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Abstract: This study explores the potential of a natural composite formulation known as ED, con-
sisting of Ecklonia cava (E. cava, family: Lessoniaceae) and Chrysanthemum indicum Linne (C. indicum,
family: Asteraceae), in alleviating lung inflammation induced by fine particulate matter (PM2.5).
Initial assessments confirmed that neither ED nor one of its components, dieckol, exhibited cytotoxic
effects on A549 cells. Subsequently, the impact of ED and dieckol on MUC5AC gene expression
in A549 cells stimulated by phorbol 12-myristate 13-acetate (PMA) was investigated, revealing
promising results that demonstrated a dose-dependent inhibition of MUC5AC gene expression. The
study also delves into the underlying mechanisms, demonstrating that ED and dieckol effectively
suppressed the phosphorylation of mitogen-activated protein kinases (MAPKs), including JNK, ERK,
and p38, which are known to be involved in the regulation of MUC5AC gene expression. In in vivo
experiments using a PM2.5-induced pulmonary inflammation mouse model, the research findings
showed that ED mitigated cellular accumulation in the airways, leading to a significant reduction
in the total cell count in bronchoalveolar lavage fluid (BALF). Moreover, ED exhibited protective
effects against PM2.5-induced pulmonary damage, characterized by reduced inflammatory cell infil-
tration and decreased mucus secretion in pulmonary tissues. Additionally, ED’s anti-inflammatory
properties were evident in its ability to decrease the levels of key inflammatory cytokines, TNF-α
and IL-6, both in the serum and lung tissue of the PM2.5-induced pulmonary inflammation mouse
model. These findings suggest the potential of ED as a therapeutic agent for inflammatory respiratory
diseases.

Keywords: inflammation; fine particulate matter; ED; MUC5AC; A549

1. Introduction

Due to a rapid increase in fine particulate matter (PM), an air pollutant, respiratory
diseases are on the rise not only in South Korea, China, and Japan but also in various other
East Asian countries [1]. According to a 2016 report by the Organization for Economic
Cooperation and Development (OECD), South Korea has the highest premature mortality
rate among OECD member countries due to air pollution caused by fine particulate matter
and ozone [2]. PM refers to particles smaller than 10 µm in diameter that cannot be
visually identified [3]. PM consists of various airborne particles, including chemical toxic
substances from automobile emissions, industrial activities, such as sulfur oxides, lead
(Pb), and carbon monoxide (CO). Particularly, diesel exhaust particles (DEPs) are known to
exacerbate asthma [4].

Inhalation of PM reaches the human airways and pulmonary cells, inducing inflam-
mation, causing severe pulmonary damage, secondary cardiac impairments, and leading
to various respiratory diseases [5]. Diseases caused by PM are known to affect not only
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respiratory conditions but also a diverse range of ailments including circulatory disorders,
dementia, and strokes [6,7]. Over 70% of inhaled PM accumulates in the lower respiratory
tract, with approximately 22% reaching the pulmonary cells. The accumulated PM affects
the epithelial cells in the airways and pulmonary tissues, causing local tissue damage and
triggering an inflammatory response due to oxidative stress [8]. Chronic inflammation can
progress to allergic alveolitis, chronic bronchitis, and other conditions [9]. Chronic Obstruc-
tive Pulmonary Disease (COPD), a representative chronic respiratory disease caused by PM,
is a condition where the pulmonary function is impaired due to abnormal inflammatory
responses in the pulmonary system [10]. The pharmaceutical treatment for COPD primarily
involves bronchodilators that improve smooth muscle tension in the airways, including
anticholinergics, theophylline, and beta-2 agonists. However, direct evidence of these
medications improving mortality rates is still lacking [11]. From a long-term perspective,
there is a need for the development of safe and effective treatments with relatively few side
effects.

Mucus secretion is essential for appropriate mucociliary function and maintaining
homeostasis in the airways [12]. Mucus in the airways entraps inhaled dust particles, chem-
ical substances, and microbes. However, excessive mucus production and accumulation
within the airway lumen are pathological symptoms associated with various chronic respi-
ratory conditions [13]. Airway obstruction due to mucus is a major contributor to morbidity
and mortality in patients with chronic respiratory conditions [14]. To date, 20 different
Mucin (MUC) genes have been identified [15]. In normal human airways, MUC5AC is pri-
marily expressed on surface goblet epithelial cells [16]. Previous reports have demonstrated
abnormal elevation and accumulation of MUC5AC in the airway secretions of patients with
pulmonary diseases such as asthma, COPD, and cystic fibrosis [17].

