissue composition, enzyme and transporter abundance, etc. For neonates,
the incorporation of an ontogeny (developmental profile) to these physiologies is critical
to anticipating drug PK. Therefore, if an ontogeny is not built into the systems data or if
the ontogeny data are sparse, unreliable, or lack validation, this is an important limitation
to the function of PBPK model performance in neonates. As such, robust data describing
neonatal differences in physiology are key to developing high-quality PBPK models for
neonates. Table 1 describes several of the key parameters and processes incorporated in
PBPK models, and the strength of information available for neonates.

The second category of data is compound data, which comprises drug-specific data
relating to the drug’s physical and chemical properties, the solubility/permeability of the
compound, tissue distribution, metabolism, and excretion of the compound. While these
data are generally less impacted by differences between adult and pediatric populations,
it should be noted that many key in vitro experiments that predict the metabolism and
excretion of compounds are performed using adult tissues. The underlying assumption
of many PBPK models is that the function of a protein or enzyme does not differ between
adults and neonates. Thus, this could be considered a major assumption necessitated by a
current “data gap” to consider when building neonatal PBPK models.

While the general science of PBPK modeling has matured considerably, there is con-
siderable room for growth in the neonatal space due to (1) remaining data gaps for optimal
model specification and (2) the low number of pharmacometricians and pharmacologists
focused on this specific patient population. Ultimately, one of the major purposes of devel-
oping a PBPK model for neonates is to help determine safe and effective doses of medication
for these vulnerable patients, in the absence of the ability to conduct large clinical trials in
this population. For example, if we knew the target drug exposure for a new antibiotic
from adult clinical trials, a PBPK model could incorporate neonatal physiology to predict
the dose and dose frequency required to obtain this target exposure in a neonate. In a
second example, if we know a drug concentration associated with toxicity in neonates,
PBPK models can be used to test, in silico, different dosing strategies to avoid toxic drug
exposures. In this review, we also aim to highlight the key areas of data “need” from a re-
search, clinical, and regulatory perspective. We believe that identifying and systematically
addressing these needs as a scientific community can accelerate the development of robust
PBPK models for clinical decision making.
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Table 1. Summary of key information available for building neonatal PBPK models. The table describes parameters often considered in PBPK models, the age range
where data is available, specifically the developmental pattern of the parameter early in life, strength of evidence (see footnote for definitions), and key references
for data.

ADME Process Parameter Age Range Reported
Developmental Pattern

Early in Life
(Fetus 22 to 44 wk PMA)

Strength of Information in
Neonates

Key References
Containing Neonatal Data

Demographics

Age Distribution Fetus to adult Uniform distribution 3 Health survey for England, NHANES,
Health data for specific country

Height/length Fetus to adult Increasing 3 Growth Charts for specific population

Weight Fetus to adult Increasing 3 Growth Charts for specific population

Absorption

Small intestinal
length/diameter Fetus to adult Increase 3 [19–23]

Gastric pH Fetus to adult Decreasing/stable 3 [24–28]

Gastric emptying Fetus to adult Stable 3 [29] meta-analysis

Small intestine transit time Neonate to adult Stable 1 [30]

Intestinal transporters

[31–35]
Pgp Fetus to adult Stable 2

BCRP Fetus to adult Stable 2
MRP1 Fetus to adult Stable 1

OATP2B1 Neonate to adult Decrease 2

Intestinal enzymes CYP3A4 Fetus to adult Stable/Increasing 1 [16]

Distribution

Tissue composition
(Individual organs) Fetus, neonate, and adult Changing 1 [36–38]

Water Composition
[39–41]Intracellular Water Fetus to adult Increasing 3

Extracellular Water Fetus to adult Decreasing 3

Fat Fetus to adult Increasing 3 [20,42–46]



Pharmaceutics 2023, 15, 2579 5 of 21

Table 1. Cont.

