Multifunctional Hydrogels Based on Cellulose and Modified Lignin for Advanced Wounds Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Preparation of CLE Hydrogels
2.1.2. Preparation of PrHy-Loaded CLE Hydrogels
2.2. Methods
2.2.1. Swelling Measurements
2.2.2. Scanning Electron Microscopy (SEM)
2.2.3. ATR-FTIR Spectroscopy (ATR-FTIR)
2.2.4. Rheological Characterization
2.2.5. Mechanical Properties
2.2.6. Mucoadhesion Capacity
2.2.7. Hydrolytic Degradation
2.2.8. Incorporation of PrHy Release
2.2.9. In Vitro Release of PrHy
2.2.10. Antimicrobial Tests
2.2.11. In Vitro Biocompatibility Assessment (MTS Assay)
2.2.12. Statistical Analysis
3. Results and Discussion
3.1. Preparation of CLE Hydrogels
3.2. Swelling Behavior of CLE Hydrogels
3.3. Scanning Electron Microscopy (SEM)
3.4. ATR-FTIR Spectroscopy
3.5. Rheological Investigations
3.6. Mechanical Properties of CLE Hydrogels
3.7. Mucoadhesive Properties
3.8. Hydrolytic Degradation of CLE Hydrogels
3.9. In Vitro Release of PrHy from P-CLE Hydrogels
3.10. Antibacterial Properties of CLE and P-CLE Hydrogels
3.11. In Vitro Biocompatibility of CLE and P-CLE Hydrogels (MTS Assay)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghomi, E.R.; Khalili, S.; Khorasani, S.N.; Neisiany, R.E.; Ramakrishna, S. Wound dressings: Current advances and future directions. J. Appl. Polym. Sci. 2019, 136, 47738. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, W.; Long, L.; He, S.; Wang, Z.; Liu, Y.; Yang, L.; Chen, N.; Hu, C.; Wang, Y. Responsive multifunctional hydrogels emulating the chronic wounds healing cascade for skin repair. J. Control. Release 2023, 354, 821–834. [Google Scholar] [CrossRef]
- Lei, J.; Sun, L.; Li, P.; Zhu, C.; Lin, Z.; Mackey, V.; Coy, D.H.; He, Q. The wound dressings and their applications in wound healing and management. Health Sci. J. 2019, 13, 662. [Google Scholar]
- Gupta, A.; Kowalczuk, M.; Heaselgrave, W.; Britland, S.T.; Martin, C.; Radecka, I. The production and application of hydrogels for wound management: A review. Eur. Polym. J. 2019, 111, 134–151. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Le, T.T.N.; Nguyen, A.T.; Le, H.N.T.; Pham, T.T. Biomedical materials for wound dressing: Recent advances and applications. RSC Adv. 2023, 13, 5509–5528. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Deng, L.; Chen, S.; Wang, H.; Huang, Y. Zn2+-Loaded adhesive bacterial cellulose hydrogel with angiogenic and antibacterial abilities for accelerating wound healing. Burn. Trauma 2023, 11, tkac048. [Google Scholar] [CrossRef]
- Chen, A.; Deng, S.; Lai, J.; Li, J.; Chen, W.; Varma, S.N.; Zhang, J.; Lei, C.; Liu, C.; Huang, L. Hydrogels for oral tissue engineering: Challenges and opportunities. Molecules 2023, 28, 3946. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, M.; Xu, T.; Zhang, X. Multifunctional hydrogel as wound dressing for intelligent wound monitoring. Chem. Eng. J. 2022, 433, 134625. [Google Scholar] [CrossRef]
- Kundu, R.; Mahada, P.; Chhirang, B.; Das, B. Cellulose hydrogels: Green and sustainable soft biomaterials. Curr. Res. Green Sustain. Chem. 2022, 5, 100252. [Google Scholar] [CrossRef]
