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Abstract: Three-dimensional (3D) printing is an advanced pharmaceutical manufacturing technology,
and concerted efforts are underway to establish its applicability to various industries. However,
for any technology to achieve widespread adoption, robustness and reliability are critical factors.
Machine vision (MV), a subset of artificial intelligence (AI), has emerged as a powerful tool to replace
human inspection with unprecedented speed and accuracy. Previous studies have demonstrated the
potential of MV in pharmaceutical processes. However, training models using real images proves
to be both costly and time consuming. In this study, we present an alternative approach, where
synthetic images were used to train models to classify the quality of dosage forms. We generated
200 photorealistic virtual images that replicated 3D-printed dosage forms, where seven machine learn-
ing techniques (MLTs) were used to perform image classification. By exploring various MV pipelines,
including image resizing and transformation, we achieved remarkable classification accuracies of
80.8%, 74.3%, and 75.5% for capsules, tablets, and films, respectively, for classifying stereolithography
(SLA)-printed dosage forms. Additionally, we subjected the MLTs to rigorous stress tests, evaluating
their scalability to classify over 3000 images and their ability to handle irrelevant images, where
accuracies of 66.5% (capsules), 72.0% (tablets), and 70.9% (films) were obtained. Moreover, model
confidence was also measured, and Brier scores ranged from 0.20 to 0.40. Our results demonstrate
promising proof of concept that virtual images exhibit great potential for image classification of
SLA-printed dosage forms. By using photorealistic virtual images, which are faster and cheaper
to generate, we pave the way for accelerated, reliable, and sustainable AI model development to
enhance the quality control of 3D-printed medicines.

Keywords: Industry 5.0; Healthcare 5.0; quality control; computer vision; digital twin; digital
manufacturing; virtual technology; additive manufacturing; drug development; personalized
formulations; oral drug products

1. Introduction

Three-dimensional (3D) printing, also known as additive manufacturing, has emerged
as a revolutionary technology in the pharmaceutical industry. While traditional phar-
maceutical manufacturing adopts the paradigm of ‘one size fits all’, where large-scale
manufacturing leads to identical dosage forms, the advent of 3D printing enables the pro-
duction of small batches and on-demand fabrication of more personalized medicines [1,2].
It has several advantages over conventional manufacturing methods, including the ability
to fabricate complex geometries with high precision, rapid prototyping, and reduced waste
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and cost [3–9]. Three-dimensional printing grants the ability to tailor medicines seamlessly
to meet the individual patient’s needs, thereby enhancing the safety and efficacy of thera-
peutics [10]. The technology has the potential to achieve the on-demand manufacturing of
personalized medical products at the point of care (PoC), where hospitals and healthcare
providers can have their own 3D printers to produce customized medical devices or drug
formulations as needed [11]. However, the PoC manufacturing of personalized medicines
using 3D printing technologies has partially been hindered by the challenges associated
with its quality control (QC).

QC is a crucial aspect of pharmaceutical manufacturing, ensuring that the product is
safe, effective, and its production process is consistent and reproducible [12]. Existing tradi-
tional QC methods for large-scale manufacturing follow an end-product testing paradigm,
which is usually destructive [13]. Thus, this requires additional dosage forms fabricated
for QC purposes, which may not be suitable for the 3D printing of costly drugs [11]. With
the transition from batch production to continuous production in the pharmaceutical in-
dustry, process analytical technology (PAT) has gained increasing research interest as a
quality control method [14]. PAT provides the opportunity to monitor pharmaceutical
manufacturing processes by real-time measurements and the control of predefined crit-
ical quality attributes and critical process parameters [15]. The widespread adoption of
PAT by the pharmaceutical industry has been driven by regulatory guidelines like the
FDA Pharmaceutical Quality for the 21st Century Initiative [16]. The application of PAT
in pharmaceutical 3D printing aligns with the FDA’s emphasis on QC, traceability, and
risk management, which will ensure that the 3D-printed products meet the regulatory
standards for safety and efficacy [17]. This necessitates the development of non-destructive
PAT, which maintains the integrity of the final product and requires minimal sample
preparation. Researchers have explored the use of different PAT tools such as Near-
Infrared Spectroscopy (NIR) and Raman Spectroscopy; however, these techniques are
hindered by high costs and do not provide information regarding the quality of the print
structure [18,19].

A potential technology that can be used to provide structural information is machine
vision (MV), which is a subset of artificial intelligence (AI). AI is an emerging technology
in pharmaceutics in which machines are trained to perform tasks like humans, with the
end goal of replacing human activity. In pharmaceutics, AI has the potential to accelerate
developments through automating tasks of varying complexity, and has recently been
applied to predicting 3D printing outcomes, food–drug interaction, crystallization, and the
generation of nanoparticles [20–24]. Similarly, MV has been researched in pharmaceutics.
MV, also referred to as computer vision, is a rapidly growing subset of AI that involves
the use of digital images and pattern recognition algorithms to interpret and understand
visual information. Compared to manual inspection, MV offers digital precision, speed,
and is not subject to human error or bias [25]. In manufacturing, MV systems can be
employed for real-time QC monitoring, allowing them to perform tasks such as inspec-
tion and identification [26]. By automating visual tasks and providing fast and accurate
results, MV is helping to improve efficiency, reduce errors, and enhance safety in various
applications [27–30]. In pharmaceutics, MV was found to achieve high accuracy in the
real-time detection of measuring coating thickness and detecting defects in film-coated
tablets [28]. It has also been used for inspecting liquid droplets in pharmaceutical injec-
tions [27], data augmentation [30], and in situ monitoring of the selective laser sintering
process [29].

Collectively, these studies demonstrate that MV can perform automated QC tasks with
high accuracy, precision, and speed, which could be applied to pharmaceutical 3D printing.
However, a large dataset is required for model development, which for nascent technology
like 3D printing, can be a time-consuming and costly endeavor [31]. One approach is to
generate synthetic data that are used to train the AI platform. Synthetic data refers to
data that are artificially generated to resemble real-world data. They are created using
algorithms and models that consider patterns observed in existing data. Synthetic data
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are simpler and more cost effective to obtain than real data [32]. Additionally, synthetic
data are more sustainable and can be generated in potentially unlimited numbers with
pre-annotation, which would otherwise be required to be added manually to the real-
world data [33]. Synthetic data have been successfully demonstrated to enhance model
performance [31–35]. Additionally, it is important to highlight that the Medicines and
Healthcare products Agency (MHRA) has introduced two synthetic datasets that have
played a significant role in advancing medical technologies in the fight against COVID-19
and cardiovascular disease. According to Janet Valentine, the Director of the Clinical
Practice Research Datalink, these synthetic datasets will assist in accelerating the market
entry of safe products, thereby enabling patients to enjoy the advantages of cutting-edge
technological progress [36]. Therefore, with its growing adoption, synthetic data could
address the lack of data available in 3D printing.

