Comprehensive Assessment of the Stability of Selected Coxibs in Variable Environmental Conditions along with the Assessment of Their Potential Hepatotoxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Standard Substances
2.3. Sample Solutions
2.4. Chromatographic Conditions
2.5. Degradation Study
2.6. Chemometric Analysis
2.7. Hepatotoxicity Tests
2.8. UPLC-MS/MS
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, J.Y.; Masferrer, J.L.; Seibert, K.; Raz, A.; Needleman, P. The induction and suppression of prostaglandin Hz synthase. J. Biol. Chem. 1990, 265, 6737–16740. [Google Scholar] [CrossRef]
- Paulus, H.E.; Whitehouse, M.W. Nonsteroid anti-inflammatory agents. Annu. Rev. Pharmacol. 1973, 13, 107–125. [Google Scholar] [CrossRef]
- Simmons, D.L.; Botting, R.M.; Hla, T. Cyclooxygenase isozymes: The biology of prostaglandin synthesis and inhibition. Pharmacol. Rev. 2004, 56, 387–437. [Google Scholar] [CrossRef]
- Regulski, M.; Regulska, K.; Prukała, W.; Piotrowska, H.; Stanisz, B.; Murias, M. COX-2 inhibitors: A novel strategy in the management of breast cancer. Drug Discov. Today 2016, 21, 598–615. [Google Scholar] [CrossRef]
- Saxena, P.; Sharma, P.K.; Purohit, P. Prostaglandins and other lipid mediators: A journey of celecoxib from pain to cancer. Prostaglandins Other Lipid Mediat. 2020, 147, 106379. [Google Scholar] [CrossRef]
- Park, S.-I.; Park, J.-Y.; Park, M.-J.; Yim, S.-V.; Kim, B.-H. Effects of ojeok-san on the pharmacokinetics of celecoxib at steady-state in healthy volunteers. Basic Clin. Pharmacol. Toxicol. 2018, 123, 51–57. [Google Scholar] [CrossRef]
- Walker, C.; Essex, M.N.; Li, C.; Park, P.W. Celecoxib versus diclofenac for the treatment of ankylosing spondylitis: 12-week randomized study in Norwegian patients. J. Int. Med. Res. 2016, 44, 483–495. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Liu, P.; Zhang, W.; Ma, J.-I.; Wang, J. Efficacy and safety of etoricoxib compared with NSAIDs in acute gout: A systematic review and a meta-analysis. Clin. Rheumatol. 2016, 35, 151–158. [Google Scholar] [CrossRef]
- Kwiatkowska, B.; Majdan, M.; Mastalerz-Migas, A.; Niewada, M.; Skrzydło-Radomańska, B.; Mamcarz, A. Status of etoricoxib in the treatment of rheumatic diseases. Expert panel opinion. Reumatologia 2017, 55, 290–297. [Google Scholar] [CrossRef]
- Bombardier, C.; Laine, L.; Reicin, A.; Shapiro, D.; Burgos-Vargas, R.; Davis, B.; Day, R.; Ferraz, M.B.; Hawkey, C.J.; Schnitzer, T.J. Comparizon of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. N. Engl. J. Med. 2000, 343, 1520–1528. [Google Scholar] [CrossRef]
- Arias, L.H.M.; González, A.M.; Fadrique, R.S.; Vázquez, E.S. Gastrointestinal safety of coxibs: Systematic review and meta-analysis of observational studies on selective inhibitors of cyclooxygenase 2. Fundam. Clin. Pharmacol. 2019, 33, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekharan, N.V.; Dai, H.; Roos, K.L.T.; Evanson, N.K.; Tomsik, J.; Elton, T.S.; Simmons, D.L. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: Cloning, structure, and expression. Proc. Natl. Acad. Sci. USA 2002, 99, 13926–13931. [Google Scholar] [CrossRef] [PubMed]