Concerns about respiratory disorders caused by PM are increasing. Accordingly, there
is ongoing drug development to prevent or treat respiratory damage caused by PM [1].
Bioactive compounds derived from natural sources exhibit excellent anti-inflammatory
and antioxidant activities with relatively low side effects [18]. Therefore, there is growing
interest in the development of respiratory protectants using natural compounds in a PM2.5-
induced pulmonary inflammation model [19,20].

ED is an acknowledged extract developed from a combination of Ecklonia cava (E.
cava) and Chrysanthemum indicum Linne (C. indicum) for the treatment of respiratory dis-
eases. Notably, one of the constituents found within ED, dieckol, is a phenolic compound
isolated from marine brown algae. Given the rich biodiversity and abundant sources of
bioactive compounds in marine environments, considerable efforts have been made to
explore functional components from marine algae [21,22]. Dieckol, a polyphenol extracted
from certain brown algae, including E. cava, has been reported to possess various phar-
macological properties such as antiviral, antioxidant, anti-inflammatory, and anticancer
effects [23–26]. Recent studies have reported the protective effects of dieckol against ox-
idative stress induced by PM and in vitro inflammatory responses in dendritic cells and
skin keratinocytes [27,28]. However, there is a scarcity of reports regarding the impact of
dieckol on respiratory-related conditions.

We previously reported that ED demonstrated a potent effect in improving asthma by
inhibiting inflammatory cytokine levels in pulmonary tissues and suppressing the number
of inflammatory cells in the bronchoalveolar lavage fluid (BALF) in an ovalbumin (OVA)-
induced asthmatic mouse model. Additionally, ED suppressed serum interleukin (IL)-6
levels [29]. Therefore, we investigated whether ED has a protective effect against excessive
mucus secretion and pulmonary inflammation induced by PM2.5 using a MUC5AC gene
overexpression cell model and a PM2.5-induced pulmonary inflammation model. In ani-
mal models, a comparison was conducted with Bronpass tablets, a medication for acute
bronchitis, which is manufactured using seven different herbal ingredients. We obtained
histological data through pulmonary tissue staining and analyzed molecular pathologi-
cal markers of cytokines involved in inflammation. Here, we demonstrate that ED has
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significant potential as an anti-inflammatory agent for use in conventional therapies for
pulmonary inflammation induced by PM2.5.

2. Materials and Methods
2.1. Materials
2.1.1. Cells and Chemicals

The A549 pulmonary epithelial cell line was obtained from the Korean Cell Line Bank
(KCLB; Seoul, Republic of Korea). The cells were cultured in RPMI 1640 medium (Cat
No. 11875-093, Gibco-BRL, Carlsbad, CA, USA) containing 10% fetal bovine serum (FBS;
Cat No. 16000044, Gibco-BRL), 100 U/mL penicillin (Cat No. 15140122, Gibco-BRL), and
100 mg/mL streptomycin (Gibco-BRL). The BCA Protein Assay Kit (Cat No. 23225) and
TRIzol reagent (Cat No. 15596026) were purchased from Thermo Scientific (Rockford,
IL, USA). All antibodies used in the experiments were purchased from Cell Signaling
Technology (Danvers, MA, USA). IL-6 (Cat No. M6000B-1) and TNF-α (Cat No. MTA00B-1)
enzyme-linked immunosorbent assay (ELISA) kits were purchased from R&D Systems
(Minneapolis, MN, USA). Other reagents used in the experiments were purchased from
Sigma-Aldrich (St. Louis, MO, USA).

2.1.2. Preparation of ED

ED, a mixture of C. indicum ethanolic extract and E. cava concentrate, prepared using
the protocol described previously, was used in the experiments. The ED used in the
experiments was manufactured by S&D Co., Ltd. (Recognition No. 2015-6, Cheongju-si,
Chungcheongbuk-do, Republic of Korea). E. cava ethanol extract was derived from the
ethanol extract of the brown alga E. cava and subsequently processed to achieve a dieckol
concentration of 60 mg/g. C. indicum was extracted, filtered, and concentrated. Following
this, E. cava extract and an excipient (dextrin) were added and mixed to prepare ED (Lot.
SD-ED-001) using a spray dryer (inlet temperature: 185–210 ◦C; outlet temperature: 85–
98 ◦C) for use in the experiment. The ED used in the experiments contained the active
compound dieckol (S&D Co., Ltd.) at a concentration of 9.5 mg/g [30].