In this study, synthetic data were used to train an AI pipeline that could be applied as
a QC method of 3D-printed pharmaceuticals. The pipeline consisted of MV techniques to
process the images, followed by machine learning (ML) for image classification. Synthetic
data in the form of photorealistic rendered images were used to train ML models to
distinguish between ‘Good’ and ‘Bad’ printing outcomes. The study focused on rendering
images of three commonly printed dosage forms: capsules, tablets, and films. Once
trained, the ML models were tested on real images of 3D-printed dosage forms, which were
fabricated by stereolithography (SLA). The performance of the ML models was scrutinized,
and the results are discussed herein.

2. Experimental Procedure
2.1. Virtual Image Generation

Virtual images (i.e., synthetic data) were generated by combining Python and Blender
software, creating a streamlined pipeline to ensure consistency, replicability, and speed.
The Blender software version used was v3.4 (Blender Foundation, Amsterdam, Nether-
lands), while the Python version used was Python v3.11 (Python Software Foundation).
Three dosage forms were manually designed: films, tablets, and capsules. The design
process aimed to create photorealistic and accurate representations of 3D-printed dosage
forms. Detailed geometrical features were considered for each type of dosage form. The
film design was 30 mm by 10 mm with a thickness of 1 mm. The tablet design was
cylindrical with a diameter of 10 mm and height of 3 mm, and the capsule design was
two-part cylindrical with smooth surfaces, with a length of 18 mm and a diameter of
8 mm.

A Python script was developed to automate the process of generating different images
from the original versions. This script incorporated a loop function to produce 100 ‘Good’
images for each dosage form. ‘Good’ images were defined as those containing a defect-
free print. The ‘Bad’ images comprised three different subcategories, which were ‘over-
cured’, ‘under-cured’, or ‘cracked’. A Python script was developed to loop through each
subcategory to produce 33 images from each, and an additional image was manually
added. Thus, there were 100 ‘Good’ and 100 ‘Bad’ images used for model training. The
Python script was integrated with the Blender software using Blender’s Python application
programming interface (bpy v3.4.0). This integration allowed for direct control over the
Blender environment and objects via Python, enabling the color variations of the dosage
forms to be systematically and consistently altered [37]. The camera, lighting, and print
positions were kept constant throughout the loop. After each iteration of color alterations,
the image was rendered and saved. Representative models generated by Blender are
presented in forms (Figure 1).
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Figure 1. Representative images of (A) the models generated using Blender and (B) the top-view
rendered image used for training the ML models. Attempts were made to capture the realism of
3D-printed dosage forms.

2.2. SLA Image Generation
2.2.1. Computer-Aided Design (CAD) of Formulations

Onshape (PTC, Boston, MA, USA) was employed to design the 3D model of all
formulations in this study. The diameter of the tablets was 10 mm, and their thickness was
3 mm. The capsules measured 18 mm in length and had a diameter of 6 mm. The films
had a length of 20 mm, a width of 10 mm, and a thickness of 0.5 mm. Meanwhile, three
different types of ‘Bad’ prints, or printing deformities, were intentionally created for each
formulation, including ‘cracked’, ‘under-cured’, and ‘over-cured’.

2.2.2. SLA Printing Process

Dosage forms were printed using a commercial Form 2 SLA 3D printer (Formlabs Inc.,
Milbury, OH, USA) that was equipped with a 405 nm laser. A similar SLA pipeline to one
that was previously published was adopted herein [38]. The CAD model was exported as a
stereolithography (.stl) file and then uploaded to the Preform Software v.3.28.0 (Formlabs
Inc., Milbury, OH, USA), where necessary adjustments and support structures were added
before printing. The formulations were printed on the building platform through the
polymerization of the photocrosslinkable resin (Clear V4, Formlabs Inc., Milbury, OH, USA)
with a layer thickness of 0.1 mm. The prints were then washed in isopropanol for 2 min
to remove any remaining resin on the surface. Afterwards, Form Cure (Formlabs Inc.,
Milbury, OH, USA) was employed for the post curing process at 60 ◦C for 45 min under a
light source (λ = 405 nm). The dosage forms were successfully prepared after the removal
of support structures with a diagonal cutter. Examples of the CAD model and 3D-printed
dosage forms can be viewed in Figure 2.

2.2.3. Photogrammetry Setup

A photogrammetry setup was used to help improve the quality of the image ac-
quisition, which provides a control source of light, as well as ensuring reproducibil-
ity [39]. Image acquisition was completed in a commercial photo-box purchased from
Amazon. It was equipped with an LED panel, which provided a stable and evenly dis-
tributed illumination from top to bottom with a light intensity of 2912 Lumen (10 W). All
images were captured from a top-down perspective using the ultrawide camera of an
iPhone 13 Pro (Apple Inc., Cupertino, CA, USA) with a resolution of 12 million pixels. The
distances between the camera and background are 4.5, 5.5, 6.5 cm for tablets, films, and
capsules, respectively. A schematic of the setup can be seen in Figure 3.
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2.3. AI Pipeline Development

The software and libraries used for the AI pipeline were as follows: Python v3.11
(Python Software Foundation), scikit-learn (sklearn) v1.2.1, and OpenCV v4.7.0. Python
served as the primary programming language for scripting the pipeline due to its wide array
of support for ML libraries and its extensive, easy-to-use syntax. The scikit-learn library
was chosen for its comprehensive selection of both supervised and unsupervised learning
algorithms and model evaluation tools [40]. OpenCV was used for its MV capabilities
in image processing, which were crucial for pre-processing steps in the pipeline [41].
Prior to model training, the images underwent pre-processing using OpenCV. This pre-
processing step was important for ensuring consistency across all images and improving the
model’s performance. The pre-processing included image resizing to create uniformity in
dimensions across all images and converting the images to grayscale to eliminate potential
color-related discrepancies and reduce computational demand [42]. Once pre-processing
was complete, the processed images were used as inputs for the ML model. The models
used and the parameters tuned via a gridsearch are detailed in Table S1 [43]. Model
performance was evaluated using the accuracy, specificity, sensitivity, and area under the
receiver operating curve (AUROC) metrics. Furthermore, the Brier score and probability
distributions were calculated and plotted to assess confidence in the model’s predictions.
The formulae for the metrics are presented below [44]:
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Accuracy =
(True Positives + True Negatives)

(True Positives + False Positives + True Negatives + False Negatives)
(1)

Sensitivity =
True Positives

(True Positives + False Negatives)
(2)

Specificity =
True Negatives

(True Negatives + False Positives)
(3)

Brier Score = (1/N) × Σ (predicted probability − actual)2 (4)

where, N is the total number of predictions; predicted probability is the probability that
was predicted; and ‘actual’ is the actual outcome (‘Good’ or ‘Bad’). The lower the Brier
score, the better the performance of the prediction model. AUROC is a plot of true positive
rate (sensitivity) against false positive rate (1-specificity) at various threshold settings. The
area under this curve quantifies model performance; an area of 1 represents a perfect test,
while an area of 0.5 represents a worthless test [45].