- Pillans, P.I.; Ghiculescu, R.A.; Lampe, G.; Wilson, R.; Wong, R.; Macdonald, G.A. Severe acute liver injury associated with lumiracoxib. J. Gastroenterol. Hepatol. 2012, 27, 1102–1105. [Google Scholar] [CrossRef]
- Braun, J.; Baraliakos, X.; Westhoff, T. Nonsteroidal anti-inflammatory drugs and cardiovascular risk–a matter of indication. Semin. Arthritis Rheum. 2019, 50, 285–288. [Google Scholar] [CrossRef]
- Meek, I.L.; Van de Laar, M.A.F.J.; Vonkeman, H.E. Non-steroidal anti-inflammatory drugs: An overview of cardiovascular risks. Pharmaceuticals 2010, 3, 2146–2162. [Google Scholar] [CrossRef] [PubMed]
- Sgambati, S.A. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial: Commentary. Dis. Colon Rectum. 2005, 48, 1330–1331. [Google Scholar]
- Cox, S.; Villarino, N.; Sommardahl, C.; Kvaternick, V.; Zarabadipour, C.; Siger, L.; Yarbrough, J.; Amicucci, A.; Reed, K.; Breeding, D.; et al. Disposition of firocoxib in equine plasma after an oral loading dose and a multiple dose regimen. Vet. J. 2013, 198, 382–385. [Google Scholar] [CrossRef]
- Bergh, M.S.; Budsberg, S.C. The coxib NSAIDs: Potential clinical and pharmacologic importance in veterinary medicine. J. Vet. Intern. Med. 2005, 19, 633–643. [Google Scholar] [CrossRef]
- Subhahar, M.B.; Singh, J.; Albert, P.H.; Kadry, A.M. Pharmacokinetics. metabolism and excretion of celecoxib, a selective cyclooxygenase-2 inhibitor, in horses. J. Vet. Pharmacol. Ther. 2019, 42, 518–524. [Google Scholar] [CrossRef]
- Kim, T.W.; Łebkowska-Wieruszewska, B.; Owen, H.; Yun, H.I.; Kowalski, C.J.; Giorgi, M. Pharmacokinetic profiles of the novel COX-2 selective inhibitor cimicoxib in dogs. Vet. J. 2014, 200, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Kvaternick, V.; Malinski, T.; Wortmann, J.; Fischer, J. Quantitative HPLC-UV method for the determination of firocoxib from horse and dog plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 854, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Kongara, K.; Chambers, J.P. Robenacoxib in the treatment of pain in cats and dogs: Safety, efficacy, and place in therapy. Vet. Med. Res. Reports. 2018, 9, 53–61. [Google Scholar] [CrossRef]
- Giorgi, M.; Kim, T.-W.; Saba, A.; Rouini, M.-R.; Yun, H.; Ryschanova, R.; Owen, H. Detection and quantification of cimicoxib. a novel COX-2 inhibitor. in canine plasma by HPLC with spectrofluorimetric detection: Development and validation of a new methodology. J. Pharm. Biomed. Anal. 2013, 83, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Lees, P.; Seewald, W.; King, J.N. Analytical determination and pharmacokinetics of robenacoxib in the dog. J. Vet. Pharmacol. Ther. 2009, 32, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Knych, H.K.; Stanley, S.D.; Arthur, R.M.; Mitchell, M.M. Detection and pharmacokinetics of three formulations of firocoxib following multiple administrations to horses. Equine Vet. J. 2014, 46, 734–738. [Google Scholar] [CrossRef]