- Seddiqi, H.; Oliaei, E.; Honarkar, H.; Jin, J.F.; Geonzon, L.C.; Bacabac, R.G.; Klein-Nulend, J. Cellulose and its derivatives: Towards biomedical applications. Cellulose 2021, 28, 1893–1931. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, J.; Huang, J.; Yang, X.; Zhang, X.; Yuan, S.; Liao, W. Preparation and characterization of cellulose/flaxseed gum composite hydrogel and its hemostatic and wound healing functions evaluation. Cellulose 2020, 18, 1–8. [Google Scholar] [CrossRef]
- Nicu, R.; Ciolacu, D.E.; Petrovici, A.-R.; Rusu, D.; Avadanei, M.; Mihaila, A.C.; Butoi, E.; Ciolacu, F. 3D Matrices for enhanced encapsulation and controlled release of anti-inflammatory bioactive compounds in wound healing. Int. J. Mol. Sci. 2023, 24, 4213. [Google Scholar] [CrossRef]
- Meng, Y.; Lu, J.; Cheng, Y.; Li, Q.; Wang, H. Lignin-based hydrogels: A review of preparation, properties, and application. Int. J. Biol. Macromol. 2019, 135, 1006–1019. [Google Scholar] [CrossRef]
- Nan, N.; Hu, W.; Wang, J. Lignin-based porous biomaterials for medical and pharmaceutical applications. Biomedicines 2022, 10, 747. [Google Scholar] [CrossRef] [PubMed]
- Eivazzadeh-Keihan, R.; Aliabadi, H.A.M.; Radinekiyan, F.; Sobhani, M.; Khalili, F.; Maleki, A.; Madanchi, H.; Mahdavi, M.; Shalan, A.E. Investigation of the biological activity, mechanical properties and wound healing application of a novel scaffold based on lignin–agarose hydrogel and silk fibroin embedded zinc chromite nanoparticles. RSC Adv. 2021, 11, 17914–17923. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, L.; Shankar, S.; Rhim, J.W.; Hahm, D.H. Lignin-mediated green synthesis of AgNPs in carrageenan matrix for wound dressing applications. Int. J. Biol. Macromol. 2020, 159, 859–869. [Google Scholar] [CrossRef]
- Ciolacu, D.; Oprea, A.M.; Anghel, N.; Cazacu, G.; Cazacu, M. New cellulose–lignin hydrogels and their application in controlled release of polyphenols. Mater. Sci. Eng. C 2012, 32, 452–463. [Google Scholar] [CrossRef]
- Zmejkoski, D.; Spasojević, D.; Orlovska, I.; Kozyrovska, N.; Soković, M.; Glamočlija, J.; Dmitrović, S.; Matović, B.; Tasić, N.; Maksimović, V.; et al. Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing. Int. J. Biol. Macromol. 2018, 118, 494–503. [Google Scholar] [CrossRef]
- ISO 16649-2:2001; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Beta-Glucuronidase-Positive Escherichia coli—Part 2: Colony-Count Technique at 44 °C Using 5-Bromo-4-chloro-3-indolyl beta-D-glucuronide. ISO: Geneva, Switzerland, 2001.
- ISO 6888-3:2003; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus aureus and Other Species)—Part 3: Detection and MPN Technique for Low Numbers. ISO: Geneva, Switzerland, 2003.
- ISO 10993-5:2009; Biological Evaluation of Medical Devices Part 5: Tests for In Vitro Cytotoxicity. ISO: Geneva, Switzerland, 2009.
- Lu, X.; Gu, X. A review on lignin-based epoxy resins: Lignin effects on their synthesis and properties. Int. J. Biol. Macromol. 2023, 229, 778–790. [Google Scholar] [CrossRef] [PubMed]
- Mota, L.O.; Gimenez, I.F. Cellulose-based materials crosslinked with epichlorohydrin: A mini review. Rev. Virtual Quim. 2023, 15, 159–170. [Google Scholar] [CrossRef]
- Sezer, S.; Şahin, I.; Öztürk, K.; Şanko, V.; Koçer, Z.; Sezer, U.A. Cellulose-Based Hydrogels as Biomaterials. In Cellulose-Based Superabsorbent Hydrogels, Polymers and Polymeric Composites: A Reference Series; Mondal, M.I.H., Ed.; Springer: Cham, Germany, 2019; Chapter 39; pp. 1178–1203. [Google Scholar]