2.1.3. Preparation of PM2.5

Urban PM2.5 from the National Institute of Standards and Technology (NIST) (SRM
1648a) was procured from Sigma-Aldrich. The atmospheric pollutant (SRM 1648a), which
is commonly used as a standard for PM research, has well-defined and stable components.
To use in the experiments, PM2.5 was dissolved in phosphate-buffered saline (PBS) at a
concentration of 50 mg/kg.

2.2. Methods
2.2.1. A549 Cell Culture

A549 cells were cultured in RPMI 1640 medium containing 10% FBS, following the
culture protocol described in a previous study [22]. A549 cells were seeded at a density
of 1 × 105 cells/well in a 6-well plate and cultured at 37 ◦C in a 5% CO2 atmosphere for
24 h. After removing the medium, the cells were pre-treated with various concentrations
of ED (10, 20, 40, and 80 µg/mL) and dieckol (5, 10, 20, and 40 µg/mL) for 1 h, following
which the medium was replaced with serum-free medium. Subsequently, the medium
containing Phorbol 12-myristate 13-acetate (PMA, 10 nM) was added, and the cells were
further cultured under the same conditions for 30 min or 24 h.

2.2.2. Cell Viability Assay

Cell toxicity was measured using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) reduction method. A549 cells were seeded at a density of 1× 104 cells/well
in a 96-well plate and cultured at 37 ◦C in a 5% CO2 atmosphere for 24 h. The medium was
then removed, and serum-free medium was added. The cells were treated with various
concentrations of ED (10, 20, 40, and 80 µg/mL) and dieckol (5, 10, 20, and 40 µg/mL)
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and cultured under the same conditions for 24 h. Cell viability was determined using the
MTT assay.

2.2.3. Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

Total RNA from cells and pulmonary tissues was extracted using TRIzol reagent
(Thermo Fisher Scientific, Rockford, IL, USA). Subsequently, cDNA was synthesized using
the RT premix kit (Bioneer, Daejeon, Republic of Korea). The synthesized cDNA was then
subjected to PCR by reacting it with forward and reverse primers at a concentration of
20 pmol/mL in PCR premix (Bioneer). The sequences of the primers used are presented
in Table 1, and the PCR products obtained were analyzed by electrophoresis on a 1.2%
agarose gel to confirm the bands.

Table 1. The sequences of the primers used in this study.

Gene Size (bp) Sequence Origin

MUC5AC 458 F 1: 5′-TGATCATCCAGCAGGGCT-3′

R 2: 5′-CCGAGCTCAGAGGACATATGGG-3′
Human

Rig/S15 361 F: 5′-TTCCGCAAGTTCACCTACC-3′

R: 5′-CGGGCCGGCCATGCTTTACG-3′ Human

TNF-α 390 F: 5′-TTCGAGTGACAAGCCTGTAGC-3′

R: 5′-AGATTGACCTCAGCGCTGAGT-3′ Mouse

IL-1β 385 F: 5′-CATATGAGCTGAAAGCTCTCCA-3′

R: 5′-GACACAGATTCCATGGTGAAGTC-3′ Mouse

IL-6 435 F: 5′-GGAGGCTTAAITACACATGTT-3′

R: 5′-TGATTCAAGATGAATTGGAT-3′ Mouse

GAPDH 378 F: 5′-CCAGTATGACTCCACTCACG-3′

R: 5′-CCTTCCACAATGCCAAGTT-3′ Mouse

1 Forward; 2 reverse.

2.2.4. Western Blot Analysis

After culturing, the A549 cell pellets were mixed with RIPA lysis buffer and incubated
with agitation for 30 min to extract proteins. The extracted proteins were quantified using
the BCA Protein Assay Kit. A total of 20 µg of proteins from each sample were subjected
to 10% SDS polyacrylamide gel electrophoresis and then transferred to PVDF membranes.
The membranes were blocked with 5% skim milk for 30 min. Primary rabbit monoclonal
antibodies (Cell Signaling Technology, Danvers, MA, USA) against p-JNK, p-ERK, p-p38,
and β-Actin were then added at a 1:1000 dilution and incubated overnight at 4 ◦C. After
washing the membrane with Tris-buffered saline supplemented with 0.1% Tween 20 (TBST),
it was incubated with anti-rabbit HRP-linked antibody at room temperature (RT) for 2 h.
The immune-reactive bands were visualized using a chemiluminescent imaging system
(WSE-6100 Luminograph, ATTO, Tokyo, Japan) with ECL substrate (Bio-Rad, Hercules,
CA, USA). Densitometric analysis was performed using Image J software (Version 1.53t,
U.S. National Institutes of Health, Bethesda, MD, USA).