3. Results

Virtual images of capsules, tablets, and films were generated on a computer (Figure 1).
A total of 100 images were generated for each dosage form, with varying color and textures
to add variety. A further 100 images representing prints with defects were also virtually
generated to teach the model the difference between a successful 3D-printed product and a
product with a defect common to SLA printing [46–50].

3.1. Exploratory Data Analysis (EDA)

EDA serves as a crucial preliminary step in ML, providing the opportunity to examine
data prior to feeding them into a model. It can identify potential anomalies that can then
be addressed before the model development process and directs subsequent data handling.
Given that the input data for this study were images, various pre-processing measures
could be implemented, making a preliminary data inspection beneficial in deciding which
methods to adopt [51,52].

For this preliminary study, the ratio between ‘Good’ and ‘Bad’ prints was kept at 50:50
for each dosage form to prevent model bias (Figure 4A). Similarly, a total of 200 images for
each SLA-printed dosage form were captured using a smartphone, also with a ratio of 50:50
between ‘Good’ and ‘Bad’ quality, to form the testing dataset. For the ‘Bad’ SLA prints,
defects were purposefully introduced in the CAD model. Among the bad quality forms,
approximately one-third were produced to replicate over-curing, one-third to replicate
under-curing, and the remaining one-third were produced to replicate cracked prints
(Figure 4B).

The image size for both the virtual images and real images was also inspected. In
the case of the virtual images, all three dosage forms had image sizes of about 106 bytes,
with a narrow distribution demonstrated by the small error bars (Figure 5). Conversely, the
smartphone-captured SLA images were approximately 107 bytes in size and exhibited a
compact distribution (Figure 5). Therefore, there was a ten-fold difference between the sizes
of the virtual and real images. ML models require input data with consistent dimensions,
implying that both the training and testing datasets must possess the same feature vector
length. Therefore, pre-processing was necessary to ensure both sets of images aligned to
the same dimensional scale.
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The color distribution of both image sets was also investigated. Several color spaces
can be explored, with the RGB color space, representing red, green, and blue, being
most common. These three colors together represent a wide spectrum of hues. Within
the RGB space, the intensity varies from 0 to 255, with higher values indicating greater
color intensity.

Upon examining the color distribution, the virtual images were found to exhibit a
wider color distribution with shades of black, yellow, orange, and white, as evidenced
in Figure 6A,C,E. The virtual capsule images possessed additional colors, as depicted in
Figure 6A. In contrast, the real images exhibited a limited color gradient, spanning between
black and white (Figure 6B,D,F). This signifies a potential color disparity between the
two datasets. Color discrepancies are frequent in MV applications, and one common MV
pre-processing strategy to rectify this involves converting the images to grayscale [42]. The
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grayscale color space is more constrained, with each pixel appearing in a single shade
(i.e., grey) and an intensity ranging from 0 to 255.
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3.2. ML Results

Seven ML techniques (MLTs) were investigated for this task. Each one was trained
on the 200 virtual images and subsequently asked to predict the quality of the actual
SLA-printed dosage form. Untuned models were initially investigated, however, they
were unable to achieve accuracies above 50%. This indicated that the models were at
best randomly classifying the images, and hence not actually learning from the virtual
images. Subsequently, the models were then tuned with their respective hyperparameters
(Table S1), and the results are presented below.

3.2.1. The Effect of Image Size

The EDA revealed that the two image datasets had different image sizes and were
substantially large. For this reason, their image sizes were reduced to a smaller scale,
ranging from 25 × 25 to 512 × 512 pixels. It is essential to note that after resizing, both
datasets had the same scale, making them compatible for ML processing. We reiterate
that it is critical for these ML models to have consistent feature sizes between training
and testing datasets. For instance, if the training data have five variables and the testing
data have six, the model will not function correctly. While resizing images does remove
pixels, our study found that the overall image structural integrity was largely maintained,
as illustrated in Figure 7 and Figures S1 and S2.
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Figure 7. Example of the effect of image re-sizing on the dosage form structure.

The ML results for capsules are presented in Figure 8. The classification accuracy
reached as high as 78.3%, indicating that ML models trained on virtual images can predict
3D-printed capsules. The highest accuracy was attained by decision trees (DT), with an
image size of 125 × 125 pixels. The same model had a specificity, sensitivity, and AUROC
value of 70.0%, 87.0%, and 76.2%, respectively. Thus, DT presented with high performance
across all metrics. Despite the reduction in image size, ML models were able to achieve high
performance. There was no correlation between the image size and model classification
performance between 25× 25 to 512× 512 pixels. The second-best performing combination
was a DT with a size of 256 × 256 pixels, where the accuracy was 77.5%. Random forest
(RF) is an ensemble of decision trees and has been found to outperform a single decision
tree in complex tasks [53,54]. The highest accuracy attained by RF was 74.2% with an
image size of 50 × 50 pixels. Interestingly, RF performed better when it used a low number
of decision trees (data not provided). Gradient-boosted decision trees (GB) is another
tree-based algorithm that has been found to perform well in classification tasks [55]. Its
maximum accuracy was 73.3% with an image size of 25 × 25 pixels. Multi-layer perceptron
(MLP) is distinctively different to tree-based models and learns by a series of neuron
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layers. Its highest accuracy was 70.0% with an image size of 512 × 512 pixels. Support
vector machines (SVM) and k-nearest neighbor (kNN) have distinct learning characteristics
compared with the aforementioned MLTs, but these models were consistently found to
exhibit low classification accuracy. Logistic regression (LR), being the only linear model
used herein, exhibited accuracies of 50%, despite being tuned. Moreover, the computational
demand for LR exceeded the limits available when training was performed on image
sizes of 125 pixels and above. Nonetheless, the results indicated that linear models were
performing equivalent to random chance.
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Similar relationships were observed with ML models classifying the SLA-printed
tablets (Figure 9). The highest performing model was GB, which achieved an accuracy,
specificity, sensitivity, and AUROC of 73.3%, 75.0%, 72.0%, and 76.2%, respectively, with an
image size of 125 × 125 pixels. It was noticed that the computational demands increased
with image size, with LR exceeding the limits at image sizes of 125 pixels and above, and it
was thus unable to complete the task. At lower image sizes, LR again achieved a maximum
accuracy of 50%, once again indicating that it was randomly guessing. DT also performed
well, with the highest accuracy being 70.3% at 25 × 25 pixels. Interestingly, neither RF nor
MLP achieved an accuracy of 70% or above, indicating that both models performed less
well for tablets than with capsules.