- Sathawong, S.; Sridach, W.; Techato, K. Lignin: Isolation and preparing the lignin based hydrogel. J. Environ. Chem. Eng. 2018, 6, 5879–5888. [Google Scholar] [CrossRef]
- Măluțan, T.; Nicu, R.; Popa, V.I. Lignin modification by epoxidation. BioResources 2008, 3, 1371–1376. [Google Scholar] [CrossRef]
- Ciolacu, D.; Cazacu, G. New green hydrogels based on lignin. J. Nanosci. Nanotechnol. 2018, 18, 2811–2822. [Google Scholar] [CrossRef] [PubMed]
- Muharam, S.; Fitri, A.; Yuningsih, L.M.; Putri, Y.M.T.A.; Rahmawati, I. Synthesis and characterization of controlled-release urea fertilizer from superabsorbent hydrogels. Indones. J. Chem. 2020, 20, 616–625. [Google Scholar] [CrossRef]
- Oh, S.Y.; Yoo, D.I.; Shin, Y.; Seo, G. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr. Res. 2005, 340, 417–428. [Google Scholar] [CrossRef]
- Salim, R.M.; Asik, J.; Sarjadi, M.S. Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Sci. Technol. 2021, 55, 295–313. [Google Scholar] [CrossRef]
- Oh, S.Y.; Yoo, D.I.; Shin, Y.; Kim, H.C.; Kim, H.Y.; Chung, Y.S.; Park, W.H.; Youk, J.H. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr. Res. 2005, 340, 2376–2391. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, F.; Colom, X.; Sunol, J.J.; Saurina, J. Structural FTIR analysis and thermal characterization of lyocell and viscose-type fibres. Eur. Polym. J. 2004, 40, 2229–2234. [Google Scholar] [CrossRef]
- Auxenfans, T.; Crônier, D.; Chabbert, B.; Paës, G. Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment. Biotechnol. Biofuels 2017, 10, 36. [Google Scholar] [CrossRef]
- Nelson, M.L.; O’Connor, R.T. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J. Appl. Polym. Sci. 1964, 8, 1325–1341. [Google Scholar] [CrossRef]
- Horikawa, Y.; Hirano, S.; Mihashi, A.; Kobayashi, Y.; Zhai, S.; Sugiyama, J. Prediction of lignin contents from infrared spectroscopy: Chemical digestion and lignin/biomass ratios of Cryptomeria japonica. Appl. Biochem. Biotechnol. 2019, 188, 1066–1076. [Google Scholar] [CrossRef]
- Ciolacu, D.E.; Rusu, D.; Darie-Nita, R.N.; Tîmpu, D.; Ciolacu, F. Influence of gel stage from cellulose dissolution in NAOH-water system on the performances of cellulose allomorphs-based hydrogels. Gels 2022, 8, 410. [Google Scholar] [CrossRef]
- Mezger, T. The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers; European Coatings: Wilmington, NC, USA, 2020. [Google Scholar]
- Haider, M.S.; Ahmad, T.; Yang, M.; Hu, C.; Hahn, L.; Stahlhut, P.; Groll, J.; Luxenhofer, R. Tuning the thermogelation and rheology of poly(2-oxazoline)/poly(2-oxazine)s based thermosensitive hydrogels for 3D bioprinting. Gels 2021, 7, 78. [Google Scholar] [CrossRef]
- Balmforth, N.J.; Frigaard, I.A.; Ovarlez, G. Yielding to stress: Recent developments in viscoplastic fluid mechanics. Annu. Rev. Fluid Mech. 2014, 46, 121–146. [Google Scholar] [CrossRef]
- Baron, R.I.; Duceac, I.A.; Morariu, S.; Bostanaru-Iliescu, A.C.; Coseri, S. Hemostatic cryogels based on oxidized pullulan/dopamine with potential use as wound dressings. Gels 2022, 8, 726. [Google Scholar] [CrossRef]
- Zahouani, H.; Pailler-Mattei, C.; Sohm, B.; Vargiolu, R.; Cenizo, V.; Debret, R. Characterization of the mechanical properties of a dermal equivalent compared with human skin in vivo by indentation and static friction tests. Skin Res. Technol. 2009, 15, 68–76. [Google Scholar] [CrossRef]