- Donnell, J.R.; Frisbie, D.D. Use of firocoxib for the treatment of equine osteoarthritis. Vet. Med. 2014, 5, 159–168. [Google Scholar]
- Jeunesse, E.C.; Schneider, M.; Woehrle, F.; Faucher, M.; Lefebvre, H.P.; Toutain, P.-L. Pharmacokinetic/pharmacodynamic modeling for the determination of a cimicoxib dosing regimen in the dog. BMC Vet. Res. 2013, 9, 259. [Google Scholar] [CrossRef]
- Morris, T.H.; Paine, S.W.; Zahra, P.W.; Li, E.C.; Colgan, S.A.; Karamatic, S.L. Pharmacokinetics of carprofen and firocoxib for medication control in racing greyhounds. Aust. Vet. J. 2020, 98, 578–585. [Google Scholar] [CrossRef]
- Tamizi, E.; Jouyban, A. Forced degradation studies of biopharmaceuticals: Selection of stress conditions. Eur. J. Pharm. Biopharm. 2016, 98, 26–46. [Google Scholar] [CrossRef]
- Baheti, K.G.; Shaikh, S. Stability indicating RP-HPLC method for simultaneous estimation paractamol and etoricoxib in tablet formulation. Int. J. PharmTech Res. 2011, 3, 1719–1727. [Google Scholar]
- Vora, D.N.; Kadav, A.A. Separation of etoricoxib and its degradation products in drug substance using UPLC TM. Eurasian J. Anal. Chem. 2009, 2, 151–158. [Google Scholar]
- Alzweiri, M.; Sallam, M.; Al-Zyoud, W.; Aiedeh, K. Stability study of etoricoxib a selective cyclooxygenase-2 inhibitor by a new single and rapid reversed phase HPLC method. Symmetry 2019, 10, 288. [Google Scholar] [CrossRef]
- Venugopal, S.; Tripathi, U.M.; Devanna, N. Validated reverse phase HPLC method for the determination of impurities in etoricoxib. J. Chem. 2011, 8, 726385. [Google Scholar] [CrossRef]
- Bapatu, H.R.; Maram, R.K.; Murthy, R.S. Stability-indicating HPLC method for quantification of celecoxib and diacerein along with its impurities in capsule dosage form. J. Chromatogr. Sci. 2015, 53, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Chandana, O.S.S.; Ravichandrababu, R. Stability indicating HPLC method for celecoxib related substances in solid dosage forms. Int. J. Res. Pharm. Sci. 2017, 7, 10–18. [Google Scholar]
- Jiménez, J.J.; Pardo, R.; Sánchez, M.I.; Muñoz, B.E. Photochemical, thermal, biological and long-term degradation of celecoxib in river water. Degradation products and adsorption to sediment. J. Hazard. Mater. 2018, 342, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, S.; Tian, J.; Rustum, A.M. Comprehensive study on degradation profile of firocoxib and structural elucidation of its key degradation products. J. Pharm. Biomed. Anal. 2023, 224, 115192. [Google Scholar] [CrossRef]
- Gumułka, P.; Dąbrowska, M.; Starek, M. TLC-densitometric determination of five coxibs in pharmaceutical preparations. Processe 2020, 8, 620. [Google Scholar] [CrossRef]