ADME Process Parameter Age Range Reported
Developmental Pattern

Early in Life
(Fetus 22 to 44 wk PMA)

Strength of Information in
Neonates

Key References
Containing Neonatal Data

Organ Volumes

Liver Volume Fetus to adult Increasing 3 [11,13,17,47,48]

Brain Volume Fetus to adult Increasing 3 [11,13,20,49,50]

Kidney Volume Fetus to adult Increasing 3 [11,13,51,52]

Fat-Free Mass Volume Fetus to adult Increasing 3 [39,43]

Blood Volume Fetus to adult Increasing 3 [53–56]

Organ Blood Flows

Cardiac Output Fetus to adult Increasing 3 [57–61]

Liver Blood Flow Neonate to adult Increasing with
cardiac output 1 [62]

Brain Blood Flow Neonate to adult Variable as fraction of
cardiac output 2 [63,64]

Kidney Blood Flow Neonate to adult Increasing 2 [65,66]

Blood Proteins

Albumin Concentration Fetus to adult Slowly increasing 3 [15,67–70]

AGP Concentration Fetus to adult Increasing 3 [15,69,71]

Hematocrit Fetus to adult Decreasing/Increasing 3 [72–74]

Metabolism (Liver)

Hepatic Enzymes

CYP1A2 Fetus to adult Slowly increasing 2 [75–79]

CYP2A6 Fetus to adult Slowly Increasing 1 [76,79,80]

CYP2B6 Fetus to adult Slowly Increasing 1 [79,81,82]

CYP2C9 Fetus to adult Slowly Increasing 2 [76,79,83–86]

CYP2C19 Fetus to adult Slowly Increasing 1 [76,79,83,84,86]

CYP2D6 Fetus to adult Slowly Increasing 1 [76,79,86,87]
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Table 1. Cont.

ADME Process Parameter Age Range Reported
Developmental Pattern

Early in Life
(Fetus 22 to 44 wk PMA)

Strength of Information in
Neonates

Key References
Containing Neonatal Data

CYP2E1 Fetus to adult Slowly Increasing 1 [79,83,88,89]

CYP3A4 Fetus to adult Stable/Slowly increasing 2 [76,83,90,91]

CYP3A5 Fetus to adult Stable 3 [76,83,91–95]

CYP3A7 Fetus to adult Decreasing 3 [79,83,90–92,96–99]

UGT1A1 Neonate to adult Stable 2 [100–107]

UGT1A3 Neonate to adult Decreasing/Increasing 1 [100,104,108]

UGT1A4 Neonate to adult Increasing 1 [101,109]

UGT1A6 Neonate to adult Slowly Increasing [100,101,103–105]

UGT1A9 Neonate to adult Stable 1 [100,101,104,107,110,111]

UGT2B4 Fetus to adult Stable 1 [100,107]

UGT2B7 Stable/increasing [100,101,107,112,113]

UGT2B15 Neonate to adult Stable 1 [101]

CES1 Neonate to adult Slowly Increasing 1 [114–116]

CES2 Neonate to adult Slowly Increasing 1 [114–117]

FMO1 Fetus to adult Decreasing 1 [96]

Hepatic Transporters

P-gp Fetus to adult Stable/slowly increasing 1 [31,118,119]

BCRP Neonate to adult Stable 1 [118]

OATP1B1 Fetus to adult Stable/slowly increasing 1 [31,118,119]

OATP1B3 Neonate to adult Increasing 1 [31,118]

OCT1 Neonate to adult Increasing 1 [118]
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Table 1. Cont.

ADME Process Parameter Age Range Reported
Developmental Pattern

Early in Life
(Fetus 22 to 44 wk PMA)

Strength of Information in
Neonates

Key References
Containing Neonatal Data

Other

Microsomal protein Neonate to adult Stable 1 [120]

Excretion

Glomerular filtration rate Preterm to adult Increasing 3 [121–127]

Renal Transporters

BCRP Preterm to adult Decreasing 1 [128]

P-gp Preterm to adult Increasing 1 [128]

MATE1/2 Preterm to adult Stable 1 [128]

MRP4 Preterm to adult Stable 1 [128]

OAT1 Preterm to adult Slowly Increasing 1 [128]

OAT3 Preterm to adult Slowly Increasing 1 [128–130]

OCT2 Preterm to adult Slowly Increasing 1 [128]

ADME = absorption, distribution, metabolism, and excretion. PMA = postmenstrual age. Strength of information—0 = no data, 1 = weak, 2 references or less or too few data points for
ontogeny, 2 = moderate, >2 to 5 references and enough data for rough ontogeny estimate with PMA, 3 = strong, >3 references and rich data for analysis with PMA.
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3. Advances and Unique Challenges in Developing PBPK Models in Neonates

Several recent publications have highlighted the sparse use of PBPK modeling in both
term and preterm neonatal populations [131–133]; many pediatric PBPK studies only go
down to the infant population and no younger. The reasons for this lack of research include
relatively low amounts of published clinical PK data in neonates (needed to validate the
PBPK models) and general uncertainty regarding this approach in the very young due to
lack of good-quality systems data.