2.2.5. PM2.5-Induced Pulmonary Inflammation Mouse Model and Experimental Design

Male BALB/c mice, approximately 6 weeks old and weighing about 20 ± 2 g, were
obtained from DaeHan BioLink (DBL, Eumsung-gun, Chungcheongbuk-do, Republic
of Korea). The mice were housed under consistent environmental conditions with a
temperature of approximately 23 ± 2 ◦C, relative humidity of 50 ± 5%, and a regular 12 h
light–dark cycle for acclimatization. The mice were provided with unlimited access to
food and water. After a one-week acclimation period, the mice were randomly assigned
to five groups: control group (Normal, n = 5), PM2.5 treatment group (PM2.5, n = 5),
PM2.5 with 150 mg/kg ED treatment (ED150, n = 5), PM2.5 with 300 mg/kg ED treatment
(ED300, n = 5), and PM2.5 with 300 mg/kg Bronpass Tablet (p.o., Hanlim Pharm. Co.,
Ltd., Yongin-si, Republic of Korea) treatment (Bronpass300, n = 5; used as a positive
control). To induce pulmonary inflammation, PM2.5 dissolved in PBS (50 mg/kg, 50 µL)
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was administered intratracheally to the mice on day 7. ED and Bronpass Tablets were orally
administered to the mice from day 0 to day 8, diluted in distilled water (DW). On day 8, the
mice were euthanized using isoflurane, and BALF, blood, and pulmonary tissue samples
were collected for further analysis (Figure 1). All animal experiments were conducted
after obtaining approval from the Dankook University Institutional Animal Care and Use
Committee (DKU IACUC Approval No: DKU-23-049).
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Figure 1. PM2.5-induced pulmonary inflammation mouse model preparation and experimental
schedule. (A) ED and Bronpass tablets were orally administered once daily for 8 days starting on day
1. BALB/c mice were instilled with PM2.5 into the tracheal on the 7th day. (B) Using an endotracheal
intubation kit, PM2.5 solution was slowly instilled through the tracheal.

2.2.6. Analysis of Cell Counting in BALF

To analyze the cell count in the BALF, we collected the fluid according to the previous
method [21]. The BALF samples were centrifuged to pellet the cells. The pelleted cells were
resuspended in PBS, and the total cell count was measured via staining with methylene blue.
Additionally, Wright–Giemsa staining was performed to examine the cellular morphology
indicative of inflammatory cells.

2.2.7. Histopathological Analysis

The pulmonary tissue was fixed in 10% formalin solution, embedded in paraffin,
sectioned into 5 µm slices, and stained with hematoxylin and eosin (H&E) as well as
periodic acid-Schiff (PAS) [31]. Subsequently, pathological changes in the pulmonary tissue
were observed using an optical microscope (Olympus, Tokyo, Japan).

2.2.8. ELISA Analysis for TNF-α and IL-6 in Serum

The levels of TNF-α and IL-6 in the serum were measured according to the manufac-
turer’s instructions using ELISA kits. All measurements were performed in duplicate, and
the optical density of each well was read at 450 nm using a microplate reader (Bio-Rad).

2.2.9. Statistical Analysis

The data are presented as mean ± standard deviation (SD). Statistical significance was
analyzed using analysis of variance (ANOVA). p values < 0.05 were considered statistically
significant.
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3. Results
3.1. Effects of ED and Dieckol on MUC5AC Gene Expression in PMA-Stimulated A549 Cells