For SLA-printed films, the highest performance was achieved by RF, with an accu-
racy, specificity, sensitivity, and AUROC of 75.5%, 67.0%, 84.0%, and 75.5%, respectively
(Figure 10). The results show that RF was able to achieve a balance between all metrics. LR
was again limited to 50% accuracy, demonstrating that non-linear models perform better
than linear models for this task [56].
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3.2.2. The Effect of Grayscale Transformation

The EDA revealed a disparity in color gradient between the virtual and real images
(Figure 6). Thus, grayscale transformation was implemented to determine if this could
improve model accuracy. The analysis with varying image sizes was repeated and the
results are displayed in Figures S3–S5. For capsules, the highest performing model was
GB with an accuracy of 80.8% at 512 × 512 pixels. The specificity and sensitivity were
relatively balanced at 77.0% and 85.0%, respectively. The AUROC was also high at 83.3%,
which indicated that the model was able to accurately differentiate between the two classes.
Both DT and RF were able to achieve accuracies above 75% and with a relatively acceptable
balance between specificity and sensitivity. As grayscale has fewer dimensions than the
RGB space, model development was noticeably faster. Moreover, LR was able to make
predictions at image sizes up to 125 × 125 pixels, having previously exceeded compu-
tational limits at this pixel size. The highest accuracy by LR was 62.5%, which was at
125 × 125 pixels. For the grayscale tablets, the highest accuracy of 74.3% was achieved
by DT at 50 × 50 pixels, with the specificity and sensitivity being 84% and 64%, respec-
tively. For the grayscale films, the best performing model was also DT at 512 × 512 pixels,
with an accuracy, specificity, sensitivity, and AUROC of 71%, 56%, 86%, and 71%, respec-
tively. For both grayscale tablets and films, the accuracy for LR was 50%. Overall, it
was evident that grayscale transformation was not detrimental to model development,
regarding both accuracy and computational demands. Moreover, it was evident that
tree-based models performed better than the other learners for classifying the quality of
dosage forms.

3.3. Model Robustness: Stress Testing to Ensure High Performance
3.3.1. Scalability

The results thus far were encouraging and warranted further stress testing to ensure
the ML models’ robustness. The first stress test was to determine model scalability. The test
image dataset (i.e., real SLA images) was augmented from 200 to 3200 images. Augmenta-
tion, which is a common MV method, introduces varied transformations to images, such
as rotation or brightness adjustments, to emulate real-world data variations and increase
dataset breadth [57]. This process ensures the model’s genuine adaptability and not just
its familiarity with the initial dataset’s specific patterns. By evaluating performance on
augmented data, potential overfitting can be detected, where the model might excel with
original images but falter with transformed images. Furthermore, testing with augmented
images mimics unpredictable real-world scenarios, thereby providing a more robust assess-
ment of the model’s practical utility. This comprehensive approach boosts confidence in the
model’s consistent performance, highlighting its adaptability and readiness for deployment
across varied scenarios.

In this study, the testing dataset was augmented by first transforming the images to
grayscale and then cropping the images by four different values (Figure 11). The training
images were inspected following cropping to ensure that it did not affect the dosage form.
Cropping simulates the potential imaging distance between the object and the camera.
Following cropping, the training images were then flipped both horizontally and vertically,
and rotated at 180◦, which simulated different imaging orientation of the dosage forms
(Figure 12). With these transformations, the testing dataset grew from 200 to 3200 images.
In the interest of time, only DT and RF models were explored, as they were found to
consistently produce high accuracies and exhibited low computational demands. The
training dataset was only transformed to grayscale to ensure that it had the same vector
space as the training set, and as such, remained at 200 images. As before, the effect of image
size was also explored.
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As illustrated in Figures 13–15, the models were able to maintain their high perfor-
mance, with the highest accuracies for capsules, tablets, and films being 66.5%, 72.0%, and
70.9%, respectively, that were achieved by DT, RF, and DT, respectively. Therefore, the
results show that model performance can be scaled to 3200 new imaging instances. For the
augmented capsule test dataset, DT outperformed RF at all image sizes, with accuracies
ranging from 63.3% to 66.5%. The image sizes that gave the highest accuracy of 66.5% for
DT were the 512 × 512 pixel images, which also had the highest AUROC value of 74.4%. A
higher AUROC value infers that DT could achieve a higher accuracy by adjusting the clas-
sification threshold. It also reassures that DT performs better than randomly guessing [58].
The accuracies for RF ranged from 50% to 58.2%. RF produced high sensitivity values,
indicating that it was good at recognizing the true images (i.e., ‘Good’ images). However,
its specificity for 4/5 image sizes was less than 50%, indicating that RF struggled to classify
negative images (i.e., to recognize bad images as only ‘Bad’).

For tablets, DT achieved higher accuracies than RF in all but the 512 × 512 pixels
(Figure 14). The DT models tended to have a greater sensitivity than specificity for tablets,
indicating that the models performed well at distinguishing true ‘Good’ tablets. In contrast,
RF exhibited a balance between specificity (72.1%) and sensitivity (72.0%) at images of
512 × 512 pixels. However, this balance was lost at lower image sizes, with RF exhibiting
notably higher specificity than sensitivity. This infers that image sizes of 256 pixels or
lower were unable to recognize true ‘Bad’ tablets. RF with image sizes of 512 × 512 pixels
were the best performer for the scaled tablet datasets, with an accuracy and AUROC of
72.0% and 74.6%, respectively. The higher AUROC inferred that the model was good at
distinguishing between ‘Good’ and ‘Bad’ tablets.