Nevertheless, important developments within pediatric PBPK models, particularly in
reference to younger age groups, have been made. One highly impactful development is
the introduction of time-based changing physiology [12], whereby subjects can be redefined
over time, and thereby changes due to growth can be incorporated into the PBPK model.
Before this development, a research patient had to stay static over time in the model,
despite medication dosing over weeks or months. This approach works in adults who
do not have rapidly changing body size or organ maturation. But time-based changing
physiology is particularly important in neonates who are rapidly growing and maturing in
a short time frame. An example of incorporation of time-based changing physiology can
be seen when performing PK simulations of sildenafil, a drug that is dosed in neonates
with pulmonary hypertension over multiple weeks [12,134]. Mukherjee et al. reported
that sildenafil clearance increased substantially over the first 7 days of life, which is likely
a result of increased CYP3A4 activity during this period [134]. A static model would
underestimate clearance, and thus the recommended dose from this model could potentially
be subtherapeutic. On the other hand, a PBPK model that incorporates the ontogeny of
CYP3A4 in the first days of life is better able to capture clearance, and this insight could
lead to better dose adjustments during the entirety of sildenafil treatment for a neonate [12].

Another important development is the ability to account for GA as well as PNA [13,135]
in neonatal PBPK models. This new developmental allows for simulations in preterm infants,
which allows for capturing PK in a neonatal subpopulation that is developmentally less
mature. Additionally, accounting for GA and PNA will also help to further verify data in term
neonatal models, once the preterm born infants mature towards term physiology.

Recent publications have specifically compiled physiological data for building PBPK
models in fetus, preterm, and term neonates [11,13,135]. Rather than describe the individual
systems data in detail, the current scientific data regarding the key PBPK parameters in the
preterm and term neonatal populations, the amount of data available for each parameter,
and important knowledge gaps is summarized in Table 1. The following review sections
will be used to illustrate how the systems data in neonatal PBPK models can be improved.

3.1. Demographic Data

Age, weight, and length are the demographic variables needed to build PBPK mod-
els. Many growth charts exist for different populations covering both preterm and term
neonates [136,137]. Most current neonatal PBPK models use weight equations based on
PNA, but allowing for postnatal dip [17], or postmenstrual age (PMA) [7]. Some longitu-
dinal data is available for parameters such as height and weight, and this has been used
to develop equations describing these parameters from preterm (25 weeks GA) to 4 years
of age [138]. Using this approach, ‘catch up’ growth in preterm infants can be described.
Future development will include integrating these types of growth models into neonatal
PBPK such that height and weight are fully described in relation to both GA and PNA.

3.2. Organ Size, Blood Flow, and Composition

This information is required for the PBPK model to allow prediction of the drug
distribution to different tissues. In general, there is a good amount of information on organ
size in term and preterm neonates, and underlying algorithms describing changes can be
linked to relevant covariates such as age, height, and weight but also other parameters such
as fat free mass (e.g., muscle volume). Taking the liver as an example, a meta-analysis of
age-related changes to liver volume included 576 term neonates; the volume was described
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in relation to body surface area [17]. For the preterm population, liver volume has been
defined in relation to body weight [13]. Changes to cardiac output with age are well-
defined in preterm and term neonates [57,58]; however, individual tissue blood flow is less
well-defined, especially for preterm. There is limited data on hepatic blood flow changes
in neonates [139], and this is important not only for volume-of-distribution prediction
but also prediction of drug elimination. Drugs that have a high hepatic extraction are
more dependent on hepatic blood flow for elimination. However, there is evidence that
the extraction ratio may change with age, exemplified by morphine, which was shown to
be more influenced by UDP-glucuronosyltransferase (UGT) 2B7 abundance rather than
hepatic blood flow in neonates [140]. Whilst the extracellular water percentage of body
weight decreases with age in neonates, there is a corresponding increase in intracellular
water [141]. Data on individual tissue composition in terms of percentage water and fat in
tissues in term neonates is sparse [36,37].