- Bełtowska-Brzezinska, M. Podstawy Kinetyki Chemicznej (Fundamentals of Chemical Kinetics); Wydział Chemii UAM: Poznań, Poland, 2009. [Google Scholar]
- Huveneers-Oorsprong, M.B.M.; Hoogenboom, L.A.P.; Kuiper, H.A. The use of the MTT test for determining the cytotoxicity of veterinary drugs in pig hepatocytes. Toxicol. Vitr. 1997, 11, 385–392. [Google Scholar] [CrossRef]
- Heberger, K. Chemoinformatics—Multivariate Mathematical–Statistical Methods for Data Evaluation. In Medical Applications of Mass Spectrometry; Vekey, K., Telekes, A., Vertes, A., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2008; pp. 141–169. ISBN 978-0-444-51980-1. [Google Scholar]
- Björnsson, E.S. Hepatotoxicity by drugs: The most common implicated agents. Int. J. Mol. Sci. 2016, 17, 224. [Google Scholar] [CrossRef]
- Jaeschke, H.; Gores, G.J.; Cederbaum, A.I.; Hinson, J.A.; Pessayre, D.; Lemasters, J.J. Mechanisms of hepatotoxicity. Toxicol. Sci. 2002, 65, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Matthews, C.Z.; Subramanian, R.; Woolf, E.J.; Foster, N.; Matuszewski, B.K. Isolation and structural characterization of the photolysis products of etoricoxib. Int. J. Pharm. Sci. 2004, 59, 913–919. [Google Scholar] [CrossRef]
- Woolf, E.; Fu, I.; Matuszewski, B. Determination of rofecoxib, a cyclooxygenase-2 specific inhibitor, in human plasma using high-performance liquid chromatography with post-column photochemical derivatization and fluorescence detection. J. Chromatogr. B 1999, 730, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Soni, P.; Shell, B.; Cawkwell, G.; Li, C.; Ma, H. The hepatic safety and tolerability of the cyclooxygenase-2 selective NSAID celecoxib: Pooled analysis of 41 randomized controlled trials. Curr. Med. Res. Opin. 2009, 25, 1841–1851. [Google Scholar] [CrossRef]
- Beales, I.L.P. Selective COX-2 inhibitors are safe and effective. BMJ 2020, 368, m311. [Google Scholar] [CrossRef]
Substance | Environment | k [h−1] | t0.5 [h] | t0.1 [h] | Ea [kJ/mol] | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
23 °C | 70 °C | 120 °C | 23 °C | 70 °C | 120 °C | 23 °C | 70 °C | 120 °C | |||
ROB | 1 M HCl | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
0.5 M HCl | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | |
H2O | 2.51 × 10−3 | 13.50 × 10−3 | 85.10 × 10−3 | 276.1 | 51.3 | 8.1 | 42.0 | 7.8 | 1.2 | 34.88 | |
0.5 M NaOH | 0.84 × 10−3 | 5.24 × 10−3 | 1.19 × 10−2 | 828.9 | 132.3 | 58.2 | 126.0 | 20.1 | 8.8 | 26.44 | |
1 M NaOH | 0.95 × 10−3 | 6.75 × 10−3 | 13.60 × 10−3 | 731.0 | 102.7 | 51.0 | 111.1 | 15.6 | 7.7 | 26.22 | |
buffer pH 2.0 | 4.43 × 10−3 | 44.30 × 10−3 | 846.00 × 10−3 | 156.4 | 15.7 | 0.8 | 23.8 | 2.4 | 0.1 | 51.98 | |
buffer pH 7.0 | 0.65 × 10−3 | 5.67 × 10−3 | 19.50 × 10−3 | 1069.4 | 122.2 | 35.5 | 162.5 | 18.6 | 5.4 | 33.74 | |
buffer pH 9.2 | 0.24 × 10−3 | 1.30 × 10−3 | 27.60 × 10−3 | 2875.5 | 533.1 | 25.1 | 436.9 | 8.1 | 3.8 | 46.96 | |