For films, DT presented with marginally higher accuracies than RF (Figure 15). In con-
trast to classifying capsules and tablets, preference for specificity and sensitivity varied with
image size for both models. For example, RF presented higher specificity for image sizes of
25 × 25 and 125 × 125 pixels, but higher sensitivity for 50 × 50 and 512 × 512 pixel images.
The best performer was DT with an image size of 50 × 50 pixels, where the accuracy and
AUROC were 70.9% and 70.0%, respectively. Hence, maintaining the classification thresh-
old at 0.5 was sufficient in achieving good accuracy. The collective results for capsules,
tablets, and films demonstrated that training ML models on virtual images was scalable to
a larger number of images, however, the MV pipeline for each solid dosage form will need
to be separately optimized.
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3.3.2. Model Confidence

To ensure the rigorousness of the methodology in developing the ML model, the
study went beyond conventional accuracy metrics and examined the confidence of the
models’ predictions. The Brier score was leveraged for this purpose, serving as a critical
measure of the models’ confidence in its predictions. The Brier score is a unitless metric,
ranging from 0 to 1, where a lower value indicates greater confidence and calibration of
the models’ probabilistic classification [59]. The emphasis on confidence is pivotal because
it offers a deeper understanding of the model robustness. A model that exhibits high
variance in confidence levels might produce inconsistent predictions when re-trained,
posing challenges for reproducibility and reliability. The Brier score, with its ability to
quantify the difference between predicted probabilities and actual outcomes, becomes a
necessary tool to assess such inconsistencies. While the benchmark for an ‘ideal’ Brier score
can vary based on the specific application, a general guideline is that scores below 0.25 tend
to indicate acceptable confidence levels, strengthening assurance in the model’s robustness
and reliability [59].

For all three dosage forms, the Brier score ranged between 0.20 to 0.40 (Figures 13–15).
For the aforementioned models with the highest accuracy, their respective Brier scores
were 0.24 (capsule), 0.21 (tablet), and 0.27 (film). Hence, while the DT obtained the high-
est accuracy for classifying film quality, its Brier score indicates that it was marginally
worse than a model that predicts with complete uncertainty. To obtain further insight,
the respective probability distributions are presented in Figure 16, in the form of most
confident by applying Equation (5). Here, the values are scaled from 0.5 (low confidence) to
1.0 (high confidence):

most con f ident = maxŷ P
θ
(ŷ|x) (5)
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where maxŷ P
θ
(ŷ|x) is the maximum conditional class probability given the input features.

In other words, the formula returns the probability for the predicted class, which makes it
easier to visualize the probability distribution.
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As depicted, the models varied in their confidence (Figure 16). DT was found to be
the best performing model for classifying capsules and films, where the most confident
values ranged from 0.75 to 1.0 and 0.6 to 1.0, respectively. Hence, DT was generally more
confident in predicting capsules than films. RF, which performed best for classifying
tablets, had a wide confident distribution between 0.5 and 1.0, with the mode around 0.7.
The wide distribution infers that the model was confident in predicting some images
and less confident with others. Thus, when combined, the results of the Brier score and
the most confident ranges indicated that the models exhibited a range of confidence in
their predictions.

3.3.3. Out-of-Data (OOD) Distribution

The final stress test was to observe the models’ performance for detecting random or
irrelevant objects. The primary objective was to ensure that the model would not misclassify
random objects or images as ‘Good’. Both a hyperparameter-tuned and untuned DT and
RF were evaluated for their ability to classify four different types of images, of which
examples are presented in Figure 17. These samples were purposely selected to highlight
specific features that the model might be recognizing during training. Each model was fed
200 examples of each of the four different models, and their accuracy was evaluated.
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For untuned DT and RF trained with virtual capsule images, both models struggled
with recognizing the plain background as not a capsule, with both models presenting with
a 50% classification accuracy (Figure 18A,B). When tested on randomly generated pixels
(referred to herein as noise image), the untuned RF was found to be robust against the
noise, whereas DT was affected by the noise, where it was evident that DT was classifying
the noise images as ‘Good’ capsules. When tested on the triangle images, both models were
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robust to this geometry, and thus did not classify any of these images as ‘Good’. However,
when tested with oblong geometry, RF was classifying 50% of oblong images as ‘Good’
capsules across all image sizes, whereas DT had 100% accuracy for all image sizes but
25 and 125 pixels. Thus, the results infer that the untrained model could potentially
recognize oblong objects in an image as a capsule. This could explain why previously
untuned models struggled to achieve accuracies above 50% in the previous task (3.2. ML
Results). Fortunately, when the models were hyper-parameter tuned, they performed
perfectly and were able to recognize that none of these OOD images were a real capsule.
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and (E,F) film. The purpose of this test was to determine how DT and RF would perform when
presented with irrelevant images.

Similar trends were also seen for the other two dosage forms, whereby untuned models
struggled with classifying these OOD images, and similarly, their tuned counterparts were
robust against them (Figure 18C–F). The ultimate test was to discern if the model might
mistakenly categorize images of similar geometric shapes, like oblong for capsules, circles
for tablets, and diamonds for films (both being quadrilateral shapes). Both the tuned DT
and RF were able to accurately classify these images. This indicated that the models were
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not overfitting for the ‘Bad’ class and were able to recognize other types of objects as bad.
In other words, the models were able to recognize that ‘Bad’ prints could exist beyond just
cracked, over-cured, and under-cured films. Equally impressive, the results suggest that
the models are tuned to expect features beyond geometric patterns with edges, inferring
that they are looking for other features that make a good SLA-printed dosage form.

4. Discussion

The study demonstrates the utility of using virtual images for training ML models, and
by extension, addresses the issue of data shortage in pharmaceutical 3D printing. As men-
tioned, virtual images have been used outside of pharmaceutics for AI modelling [60–65].
Moreover, virtual reality has been proposed to train researchers, offering a number of
benefits centered around economic, environmental, and human safety sustainability [66].
Collectively, these studies allude to the virtual domain playing a key part in revolutionizing
the future of pharmaceutical research.

The unexpectedly high model accuracy attained herein can be explained by the use
of photo-realistic images, capturing textures such as layers that are commonly seen in 3D-
printed dosage forms (Figure 1). The results presented in Figure 18 verify this by illustrating
that the models are learning features from the images beyond simple geometric outlines.
The utility of virtual images was also demonstrated by purposefully selecting a balanced
dataset, where an imbalanced dataset has been known to hinder model performance [67].
Credit should also be given to MLTs for the high accuracies attained and their ability to
establish non-linear, complex relationships in high-dimensional data. In a prior study,
a deep learning model was able to achieve an accuracy of 98.24% in identifying coating
defects from captured tablet images. This remarkable performance can be attributed to
their utilization of a publicly available pre-trained deep learning model, as well as their
adoption of a methodology that allowed for a greater tolerance of errors in defining correct
predictions. Furthermore, the study involved the production of approximately 640 tablets
for the purpose of training the model, with defects manually introduced to these tablets [28].
Incorporating virtual images into the training process could have rendered it more cost
effective, less labor intensive, and environmentally sustainable.