In general terms, the major problem with systems information available in neonates
is that often what is reported is population mean data obtained from one or more cross-
sectional studies where a wide age range was studied. In this situation, the true devel-
opmental patterns can be hidden. Additionally, this also leads to the overprediction of
variability in future PK studies. There is a pressing need for longitudinal studies conducted
in the same individuals over time; in this way, the changes in systems parameters, and
the relation to both GA and PNA, can be better defined; although, at the same time, it is
acknowledged that these studies are more difficult to perform. In the light of this, there has
been a call for construction of centralized databases on physiological parameters based on
longitudinal real-world data [131].

3.3. Ontogeny of Oral Drug Absorption

There is some evidence for changes in the rate and extent of oral absorption, particu-
larly in preterm and term neonates [142,143], and there is ongoing research in this area [144].
One area of current interest is predicting the effects of age on the oral absorption of drugs in
children, and existing PBPK models of absorption have been extended to include informa-
tion on age-related changes in these system parameters [14,145]. However, extending these
models to especially preterm neonates is challenging due to conflicting data regarding key
system parameters and potential confounders that may influence the data, such as how
fasted/fed states are defined in neonates.

A key example is how gastric emptying changes with age. A model-based meta-
analysis [29], including preterm and term neonates, has shown that mean gastric residence
time does not change with age but is affected by meal type. This study illustrates potential
confounding effects, because subjects on liquid feeds had faster gastric emptying compared
to those on solid feeds but, by definition, neonates receive liquid feeds. This study was
also significant in that it went against the preconceived ideas regarding gastric-emptying
patterns in neonates and a few review publications suggesting that gastric emptying was
slower in neonates [141,146].

A separate meta-analysis on mean small intestinal transit time [30] also showed no
change with age, but only included one study on preterm and term neonates [147]. There
is some evidence of changes in intestinal permeability in preterm infants [148] but more
research is needed in this area. There is data on the ontogeny of intestinal cytochromes
P450 (CYP) 3A4 enzyme and some intestinal transporters (see Table 1). The ontogeny
of intestinal CYP3A4 shows an increasing pattern from fetus to neonate and then early
infant [16], and this is reflected in the increased bioavailability of oral midazolam seen in
the preterm [149]. More basic and clinical research is needed to expand the absorption
models down into the preterm populations with confidence.

3.4. Ontogeny of Hepatic and Renal Drug Elimination Pathways

Most ontogeny data for hepatic elimination pathways such as CYPs, UGTs, and
transporters is limited in the neonatal populations, and there are certainly few studies
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with relatively rich data in the preterm or 0 to 1 month age groups. For example, in the
study by Mooij et al. [31], relatively rich mRNA data are presented for ontogeny of hepatic
P-gp in fetuses (n = 9) and neonates of 0 to 1 month (n = 16), whereas in the proteomic
study by Prasad et al. [118] there are only four subjects in the neonatal group. There is
generally much less data in the preterm populations, and this limits the extension of the
models to lower GA. Since access to fetal and neonatal liver tissue has been an issue, the
establishment of more extensive liver banks would help address this knowledge gap. Some
ontogeny studies do not report data in neonates [150], or because of low subject numbers
use non-standard age groups, e.g., (0 to 3 months) to report values, meaning that actual
neonatal data is lost [151]. Most ontogeny studies on CYPs, UGT, other enzymes, and
transporters are from in vitro data (mRNA, proteins abundance, probe drug activity) which
may not reflect in vivo activity with age. In the pediatric age range, two studies have
presented in vivo-derived ontogeny data based on the deconvolution of data from clinical
studies [75,76]. Ideally, this sort of approach may be applied to the neonatal populations
but is more difficult, as clinical studies involving specific probe drugs such as midazolam
in these ages tend to be used in subjects with serious medical conditions where disease
effects can be significant.