Prior to investigating the effects of ED and dieckol on MUC5AC gene expression, we
measured the toxicity of ED and dieckol in A549 cells. The cells were treated with various
concentrations of ED (10, 20, 40, and 80 µg/mL) and dieckol (5, 10, 20, and 40 µg/mL) and
incubated for 24 h, followed by MTT analysis. According to the results, ED and dieckol
showed no cytotoxicity at all tested concentrations (Figure 2A). We examined whether ED
and dieckol had the ability to regulate MUC5AC gene expression in PMA-stimulated A549
cells. We pre-treated the cells with various concentrations of ED (10, 20, and 40 µg/mL)
and dieckol (5, 10, and 20 µg/mL) for 30 min and measured the modulation of MUC5AC
gene expression in cells stimulated with PMA for 24 h. The results showed that ED and
dieckol dose-dependently inhibited MUC5AC gene expression (Figure 2B).
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Figure 2. Effects of cell viability and MUC5AC mRNA levels of ED and dieckol. (A) In a 96-well plate,
1 × 104 cells per well were seeded. After 24 h, ED and dieckol were treated for another 24 h with
serum-free medium. Viability was measured using MTT assay. (B) RT-PCRanalysis using Rig/S15 as
the loading control was performed for measurement of MUC5AC mRNA expression in A549 cells.
After ED and dieckol pre-treatment for 30 min, cells were PMA-stimulated for 24 h. The relative
mRNA levels of MUC5AC were quantified using the Image J program. The average value of three
independent experiments is shown. All data are expressed as the mean ± SD of the experiment.
### p < 0.001 compared to the control group. ** p < 0.01 and *** p < 0.001, compared to the PMA
control group. ns: not statistically significant.

3.2. Effect of ED and Dieckol on the Phosphorylation of MAPKs in PMA-Stimulated A549 Cells

To elucidate the mechanism by which MUC5AC gene expression is inhibited by ED and
dieckol in PMA-stimulated A549 cells, we investigated the activation of specific mitogen
activated protein kinases (MAPKs) in A549 cells after PMA stimulation. PMA activated
phosphorylation of several signaling transducers, including JNK, ERK, and p38, known to
be involved in MUC5AC gene expression. The phosphorylation of JNK, ERK, and p38 was
significantly (p < 0.001) inhibited by ED and dieckol (Figure 3).
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Figure 3. Effect of ED and dieckol on the phosphorylation of MAPKs in PMA-stimulated A549 cells.
(A) ED and (B) dieckol pre-treatment for 30 min; cells were PMA-stimulated for 30 min. β-actin
were detected and used as internal controls. The relative protein levels of p-JNK, p-ERK, and p-p38
were quantified using the Image J program and normalized to β-actin. The average value of three
independent experiments is shown. All data are expressed as the mean ± SD of the experiment. ##
p < 0.01 and ### p < 0.001 compared to the control group; * p < 0.05, ** p < 0.01, and *** p < 0.001
compared to the PMA control group. See also Figure S1.

3.3. Effect of ED on Cells in BALF in the PM2.5-Induced Pulmonary Inflammation Mouse Model

Cellular accumulation in the airways is a characteristic feature of inflammatory respi-
ratory diseases. Recent studies utilizing sputum induction or BAL techniques to measure
and characterize pulmonary inflammation in patients with inflammatory respiratory dis-
eases show a substantial number of cases exhibiting an increased total cell count and
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inflammatory cells in BALF [32]. The results of the total cell count and microscopic obser-
vation of cells in BALF of PM2.5-induced pulmonary inflammation mice are presented in
Figure 4 to assess this aspect. The total cell count, as observed through Wright–Giemsa
staining in BALF, significantly increased in the PM2.5 group (## p < 0.01). Conversely, a
concentration-dependent decrease in the total cell count was observed in the ED150, ED300,
and Bronpass300 groups compared to the PM2.5 group (** p < 0.01) (Figure 4A). The results
from Wright–Giemsa staining showed a trend of decreased inflammatory cells in the ED
groups compared to the PM2.5 group (Figure 4B).
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3.4. Effect of ED on Pulmonary Damage in the PM2.5-Induced Pulmonary Inflammation Mouse
Model

To explore the protective effects of ED against PM2.5-induced pulmonary damage,
we detected histopathological changes in lung tissues through H&E staining. As seen in
Figure 5, the PM2.5 group exhibited PM2.5 deposition, inflammatory cell infiltration, and
congestion in the pulmonary cell walls. In contrast, the ED150, ED300, and Bronpass300
groups showed reduced inflammatory cell infiltration. PAS staining confirmed the suppres-
sion of mucus secretion, with excess mucus observed in the PM2.5 group, whereas this was
inhibited in the ED and Bronpass groups (Figure 5).
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Figure 5. The effect of ED on PM2.5-induced mouse pulmonary histopathological changes. The
pulmonary sections were stained with H&E or PAS and examined under microscopy (magnification,
×40 and ×200). H&E, hematoxylin and eosin; PAS, periodic acid-Schiff.