The models were stress tested due to the large complexity of the task. For example, an
image size of 512 × 512 pixels equates to 262,144 features per image, which is considerably
larger than any feature size previously used [21]. Considering that every MLT will inspect
every pixel in an effort to learn the difference between a ‘Good’ and ‘Bad’ print, there was
potential for the MLTs to focus on the wrong pixels, and hence why the models were tested
with the images from Figure 18 [68]. Moreover, feature sizes in the order of thousands and
with only 200 training instances could have resulted in models producing high accuracies
but lacking confidence in their predictions [69]. The difference between accuracy and
confidence is that accuracy refers to how often a model’s predictions are correct compared
with the actual outcomes, while confidence indicates the model’s own belief in the reliability
of its predictions. Hence, the study went above and beyond to measure the Brier score and
inspect the probability distribution. More work will indeed be needed to see if the current
approach can reach the 98% accuracies attained in previous work [28].

Varying the image size between 25 × 25 to 512 × 512 pixels resulted in varying model
performance, with no obvious trend. This could be due to the minor distortions during
the re-sizing of pixels. For example, some resizing values for films were found to affect
their aspect ratio, where the films changed from rectangle and square and tablets became
elongated (Figures S1 and S2). Future work will seek to develop either a photogrammetry
set that will account for these distortions or implement an MV pre-processing technique to
avoid these distortions. On the other hand, grayscale transformation was found to have no
significant impact, inferring that color was not a key feature for the ML in distinguishing
between ‘Good’ and ‘Bad’ dosage forms.

As ML is still an emerging field, the theorem of no free lunch still applies here and
thus several MLTs were explored [70]. Broadly speaking, the non-linear models behaved
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better than the linear models for this task. Further insight revealed that the DT was among
the better performers where decision trees are considered to be simple algorithms. Upon
further inspection of RF, the models that achieved the higher predictions used a fewer
number of trees (<10 trees), which infers that using more trees results in overfitting [71].

Evidently, virtual images and other synthetic data can address the issue of lack of data
available for ML model development that was previously mentioned [72]. Thus, virtual
images are expected to accelerate developments yet maintain economic, environmental,
and safe sustainable practices. This will indeed be helpful in helping 3D printing realize its
industrial and clinical translational goals. Going forward, more work is needed to realize
the extent of virtual images for developing sustainable ML models. It would be interesting
to see how it performs on dosage forms produced by other 3D printing technologies. It
would also be interesting to see how it performs on more complex dosage forms, like
microneedles, and perhaps roll it out to the rest of the pharmaceutics field. In doing so, we
can ensure that ML models are developed in a sustainable manner.

Although this study has demonstrated the utility of virtual images in training ML
models manifesting remarkable performance in QC for 3D-printed dosage forms, it is
imperative to discuss limitations that could impact the validity of the inspection. For
instance, the ML models in this study were exclusively trained and tested on top-down
view images, potentially overlooking structural defects that might only be observed from
other perspectives. Therefore, ensuring the validity of predictive results may require the
inclusion of images captured from different angles. Additionally, this research did not
include the examination on the internal structure of dosage forms. Given the additive
nature of 3D printing, it is plausible for defects to exist internally, even if the surfaces of
the printed formulations appear intact. If our trained model were to examine images of
dosage forms with internal defects, it would likely yield a relatively high false positive
rate. Moreover, the pipeline looks at structural defects and not dimensional discrepancies.
The pipeline’s utility could be expanded if it could detect dimensional discrepancies, as
dimensional changes can affect content uniformity [73].

5. Conclusions

The study successfully demonstrated that virtual images of 3D-printed dosage forms
can be used to train an AI model to recognize the quality of three different SLA-printed
dosage forms. The highest recorded accuracies for classifying capsules, tablets, and films
were 80.8%, 74.3%, and 75.5%, respectively. Tree-based models of DT and RF were found to
consistently achieve high accuracies and were subsequently further stress tested against
noisy and ‘distracting’ images. The stress tests revealed that the models were robust to
these OOD images and were confident in their predictions of some tasks, obtaining Brier
scores ranging from 0.20 to 0.40. Moreover, model deterioration was not observed when
the models were tested against 3200 images augmented from the original SLA real images,
demonstrating the pipeline’s potential for scaling to a larger image dataset. Therefore, it was
concluded that virtual images hold great potential in training ML models for classifying 3D-
printed dosage forms. Future work will seek to investigate the feasibility of the proposed
pipeline to dosage forms generated by other 3D printing technologies.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/pharmaceutics15112630/s1, Table S1: MLTs and their pa-
rameters for grid search, Figure S1: Representative images of tablets following re-sizing, Figure S2:
Representative images of films following re-sizing, Figure S3: MLTs performance for classifying SLA-
printed capsules after grayscale transformation, with image sizes of (A) 25 pixels, (B), 50 pixels, (C)
125 pixels, (D) 256 pixels, and (E) 512 pixels, Figure S4: MLTs performance for classifying SLA-printed
tablets after grayscale transformation, with image sizes of (A) 25 pixels, (B), 50 pixels, (C) 125 pixels,
(D) 256 pixels, and (E) 512 pixels, Figure S5: MLTs performance for classifying SLA-printed films
after grayscale transformation, with image sizes of (A) 25 pixels, (B), 50 pixels, (C) 125 pixels, (D) 256
pixels, and (E) 512 pixels.

https://www.mdpi.com/article/10.3390/pharmaceutics15112630/s1


Pharmaceutics 2023, 15, 2630 20 of 23

Author Contributions: Conceptualization, M.E.A. and M.E.; methodology, S.S., M.E.A. and M.E.;
software, S.S. and M.E.; validation, S.G., A.W.B., M.E. and M.O.; formal analysis, S.S. and M.E.;
investigation, S.S. and M.E.; resources, S.G., A.W.B., M.E. and M.O.; data curation, S.S. and M.E.;
writing—original draft preparation, S.S., M.E.A. and M.E.; writing—review and editing, S.G., A.W.B.,
M.E. and M.O.; visualization, M.E.A and M.E.; supervision, S.G., A.W.B., M.E. and M.O.; project
administration, M.E. and M.O.; funding acquisition, M.E. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Engineering and Physical Sciences Research Council (EPSRC)
UK, grant number EP/S009000/1.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding authors.