CIM | 1 M HCl | 3.11 × 10−3 | 3.78 × 10−3 | 13.70 × 10−3 | 222.8 | 183.3 | 50.6 | 33.9 | 27.9 | 7.7 | 14.82 |
0.5 M HCl | 1.68 × 10−3 | 4.97 × 10−3 | 6.72 × 10−3 | 412.5 | 139.4 | 103.1 | 62.7 | 21.2 | 15.7 | 13.68 | |
H2O | 0.39 × 10−3 | 1.84 × 10−3 | 3.08 × 10−3 | 1776.9 | 376.6 | 225.0 | 270.0 | 57.2 | 34.2 | 20.52 | |
0.5 M NaOH | 0.22 × 10−3 | 0.89 × 10−3 | 2.52 × 10−3 | 3135.7 | 777.8 | 275.0 | 476.5 | 118.2 | 41.8 | 24.16 | |
1 M NaOH | 0.87 × 10−3 | 2.70 × 10−3 | 3.52 × 10−3 | 801.2 | 256.7 | 196.9 | 121.7 | 39.0 | 29.9 | 13.91 | |
buffer pH 2.0 | 0.77 × 10−3 | 2.29 × 10−3 | 3.73 × 10−3 | 904.7 | 302.6 | 185.8 | 137.5 | 48.0 | 28.2 | 15.73 | |
buffer pH 7.0 | 0.17 × 10−3 | 1.20 × 10−3 | 2.60 × 10−3 | 3982.8 | 577.5 | 266.5 | 605.2 | 87.8 | 40.5 | 26.67 | |
buffer pH 9.2 | 0.40 × 10−3 | 2.05 × 10−3 | 3.23 × 10−3 | 1745.6 | 338.0 | 214.6 | 265.2 | 51.4 | 32.6 | 43.77 | |
FIR | 1 M HCl | 1.95 × 10−3 | 15.00 × 10−3 | 33.00 × 10−3 | 355.4 | 46.2 | 21.0 | 54.0 | 7.0 | 3.2 | 28.04 |
0.5 M HCl | 1.96 × 10−3 | 12.00 × 10−3 | 31.50 × 10−3 | 353.6 | 57.8 | 22.0 | 53.7 | 8.8 | 3.3 | 27.58 | |
H2O | 1.42 × 10−3 | 1.2.30 × 10−3 | 33.40 × 10−3 | 488.0 | 56.3 | 20.7 | 74.2 | 8.6 | 3.2 | 31.23 | |
0.5 M NaOH | 0.63 × 10−3 | 1.59 × 10−3 | 10.60 × 10−3 | 1108.8 | 435.8 | 65.4 | 168.5 | 6.6 | 9.9 | 28.04 | |
1 M NaOH | 1.01 × 10−3 | 1.97 × 10−3 | 13.90 × 10−3 | 686.1 | 351.8 | 49.9 | 104.3 | 53.5 | 7.6 | 25.99 | |
buffer pH 2.0 | 1.60 × 10−3 | 10.80 × 10−3 | 73.50 × 10−3 | 433.1 | 64.2 | 9.4 | 65.8 | 9.8 | 1.4 | 38.07 | |
buffer pH 7.0 | 0.82 × 10−3 | 4.56 × 10−3 | 7.08 × 10−3 | 844.1 | 152.0 | 97.9 | 128.3 | 23.1 | 14.9 | 21.43 | |
buffer pH 9.2 | 0.62 × 10−3 | 1.07 × 10−3 | 14.40 × 10−3 | 1126.8 | 647.7 | 48.1 | 171.2 | 98.4 | 7.3 | 31.23 | |
ETO | 1 M HCl | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
0.5 M HCl | nd | 15.00 × 10−3 | 54.60 × 10−3 | nd | 46.2 | 12.7 | nd | 7.0 | 1.9 | 28.98 | |
H2O | 0.42 × 10−3 | 2.05 × 10−3 | 4.54 × 10−3 | 1665.9 | 338.0 | 152.6 | 253.1 | 51.4 | 23.2 | 23.71 | |
0.5 M NaOH | 0.46 × 10−3 | 0.95 × 10−3 | 5.68 × 10−3 | 1503.3 | 729.5 | 122.0 | 228.4 | 110.8 | 18.5 | 24.85 | |
1 M NaOH | 0.63 × 10−3 | 1.42 × 10−3 | 4.89 × 10−3 | 1107.0 | 488.0 | 141.7 | 168.2 | 74.2 | 21.5 | 20.29 | |
buffer pH 2.0 | 2.74 × 10−3 | 5.26 × 10−3 | 9.70 × 10−3 | 252.9 | 131.7 | 71.4 | 38.4 | 20.0 | 10.9 | 12.54 | |
buffer pH 7.0 | 0.25 × 10−3 | 0.69 × 10−3 | 3.62 × 10−3 | 2783.1 | 1004.3 | 191.4 | 422.9 | 152.6 | 29.1 | 26.44 | |
buffer pH 9.2 | 0.27 × 10−3 | 1.70 × 10−3 | 3.44 × 10−3 | 2576.2 | 407.6 | 201.5 | 391.4 | 61.9 | 30.6 | 25.30 | |
CEL | 1 M HCl | nd | nd | 106.00 × 10−3 | nd | nd | 6.5 | nd | nd | 1.0 | nd |
0.5 M HCl | 4.09 × 10−3 | 30.40 × 10−3 | 85.10 × 10−3 | 169.4 | 22.8 | 8.1 | 25.7 | 3.5 | 1.2 | 30.09 | |
H2O | 1.03 × 10−3 | 2.90 × 10−3 | 10.90 × 10−3 | 672.8 | 239.0 | 63.6 | 102.2 | 36.3 | 9.7 | 23.48 | |