A key element of describing drug metabolism within a neonatal PBPK framework is
the incorporation of both enzyme abundances (with applied ontogeny) and genetically
predicted phenotype information (pharmacogenetics). Phenotype information in terms of
ultrarapid, extensive, intermediate, and poor metabolizers is generally fixed within specific
ethnic populations within PBPK modeling software tools (e.g., the Japanese population).
Because both enzyme ontogeny and genetically predicted phenotype are described in
the models, they can be used to replicate studies investigating the interplay of these two
factors in neonates, infants, and children. The models can also aid in identifying the age
at which a genetic phenotype can be identified or becomes relevant based on sufficient
enzyme expression. Separating out the effects of genotype/phenotype from ontogeny, in
terms of the determination of the latter as systems parameters in pediatric PBPK models, is
particularly important (and difficult) in terms of the accuracy of pediatric PBPK modeling,
and particularly in the early neonatal ages. For CYP2B6, an in vitro study [81] that included
24 fetal and 141 pediatric liver samples found there was a significant association with age
but not genotype. When considered cumulatively, other in vitro and in vivo studies on
CYP2D6 [87,152] may imply that the CYP2D6 genotype, and not ontogeny, is the primary
source of variability in this enzyme in children [153]. Performing ontogeny studies in fixed
phenotype subjects (e.g., only extensive metabolizers) can help get around these issues, but
this makes subject recruitment and obtaining a sufficient sample size more difficult.

There are a number of drug-metabolizing enzymes such as CYP3A7 [90] or flavin-
containing monooxygenase (FMO) 1 [96], with known fetal forms of the enzymes, and
possibly some transporters, e.g., ABCG2 [119], where there is over-expression in preterm
neonates and neonates compared to adults. There has been a lot of interest in the role of
CYP3A7 both in the metabolism of drugs in neonates [154] and also its possible role in
drug–drug interaction prediction [155]. Recombinant CYP3A7 is available commercially
and can be used to screen drugs used in the neonatal populations in terms of in vitro
metabolism. Studies using recombinant enzymes have shown low activity of CYP3A7
compared to CYP3A4 in the metabolism of midazolam [156], sildenafil [157], and oxy-
codone [158]. However, one of the problems with this approach has been the lack of
scaling factors regarding the link between recombinant human enzyme activity compared
to CYP3A7 within fetal and neonatal liver microsomes. A recent study using human fetal
microsomes [158] reported an intersystem extrapolation factor for this enzyme which can
be incorporated into PBPK models and will allow further evaluation of this enzyme’s role
in neonatal drug elimination.
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3.5. Defining Age and Maturation in a Neonatal Population

For the preterm population, added complexity arises due to the influence of both GA
and PNA on systems parameters, as already indicated above. Few or no studies currently
exist on the ontogeny of drug-metabolizing enzymes based on GA and PNA. However,
a recent study [121] has described the ontogeny of the glomerular filtration rate (GFR)
based on this approach. Using inulin data, the study demonstrates that GRF increases as a
function of both GA and PNA, and that birth has an impact on GFR value. Neonates with
the same postmenstrual age who have been born longer have higher GFR values compared
with less premature but younger neonates. Incorporating this interplay between GA and
PNA on system parameters into preterm PBPK models is an area for future research. One
of the key parameters to improve the accuracy of ontogeny descriptors within neonatal
PBPK models is the fraction of adult expression/activity at term birth and at the various
GA for preterm birth. More data in this area will help in improving both preterm and term
PBPK models.

One criticism of current models is the dependence on data derived from relatively
healthy subjects rather than from neonatal subjects with diseases [131]. However, logically
general PBPK models for both preterm and term neonates can be developed based on
‘healthy’ individuals and then extended to more specific subpopulations based on disease
or genetic ancestry, as is done for adult populations [159,160]. How drug disposition
and clearance differ between relatively healthy preterm neonates and those with multiple
comorbid diagnoses is an important area for future development.

Another area for improvement is how variability is defined in neonatal PBPK models.
For certain parameters such as height and weight, there is sufficient data to define variability
with both GA and PNA. However, for other parameters, such as CYP expression in the
liver, variability is unknown, and the variability is assumed in the modeling process to be
the same as the general adult population. This similar degree of variability to adults may
not be the case, and variability for certain enzymes (e.g., CYP1A2) may be lower due to
less exposure to xenobiotics.

3.6. Biologics

There is increasing therapeutic use of large molecules such as monoclonal antibodies in
pediatrics, including some that are used in neonates (e.g., palivizumab) [161]. The existing
PBPK-modeling approach for these drugs has been extended to pediatrics [162], including
preterm neonates [163]. Further information is needed on the ontogeny of some of the key
parameters that influence the PK of these drugs, including the neonatal Fc receptor (FcRn)
and specific target ontogeny, the latter as mediators of target-mediated drug disposition.