3.5. Effects of ED on Inflammatory Cytokine Levels in the Serum of a PM2.5-Induced Pulmonary
Inflammation Mouse Model

TNF-α and IL-6 are important mediators of inflammatory responses and play a cen-
tral role in the pathophysiology of inflammatory diseases. Our results indicated an in-
crease in serum levels of TNF-α and IL-6 in the acute pulmonary model induced by PM2.5
(## p < 0.01). The ED150, ED300, and Braonpass300 groups decreased the levels of TNF-α
and IL-6, with the ED300 group showing the significantly (** p < 0.01) highest reduction
effect, particularly in the PM2.5-induced pulmonary model (Figure 6).
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3.6. Effects of ED on Inflammatory Cytokine Levels in Lung Tissue of the PM2.5-Induced
Pulmonary Inflammation Mouse Model

The observed changes in inflammatory markers in lung tissue of the PM2.5-induced
pulmonary inflammation mouse model are shown in Figure 7. Exposure to PM2.5 was
shown to increase the expression levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6)
in the lung tissue of mice. Conversely, the ED group effectively decreased the expression
levels of inflammatory cytokines, indicating an amelioration of inflammatory responses in
the lung tissues.
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4. Discussion

PM is known to induce various respiratory diseases. Given the current lack of defini-
tive solutions, preventive and therapeutic approaches are essential. Particularly, PM is
categorized into PM10 and PM2.5 based on particle size. As the particle size of PM decreases,
it exacerbates lower respiratory tract conditions and increases inflammatory cytokines
through the generation of reactive oxygen species (ROS) [33].

The respiratory system is a crucial organ that interfaces with the external environment
and possesses a defense mechanism to ward off harmful substances from the surround-
ings [34]. It comprises mucous membranes that envelop the respiratory tract, and an
immune system developed along the respiratory epithelium. The mucus, coating the
mucous membranes, is a major component of sputum, consisting of glycoproteins, wa-
ter, electrolytes, and lipids. Through collaborative action with ciliated cells, it prevents
direct contact with the external environment and aids in the removal of foreign bodies or
pathogens to the outside. The primary component of mucus, mucin, is produced by goblet
cells and mucous cells in submucosal glands. It possesses high viscosity and is primarily
composed of heavily glycosylated proteins, acting as potent receptors for carbohydrates.
This function allows mucus components to easily bind bacteria composed of carbohydrates
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in the mucus layer, facilitating their expulsion [35]. However, excessive secretion of mucus
can lead to various respiratory conditions. When specific stimuli enter the airways, im-
portant glycoproteins such as mucin, a critical component of mucus, are produced [35]. In
this context, this study aimed to investigate the anti-inflammatory effects of E. cava and C.
indicum complex extract (ED), which demonstrated anti-inflammatory effects in an OVA-
induced asthma model, on MUC5AC inhibition in PMA-induced pulmonary epithelial cells
and their impact on pulmonary inflammatory responses in a PM2.5-induced pulmonary
inflammation mouse model.

In the past, most medications for managing inflammatory airway diseases focused
on weakening excessive mucus production and secretion in the airways that occur during
the onset of these diseases. However, the regulation of mucus secretion and production
has become a significant approach to control excessive airway mucus [36]. Therefore, to
elucidate the effects of ED and its active component dieckol on the expression of MUC5AC,
a gene responsible for airway mucus production, we investigated their effects on PMA-
induced MUC5AC expression in A549 human pulmonary epithelial cells. Mucin present
in inflammatory airway diseases is induced by inflammatory mediators such as PMA.
PMA is an inflammatory stimulant that regulates gene transcription, cell growth, and
differentiation [37]. Moreover, it can induce the gene expression of inflammatory cytokines,
including TNF-α [38]. Specifically, PMA is involved in mucin secretion and is used as
a protein kinase C (PKC) activator, inducing the expression of mucin genes, including
MUC5AC, in human airway cells. MUC5AC is a major component of gel-forming mucins in
the respiratory system and is induced by the activation of the MAPK cascade under PMA
stimulation [39]. In this study, it was found that PMA treatment induced MUC5AC mRNA
expression, and treatment with ED and dieckol suppressed the upregulated mucin gene
expression of MUC5AC (Figure 2). Furthermore, the MAPK pathway, including JNK, ERK,
and p38, activated by PMA, was dose-dependently inhibited by ED and dieckol treatments
(Figure 3). Therefore, excessive mucus secretion induced by PMA stimulation was reduced
by ED and dieckol, demonstrating their potential as regulators to maintain appropriate
levels of MUC5AC as a defense mechanism against external stimuli.