- Pailler-Mattei, C.; Bec, S.; Zahouani, H. In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med. Eng. Phys. 2008, 30, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Mura, P.; Cirri, M.; Mennini, N.; Casella, G.; Maestrelli, F. Polymeric mucoadhesive tablets for topical or systemic buccal delivery of clonazepam: Effect of cyclodextrin complexation. Carbohydr. Polym. 2016, 152, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 16071. [Google Scholar] [CrossRef] [PubMed]
- Ciolacu, D.E.; Nicu, R.; Ciolacu, F. Cellulose-Based Hydrogels as Sustained Drug-Delivery Systems. Materials 2020, 13, 5270. [Google Scholar] [CrossRef]
- Ganji, F.; Vasheghani-Farahani, S.; Vasheghani-Farahani, E. Theoretical description of hydrogel swelling: A Review. Iran. Polym. J. 2010, 19, 375–398. [Google Scholar]
- Peppas, N.A.; Khare, A.R. Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv. Drug Deliv. Rev. 1993, 11, 1–35. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Zhang, C.F.; Chu, C.H.; Zhu, X.F. Prevalence of Enterococcus faecalis in saliva and filled root canals of teeth associated with apical periodontitis. Int. J. Oral Sci. 2012, 4, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Prudêncio, C.V.; dos Santos, M.T.; Vanetti, M.C.D. Strategies for the use of bacteriocins in Gram-negative bacteria: Relevance in food microbiology. J. Food Sci. Technol. 2015, 52, 5408–5417. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, S. Isolation and identification of the oral bacteria and their characterization for bacteriocin production in the oral cavity. Saudi J. Biol. Sci. 2022, 29, 318–323. [Google Scholar] [CrossRef] [PubMed]
- El-Nemr, K.F.; Mohamed, H.R.; Ali, M.A.; Fathy, R.M.; Dhmees, A.S. Polyvinyl alcohol/gelatin irradiated blends filled by lignin as green filler for antimicrobial packaging materials. Iran. Polym. J. 2020, 100, 1578–1602. [Google Scholar] [CrossRef]
- Kaur, R.; Uppal, S.K.; Poonam Sharma, P. Antioxidant and antibacterial activities of sugarcane bagasse lignin and chemically modified lignins. Sugar Tech. 2017, 19, 675–680. [Google Scholar] [CrossRef]
- Medina, J.D.C.; Woiciechowski, A.L.; Filho, A.Z.; Bissoqui, L.; Noseda, M.D.; Vandenberghe, L.P.S.; Zawadzki, S.F.; Soccol, C.R. Biological activities and thermal behavior of lignin from oil palm empty fruit bunches as potential source of chemicals of added value. Ind. Crop Prod. 2016, 94, 630. [Google Scholar] [CrossRef]
- Ahangar, P.; Mills, S.J.; Smith, L.E.; Gronthos, S.; Cowin, A.J. Human gingival fibroblast secretome accelerates wound healing through anti-inflammatory and pro-angiogenic mechanisms. NPJ Regen Med. 2020, 5, 24. [Google Scholar] [CrossRef] [PubMed]
- Nakasone, K.; Kobayashi, T. Cytocompatible cellulose hydrogels containing trace lignin. Mater. Sci. Eng. C 2016, 64, 269–277. [Google Scholar] [CrossRef]
Samples | Hydrogels Composition | Hydrogels Features | |||
---|---|---|---|---|---|
Cellulose, % | LE, % | Gel Fraction Yield, % | Qeq, % | Qmax, % | |
CLE 1 | 100 | 0 | 99.9 | 1920 | 1460 |
CLE 2 | 90 | 10 | 95.7 | 3250 | 1810 |
CLE 3 | 80 | 20 | 92.5 | 3550 | 2050 |
CLE 4 | 70 | 30 | 80.8 | 4010 | 3480 |
CLE 5 | 60 | 40 | 78.5 | 5750 | 4360 |
CLE 6 | 50 | 50 | 76.0 | 7310 | 4160 |
CLE 7 | 40 | 60 | 54.8 | 10,265 | 5490 |