3.7. Ontogeny of Drug Response

While this review focuses on the knowledge gaps surrounding biological processes
involved in drug pharmacokinetics, it should be acknowledged that there is an even greater
paucity of information describing differences in drug response in the neonatal population.
For example, we currently do not have a thorough understanding of the ontogeny of
physiological systems and potentially associated drug target receptors. Another area
where we lack knowledge is whether drug receptors in infants have differing affinities to
small molecules compared to adult receptors. This lack of knowledge also prohibits our
ability to anticipate off-target binding and potential adverse drug reactions. An example
where the developmental patterns of a physiological system could have impact on PD is
the neuronal GABA and glutamate systems in preterm children. Here, there have been
observed concentration differences in GABA and glutamate between preterm babies and
older children [164,165]. Maturation differences in baseline neurotransmitter levels may
lead to a different drug response and side effects in drugs targeting the CNS in neonates.
Indeed, this is an area of research that is much needed to accurately determine safe and
effective dosing for the neonatal population.



Pharmaceutics 2023, 15, 2579 12 of 21

4. PBPK and Regulatory Application in Neonates

Regulatory agencies, such as the U.S. Food and Drug Administration (FDA) and
the European Medicines Agency (EMA), have implemented guidelines and projects to
encourage and facilitate the development of pediatric drug products, including those
specifically targeting neonates [166,167]. These initiatives aim to promote research in
neonates, facilitate the availability of safe and effective drug therapies for this vulnerable
population, and improve therapeutic outcomes in neonatal pharmacotherapy. Quantitative
modeling approaches, such as PBPK and population PK, are highlighted as a critical
component, along with adult clinical data and prior knowledge, to help inform neonatal
drug development by optimizing the design and dose selection of neonatal studies [167].
It is noted, however, that relevant maturation data with respect to ADME characteristics
would preferably be available for the development of a robust and accurate model before
applying it for the intended purpose [167]

In the context of regulatory application, PBPK modeling in neonates is particularly chal-
lenging. There are still knowledge gaps related to the physiology and maturation/ontogeny
in neonates which can affect drug ADME processes, and the intrinsic variability expected in
this population (based on the age, body weight, and developmental stage). Qualification of
model performance is an integral part of model development, aiming to determine if physi-
ological changes have been adequately captured by the population model. Adequate model
qualification informs the confidence in modeling predictions and is related to the intended
purpose and regulatory impact of the modeling analysis [168]. However, qualification of a
neonatal PBPK model may be hindered in most cases by the limited availability of relevant
clinical data. The reader is referred to the FDA and EMA guidelines with regards to the
general development and qualification of PBPK models [169,170].

Acknowledging model uncertainties, and evaluating their impact on model perfor-
mance, is essential to instill model confidence in the neonatal population. For instance,
fraction unbound in plasma (fup) has been identified as a key parameter driving pediatric
PBPK model outputs [18]. For neonates, different ontogeny models had different a predic-
tion accuracy for fup, especially for drugs highly bound to alpha-acid glycoprotein [171].
Notably, the maturation of absorption processes is not fully characterized. For example, the
assertion that gastric emptying is slower in neonates than in older children and adults has
been challenged [29]. Recognizing knowledge gaps allows the exploration of hypotheses in
a neonatal PBPK analysis and informs future research.

By highlighting two examples of recent FDA drug approvals for pediatric indications
in the following paragraphs, we illustrate the potential of PBPK modeling as a tool for
selecting an initial neonatal dose and facilitating drug development in neonates.