Due to the potential for PM-induced damage to various organs, including the respi-
ratory and cardiovascular systems, and the associated increase in mortality rates [40], the
need for the development of treatment methods to treat or prevent respiratory damage
caused by PM is becoming more critical. In response to this demand, a mouse model
of pulmonary damage induced by PM2.5, representing a condition similar to respiratory
diseases induced by PM in humans, has been established [1,41]. Development of respi-
ratory protective drugs using natural substances is gaining popularity in PM2.5-induced
respiratory disease models [1,29,30] due to their relatively low side effects and excellent
anti-inflammatory and antioxidant activities derived from natural products [18]. ED, a
compound composed of E. cava and C. indicum extracts, has demonstrated excellent antioxi-
dant and anti-inflammatory activities in previous studies. It was confirmed to effectively
inhibit inflammation in an OVA-induced asthma mouse model [29]. Therefore, in this study,
we evaluated the pulmonary anti-inflammatory effects of ED using the PM2.5-induced
pulmonary inflammatory mouse model [1,41]. Particularly, we conducted a comparative
analysis using Bronpass tablet, a respiratory disease therapeutic drug composed of natural
substances, as the positive control group.

The fundamental mechanisms through which PM exerts biological effects are complex.
PM exposure can impact various cell types at different levels of immune regulation [42].
Inflammation is considered a key mechanism in the onset of various PM-induced pul-
monary diseases [43]. According to several studies, PM’s endotoxins have been positively
associated with the production of TNF-α, IL-1β, and IL-6 [44]. Similarly, under our exper-
imental conditions, PM2.5 increased inflammatory responses in the mouse pulmonary, a
well-known indicator of pulmonary inflammation, as observed in BALF (Figure 4), and
induced histological changes in pulmonary tissues (Figure 5). In contrast, ED treatment was
found to inhibit inflammatory cell infiltration and excessive mucus production in BALF
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and pulmonary tissues. Furthermore, ED significantly decreased the secretion and mRNA
expression of TNF-α, IL-1β, and IL-6 in serum and pulmonary tissues (Figures 6 and 7).

These results clearly demonstrate that oral administration of ED at doses of 150
and 300 mg/kg effectively inhibits PM2.5-induced inflammatory lung damage in a dose-
dependent manner through the inhibition of excessive mucus production and anti-inflam-
matory activity. Therefore, administering an appropriate dose of ED orally holds high
potential for future utilization as a natural medicine or health functional food ingredient for
effective improvement of respiratory function. However, this study has several limitations
that need to be addressed in future research. While the in vitro and in vivo experimental
analyses in this study provide valuable insights, they may not fully replicate the complexity
of human respiratory diseases. Hence, caution should be exercised when extrapolating
the results to clinical scenarios. Nevertheless, this study primarily focuses on the potential
impact of ED extract in inhibiting MUC5AC and addressing respiratory issues caused by
PM2.5. Further research is needed to investigate the broad-ranging effects of ED extract
on other respiratory parameters, such as strengthening the pulmonary barrier, through
additional studies.

5. Conclusions

In this study, we confirmed that ED inhibits excessive mucus production and im-
proves PM2.5-induced pulmonary inflammation through the suppression of MUC5AC
expression. ED exhibited non-cytotoxic effects and reduced MUC5AC mRNA expression
in PMA-stimulated A549 cells. The downregulation of phosphorylation of JNK, ERK,
and p38 in PMA-stimulated A549 cells by ED implies its role as a natural compound that
inhibits MUC5AC expression. Furthermore, in a PM2.5-induced pulmonary inflammation
mouse model, ED reduced inflammatory cells in BALF, and histological analysis indicated
decreased infiltration of inflammatory cells and mucus formation in mouse pulmonary
tissue. Additionally, ED lowered the serum levels and mRNA expression of inflammatory
cytokines such as TNF-α, IL-1β, and IL-6 in both serum and pulmonary tissue (Figure 8).
These findings suggest that administering an appropriate dose of ED orally holds high
potential as a new natural medicine or functional food ingredient for effectively improving
respiratory function in the future.
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