Samples | Swelling Kinetic Parameters | ||
---|---|---|---|
nsw | ksw | R2 | |
CLE 1 | 0.080 | 0.636 | 0.994 |
CLE 2 | 0.140 | 0.672 | 0.996 |
CLE 3 | 0.147 | 0.818 | 0.997 |
CLE 4 | 0.201 | 0.853 | 0.996 |
CLE 5 | 0.255 | 0.889 | 0.999 |
CLE 6 | 0.265 | 0.936 | 0.994 |
CLE 7 | 0.352 | 0.943 | 0.999 |
Samples | IR Crystallinity Ratio | HBI | EH, kJ | ΔH, J/g | a/b | |
---|---|---|---|---|---|---|
TCI | LOI | |||||
A1375/A2892 | A1420/A893 | A3400/A1320 | ||||
CLE 1 | 0.55 | 0.96 | 5.28 | 4.57 | 126.60 | 0.92 |
CLE 2 | 0.53 | 1.21 | 4.59 | 4.54 | 125.37 | 0.92 |
CLE 3 | 0.52 | 1.23 | 4.49 | 4.52 | 125.78 | 0.92 |
CLE 4 | 0.53 | 1.36 | 4.36 | 4.37 | 121.65 | 0.92 |
CLE 5 | 0.51 | 1.48 | 4.08 | 4.35 | 121.23 | 0.89 |
CLE 6 | 0.51 | 1.52 | 4.01 | 4.33 | 120.82 | 0.85 |
CLE 7 | 0.48 | 2.06 | 3.96 | 4.30 | 119.99 | 0.81 |
Samples | A1266/A2892 | A1106/A2892 | A1060/A2892 | A1508/A2892 | A931/A2892 |
---|---|---|---|---|---|
CLE 1 | 0.66 | 4.13 | 6.65 | - | 1.08 |
CLE 2 | 0.59 | 3.79 | 6.07 | 0.06 | 0.83 |
CLE 3 | 0.41 | 2.58 | 4.06 | 0.12 | 0.53 |
CLE 4 | 0.31 | 1.89 | 3.06 | 0.13 | 0.53 |
CLE 5 | 0.28 | 1.98 | 2.36 | 0.18 | 0.49 |
CLE 6 | 0.27 | 1.61 | 2.50 | 0.19 | 0.47 |
CLE 7 | 0.23 | 1.52 | 2.32 | 0.22 | 0.25 |
Sample | Yield Stress, Pa | G′ = G″, Pa | δf, Pa | γf, % |
---|---|---|---|---|
CLE 1 | 118.0 | - | - | - |
CLE 4 | 19.0 | 631.9 | 569.7 | 62.5 |
CLE 7 | 8.5 | 159.5 | 115.6 | 51.1 |
Sample | Kinetic Parameters of PrHy Release | Id, % | ||
---|---|---|---|---|
nr | kr | R2 | ||
P-CLE 1 | 0.602 | 1.942 | 0.995 | 11.50 |
P-CLE 2 | 0.579 | 1.975 | 0.997 | 13.89 |
P-CLE 3 | 0.576 | 2.036 | 0.999 | 16.19 |
P-CLE 4 | 0.576 | 2.231 | 0.997 | 19.31 |
P-CLE 5 | 0.535 | 2.343 | 0.995 | 21.93 |
P-CLE 6 | 0.515 | 2.486 | 0.996 | 27.20 |
P-CLE 7 | 0.503 | 2.630 | 0.995 | 29.51 |
Sample | Growth Inhibition, % | |
---|---|---|
Escherichia coli | Staphylococcus aureus | |
CLE 1 | 20 | 14 |
CLE 2 | 70 | 59 |
CLE 4 | 81 | 65 |
CLE 6 | 91 | 85 |
P-CLE 1 | 36 | 16 |
P-CLE 2 | 80 | 43 |
P-CLE 4 | 85 | 64 |
P-CLE 6 | 96 | 88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciolacu, D.E.; Nicu, R.; Suflet, D.M.; Rusu, D.; Darie-Nita, R.N.; Simionescu, N.; Cazacu, G.; Ciolacu, F. Multifunctional Hydrogels Based on Cellulose and Modified Lignin for Advanced Wounds Management. Pharmaceutics 2023, 15, 2588. https://doi.org/10.3390/pharmaceutics15112588
Ciolacu DE, Nicu R, Suflet DM, Rusu D, Darie-Nita RN, Simionescu N, Cazacu G, Ciolacu F. Multifunctional Hydrogels Based on Cellulose and Modified Lignin for Advanced Wounds Management. Pharmaceutics. 2023; 15(11):2588. https://doi.org/10.3390/pharmaceutics15112588
Chicago/Turabian StyleCiolacu, Diana Elena, Raluca Nicu, Dana Mihaela Suflet, Daniela Rusu, Raluca Nicoleta Darie-Nita, Natalia Simionescu, Georgeta Cazacu, and Florin Ciolacu. 2023. "Multifunctional Hydrogels Based on Cellulose and Modified Lignin for Advanced Wounds Management" Pharmaceutics 15, no. 11: 2588. https://doi.org/10.3390/pharmaceutics15112588
APA StyleCiolacu, D. E., Nicu, R., Suflet, D. M., Rusu, D., Darie-Nita, R. N., Simionescu, N., Cazacu, G., & Ciolacu, F. (2023). Multifunctional Hydrogels Based on Cellulose and Modified Lignin for Advanced Wounds Management. Pharmaceutics, 15(11), 2588. https://doi.org/10.3390/pharmaceutics15112588