Following the “learn and confirm” paradigm, PBPK and population PK analyses
were applied throughout the pediatric program of rivaroxaban, with a body weight-based
dosing adjustment derived by PBPK modeling [172,173]. The pediatric dosing strategy was
designed to achieve rivaroxaban exposure in pediatrics from birth to adolescence, that was
similar to adult patients with deep-vein thrombosis receiving 20 mg once daily. Children
were enrolled following an age-staggered, stepwise approach, starting with adolescents to
term neonates. The results of the phase 1 studies in young pediatric cohorts (>6 months of
age, body weight < 20 kg) showed lower exposure to rivaroxaban (based on the values of
the area under the plasma concentration time curve over a 24 h dosing interval (AUC0-24h)
and pre-dose trough concentration (Ctrough) at steady state) than initially predicted by
the PBPK model, indicating a need for higher doses to achieve the target adult levels. No
rationale in terms of physiological changes or maturation of processes affecting the ADME
of rivaroxaban could be identified by the Sponsor to support adjustment of the pediatric
PBPK model. Given the model limitations, for the neonatal study, intermediate doses
(in mg/kg body weight) between those informed by the PBPK model and those already
tested in children aged >6 months in prior studies were selected. In neonates and infants
(weighing ≤ 12 kg), the observed trough concentration values were also consistently at the
lower end of the PBPK predicted range. Overall, for children aged <2 years, the predicted
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clearance was, on average, lower than population PK estimates. For children aged >2 years,
the PBPK predictions of rivaroxaban clearance as a function of age were consistent with
population PK estimates, including the predicted vs. observed range of interindividual
variability. Figure 2 shows the PBPK predications compared to observed estimates of
rivaroxaban clearance in children, including neonates. Therefore, clinical PK data and
population PK analysis in children aged <2 years informed dosing for the pediatric phase
3 study. For neonates and infants, a three-times-daily dosing regimen was required to
increase the trough concentrations, targeting the adult exposure range [172].
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In a second case example, PBPK analysis was used to support remdesivir dosing
in pediatric trials, and dosing in the emergency use authorization (EUA) and pediatric
compassionate use programs for treatment of COVID-19-infected patients as young as
full-term neonates. Following the qualification of the PBPK model of remdesivir and
plasma metabolites GS-704277 and GS-441524 with available PK data in adults, the model
was applied to predict pediatric dosing using a virtual pediatric population aged 0 days
to <18 years. For children < 12 years of age and weighing > 3.5 kg, PBPK modeling
informed the weight-based dosing regimen (a single loading dose of 5 mg/kg followed
by 2.5 mg/kg/day i.v.) needed to achieve the target adult steady-state exposure range of
remdesivir and plasma metabolites [174]. However, the FDA concluded that qualification
of the PBPK model would require pediatric PK data, which were not available at the time
of the original New Drug Application (NDA). Thus, the initial indication for remdesivir
did not include children aged <12 years or weighing <40 kg. The FDA concluded that a
dedicated pediatric trial to evaluate the safety, efficacy, and PK would be essential to provide
support for an indication in this age group [175]. In the interim, access to remdesivir with
dosing based on the PBPK model-selected remdesivir dose regimen for pediatric patients
weighing > 3.5 to <40 kg was continued through EUA [176]. Subsequently, results from the
pediatric study (GS-US-540-5823, clinicaltrials.gov identifier NCT04431453) were used to
support expanding the indication to encompass pediatric patients 28 days and older and
weighing at least 3 kg [177,178].
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Noteworthily, providing the access of remdesivir to neonates/infants and children,
through the EUA, demonstrated that the PBPK modeling approach can be used to improve
pediatric treatment in urgent and unmet medical need situations [179].

Details about the PBPK model for remdesivir and rivaroxaban, including model
development and validation, the scaling of the adult model to pediatrics, and its limitations
are presented elsewhere [172–174,180].

5. Conclusions

For ethical reasons, healthy neonatal children are rarely enrolled in clinical trials where
there is no prospect of benefit to the child. Since study populations are limited to those with
diseases (often with co-morbid conditions), designing and completing traditional Phase 1-3
RCTs is challenging. For many old and new drugs used in neonates, data are not available
to confirm optimal dosing guidelines, and when pharmacology studies are published, there
is a delay in clinical implementation. Unfortunately, this creates a problematic scenario
for clinicians and neonatologists who are tasked to determine a safe and effective dose
of medication for a critically ill young patient. Modern pharmacometrics tools can help
fill these knowledge gaps, and the development of comprehensive and robust neonatal
PBPK models is absolutely needed. Indeed, the use of PBPK models represents one of the
most viable strategies to anticipate drug exposure and response in the youngest children.
The authors hope that this comprehensive discussion of research needs, particularly in
transporter ontogeny and oral absorption ontogeny, will spur the scientific community to
focus on this patient population for PBPK model-building optimization.
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