Acknowledgments: Moe Elbadawi would also like to thank the Engineering and Physical Sciences
Research Council (EPSRC) UK for its financial support. The authors would like to thank Prince Sattam
bin Abdulaziz University, Alkharj, Saudi Arabia, for their financial support of Manal E. Alkahtani
through the Postgraduate Research Grant.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Trenfield, S.J.; Awad, A.; Goyanes, A.; Gaisford, S.; Basit, A.W. 3D printing pharmaceuticals: Drug development to frontline care.

Trends Pharmacol. Sci. 2018, 39, 440–451. [CrossRef] [PubMed]
2. Awad, A.; Fina, F.; Goyanes, A.; Gaisford, S.; Basit, A.W. 3D printing: Principles and pharmaceutical applications of selective laser

sintering. Int. J. Pharm. 2020, 586, 119594. [CrossRef]
3. Sen, K.; Mehta, T.; Sansare, S.; Sharifi, L.; Ma, A.W.; Chaudhuri, B. Pharmaceutical applications of powder-based binder jet 3D

printing process–a review. Adv. Drug Deliv. Rev. 2021, 177, 113943. [CrossRef] [PubMed]
4. Awad, A.; Fina, F.; Trenfield, S.J.; Patel, P.; Goyanes, A.; Gaisford, S.; Basit, A.W. 3D printed pellets (miniprintlets): A novel,

multi-drug, controlled release platform technology. Pharmaceutics 2019, 11, 148. [CrossRef] [PubMed]
5. Awad, A.; Yao, A.; Trenfield, S.J.; Goyanes, A.; Gaisford, S.; Basit, A.W. 3D printed tablets (printlets) with braille and moon

patterns for visually impaired patients. Pharmaceutics 2020, 12, 172. [CrossRef]
6. Fina, F.; Madla, C.M.; Goyanes, A.; Zhang, J.; Gaisford, S.; Basit, A.W. Fabricating 3D printed orally disintegrating printlets using

selective laser sintering. Int. J. Pharm. 2018, 541, 101–107. [CrossRef] [PubMed]
7. Seoane-Viaño, I.; Trenfield, S.J.; Basit, A.W.; Goyanes, A. Translating 3D printed pharmaceuticals: From hype to real-world clinical

applications. Adv. Drug Deliv. Rev. 2021, 174, 553–575. [CrossRef]
8. Varghese, R.; Sood, P.; Salvi, S.; Karsiya, J.; Kumar, D. 3D printing in the pharmaceutical sector: Advances and evidences. Sens.

Int. 2022, 3, 100177. [CrossRef]
9. Goyanes, A.; Madla, C.M.; Umerji, A.; Piñeiro, G.D.; Montero, J.M.G.; Diaz, M.J.L.; Barcia, M.G.; Taherali, F.; Sánchez-Pintos, P.;

Couce, M.-L. Automated therapy preparation of isoleucine formulations using 3D printing for the treatment of MSUD: First
single-centre, prospective, crossover study in patients. Int. J. Pharm. 2019, 567, 118497. [CrossRef]

10. Awad, A.; Goyanes, A.; Basit, A.W.; Zidan, A.S.; Xu, C.; Li, W.; Narayan, R.J.; Chen, R.K. A review of state-of-the-art on enabling
additive manufacturing processes for precision medicine. J. Manuf. Sci. Eng. 2023, 145, 010802. [CrossRef]

11. Jørgensen, A.K.; Ong, J.J.; Parhizkar, M.; Goyanes, A.; Basit, A.W. Advancing non-destructive analysis of 3D printed medicines.
Trends Pharmacol. Sci. 2023, 44, 379–393. [CrossRef]

12. Geigert, J. Quality Assurance and Quality Control for Biopharmaceutical Products. In Development and Manufacture of Protein
Pharmaceuticals; Nail, S.L., Akers, M.J., Eds.; Springer: Boston, MA, USA, 2002; pp. 361–404.

13. Trenfield, S.J.; Tan, H.X.; Goyanes, A.; Wilsdon, D.; Rowland, M.; Gaisford, S.; Basit, A.W. Non-destructive dose verification of
two drugs within 3D printed polyprintlets. Int. J. Pharm. 2020, 577, 119066. [CrossRef]

14. Fonteyne, M.; Vercruysse, J.; De Leersnyder, F.; Van Snick, B.; Vervaet, C.; Remon, J.P.; De Beer, T. Process analytical technology
for continuous manufacturing of solid-dosage forms. TrAC Trends Anal. Chem. 2015, 67, 159–166. [CrossRef]

15. Pauli, V.; Roggo, Y.; Pellegatti, L.; Trung, N.Q.N.; Elbaz, F.; Ensslin, S.; Kleinebudde, P.; Krumme, M. Process analytical technology
for continuous manufacturing tableting processing: A case study. J. Pharm. Biomed. Anal. 2019, 162, 101–111. [CrossRef] [PubMed]

16. Corredor, C.C.; Bu, D.; McGeorge, G. Applications of MVDA and PAT for Drug Product Development and Manufacturing. In
Multivariate Analysis in the Pharmaceutical Industry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 211–234.

17. Food and Drug Administration. Guidance for Industry, PAT-A Framework for Innovative Pharmaceutical Development,
Manufacturing and Quality Assurance. 2004. Available online: http://www.fda.gov/cder/guidance/published.html (accessed
on 9 August 2023).

https://doi.org/10.1016/j.tips.2018.02.006
https://www.ncbi.nlm.nih.gov/pubmed/29534837
https://doi.org/10.1016/j.ijpharm.2020.119594
https://doi.org/10.1016/j.addr.2021.113943
https://www.ncbi.nlm.nih.gov/pubmed/34450238
https://doi.org/10.3390/pharmaceutics11040148
https://www.ncbi.nlm.nih.gov/pubmed/30934899
https://doi.org/10.3390/pharmaceutics12020172
https://doi.org/10.1016/j.ijpharm.2018.02.015
https://www.ncbi.nlm.nih.gov/pubmed/29454028
https://doi.org/10.1016/j.addr.2021.05.003
https://doi.org/10.1016/j.sintl.2022.100177
https://doi.org/10.1016/j.ijpharm.2019.118497
https://doi.org/10.1115/1.4056199
https://doi.org/10.1016/j.tips.2023.03.006
https://doi.org/10.1016/j.ijpharm.2020.119066
https://doi.org/10.1016/j.trac.2015.01.011
https://doi.org/10.1016/j.jpba.2018.09.016
https://www.ncbi.nlm.nih.gov/pubmed/30227355
http://www.fda.gov/cder/guidance/published.html