0.5 M NaOH | 0.34 × 10−3 | 2.02 × 10−3 | 5.70 × 10−3 | 2056.4 | 343.1 | 121.6 | 312.5 | 52.1 | 18.5 | 28.04 | |
1 M NaOH | 0.76 × 10−3 | 2.00 × 10−3 | 17.10 × 10−3 | 910.6 | 346.5 | 40.5 | 138.4 | 52.7 | 6.2 | 30.78 | |
buffer pH 2.0 | 1.83 × 10−3 | 30.30 × 10−3 | 28.70 × 10−3 | 378.7 | 22.9 | 24.1 | 57.5 | 3.5 | 3.7 | 27.36 | |
buffer pH 7.0 | 1.29 × 10−3 | 2.14 × 10−3 | 8.19 × 10−3 | 537.2 | 323.8 | 84.6 | 81.6 | 49.2 | 12.9 | 18.24 | |
buffer pH 9.2 | 0.35 × 10−3 | 1.92 × 10−3 | 5.48 × 10−3 | 1974.4 | 360.9 | 126.5 | 300.0 | 54.8 | 19.2 | 27.13 |
Compound | k [h−1] | Ea [kJ/mol] | ∆H* [kJ/mol] | ∆S* [J/mol·K] | ∆G [kJ/mol] | logP |
---|---|---|---|---|---|---|
ROB | 85.10 × 10−3 | 34.88 | 31.61 | −80.43 | 63.22 | 4.47 |
CIM | 3.08 × 10−3 | 20.52 | 17.25 | −43.89 | 34.50 | 2.18 |
FIR | 33.40 × 10−3 | 31.23 | 21.96 | −55.88 | 43.92 | 2.25 |
ETO | 4.54 × 10−3 | 23.71 | 20.44 | −52.01 | 40.88 | 2.93 |
CEL | 10.90 × 10−3 | 23.48 | 20.21 | −51.42 | 40.42 | 3.18 |
Compound | Rt [min] | m/z | Proposed Structure |
---|---|---|---|
Firocoxib | 15.17 | 337.11 | |
CP-1 | 7.17 7.33 | 243.07 | |
CP-2 | 9.65 9.98 | 355.12 | |
CP-3 | 9.71 | 283.06 | |
CP-4 | 15.85 | 387.11 |
Compound | Rt [min] | m/z | Proposed Structure |
---|---|---|---|
Robenacoxib | 19.59 | 328.09 | |
RP-1 | 1.79 | 166.09 | |
RP-2 | 5.07 | 180.10 | |
RP-3 | 19.84 | 282.09 | |
RP-4 | 19.96 | 310.08 | |
RP-5 | 20.23 | 314.08 |
Product Name | Pathway |
---|---|
RP-1 | |
RP-2 | |
RP-3 and RP-4 | |
RP-5 | |
ROB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gumułka, P.; Pecio, Ł.; Żmudzki, P.; Ciura, K.; Skalicka-Woźniak, K.; Dąbrowska, M.; Starek, M. Comprehensive Assessment of the Stability of Selected Coxibs in Variable Environmental Conditions along with the Assessment of Their Potential Hepatotoxicity. Pharmaceutics 2023, 15, 2609. https://doi.org/10.3390/pharmaceutics15112609
Gumułka P, Pecio Ł, Żmudzki P, Ciura K, Skalicka-Woźniak K, Dąbrowska M, Starek M. Comprehensive Assessment of the Stability of Selected Coxibs in Variable Environmental Conditions along with the Assessment of Their Potential Hepatotoxicity. Pharmaceutics. 2023; 15(11):2609. https://doi.org/10.3390/pharmaceutics15112609
Chicago/Turabian StyleGumułka, Paweł, Łukasz Pecio, Paweł Żmudzki, Krzesimir Ciura, Krystyna Skalicka-Woźniak, Monika Dąbrowska, and Małgorzata Starek. 2023. "Comprehensive Assessment of the Stability of Selected Coxibs in Variable Environmental Conditions along with the Assessment of Their Potential Hepatotoxicity" Pharmaceutics 15, no. 11: 2609. https://doi.org/10.3390/pharmaceutics15112609
APA StyleGumułka, P., Pecio, Ł., Żmudzki, P., Ciura, K., Skalicka-Woźniak, K., Dąbrowska, M., & Starek, M. (2023). Comprehensive Assessment of the Stability of Selected Coxibs in Variable Environmental Conditions along with the Assessment of Their Potential Hepatotoxicity. Pharmaceutics, 15(11), 2609. https://doi.org/10.3390/pharmaceutics15112609