Pharmaceutics 2023, 15, 2630 21 of 23

18. Trenfield, S.J.; Januskaite, P.; Goyanes, A.; Wilsdon, D.; Rowland, M.; Gaisford, S.; Basit, A.W. Prediction of Solid-State Form of
SLS 3D Printed Medicines Using NIR and Raman Spectroscopy. Pharmaceutics 2022, 14, 589. [CrossRef] [PubMed]

19. Trenfield, S.J.; Xu, X.; Goyanes, A.; Rowland, M.; Wilsdon, D.; Gaisford, S.; Basit, A.W. Releasing fast and slow: Non-destructive
prediction of density and drug release from SLS 3D printed tablets using NIR spectroscopy. Int. J. Pharm. X 2023, 5, 100148.
[CrossRef] [PubMed]

20. Abdalla, Y.; Elbadawi, M.; Ji, M.; Alkahtani, M.; Awad, A.; Orlu, M.; Gaisford, S.; Basit, A.W. Machine learning using Multi-Modal
Data Predicts the Production of Selective Laser Sintered 3D Printed Drug Products. Int. J. Pharm. 2023, 633, 122628. [CrossRef]
[PubMed]

21. Castro, B.M.; Elbadawi, M.; Ong, J.J.; Pollard, T.; Song, Z.; Gaisford, S.; Pérez, G.; Basit, A.W.; Cabalar, P.; Goyanes, A. Machine
learning predicts 3D printing performance of over 900 drug delivery systems. J. Control. Release 2021, 337, 530–545. [CrossRef]

22. Ryu, J.Y.; Kim, H.U.; Lee, S.Y. Deep learning improves prediction of drug–drug and drug–food interactions. Proc. Natl. Acad. Sci.
USA 2018, 115, E4304–E4311. [CrossRef]

23. Zheng, Y.; Wang, X.; Wu, Z. Machine learning modeling and predictive control of the batch crystallization process. Ind. Eng.
Chem. Res. 2022, 61, 5578–5592. [CrossRef]

24. Tao, H.; Wu, T.; Aldeghi, M.; Wu, T.C.; Aspuru-Guzik, A.; Kumacheva, E. Nanoparticle synthesis assisted by machine learning.
Nat. Rev. Mater. 2021, 6, 701–716. [CrossRef]

25. Sheila Anand, L.P. A Guide for Machine Vision in Quality Control; CRC Press: Boca Raton, FL, USA, 2020.
26. O’Reilly, C.S.; Elbadawi, M.; Desai, N.; Gaisford, S.; Basit, A.W.; Orlu, M. Machine learning and machine vision accelerate 3D

printed orodispersible film development. Pharmaceutics 2021, 13, 2187. [CrossRef] [PubMed]
27. Zhang, H.; Li, X.; Zhong, H.; Yang, Y.; Wu, Q.J.; Ge, J.; Wang, Y. Automated machine vision system for liquid particle inspection of

pharmaceutical injection. IEEE Trans. Instrum. Meas. 2018, 67, 1278–1297. [CrossRef]
28. Ficzere, M.; Mészáros, L.A.; Kállai-Szabó, N.; Kovács, A.; Antal, I.; Nagy, Z.K.; Galata, D.L. Real-time coating thickness

measurement and defect recognition of film coated tablets with machine vision and deep learning. Int. J. Pharm. 2022, 623, 121957.
[CrossRef] [PubMed]

29. Tikhomirov, E.; Åhlén, M.; Strømme, M.; Lindh, J. In situ thermal image analysis of selective laser sintering for oral dosage form
manufacturing. J. Pharm. Biomed. Anal. 2023, 231, 115396. [CrossRef]

30. Floryanzia, S.; Ramesh, P.; Mills, M.; Kulkarni, S.; Chen, G.; Shah, P.; Lavrich, D. Disintegration testing augmented by computer
Vision technology. Int. J. Pharm. 2022, 619, 121668. [CrossRef]

31. Das, H.P.; Tran, R.; Singh, J.; Yue, X.; Tison, G.; Sangiovanni-Vincentelli, A.; Spanos, C.J. Conditional synthetic data generation
for robust machine learning applications with limited pandemic data. In Proceedings of the AAAI Conference on Artificial
Intelligence, Online, 22 February–1 March 2022; pp. 11792–11800.

32. de Melo, C.M.; Torralba, A.; Guibas, L.; DiCarlo, J.; Chellappa, R.; Hodgins, J. Next-generation deep learning based on simulators
and synthetic data. Trends Cogn. Sci. 2021, 26, 174–187. [CrossRef]

33. Wang, Q.; Gao, J.; Lin, W.; Yuan, Y. Learning from synthetic data for crowd counting in the wild. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 8198–8207.

34. Tang, J.; Zhou, H.; Wang, T.; Jin, Z.; Wang, Y.; Wang, X. Cascaded foreign object detection in manufacturing processes using
convolutional neural networks and synthetic data generation methodology. J. Intell. Manuf. 2023, 34, 2925–2941. [CrossRef]

35. Condrea, F.; Ivan, V.-A.; Leordeanu, M. In search of life: Learning from synthetic data to detect vital signs in videos. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020;
pp. 298–299.

36. Medicines and Healthcare products Regulatory Agency. New Synthetic Datasets to Assist COVID-19 and Cardiovascular Research.
Available online: https://www.gov.uk/government/news/new-synthetic-datasets-to-assist-covid-19-and-cardiovascular-
research (accessed on 17 September 2023).

37. Gaul, N.J.; Leishman, R.C. Artificial Dataset Generation for Automated Aircraft Visual Inspection. In Proceedings of the NAECON
2021-IEEE National Aerospace and Electronics Conference, Dayton, OH, USA, 16–19 August 2021; pp. 302–306.

38. Xu, X.; Goyanes, A.; Trenfield, S.J.; Diaz-Gomez, L.; Alvarez-Lorenzo, C.; Gaisford, S.; Basit, A.W. Stereolithography (SLA) 3D
printing of a bladder device for intravesical drug delivery. Mater. Sci. Eng. C 2021, 120, 111773. [CrossRef]

39. Mahajan, S.; Das, A.; Sardana, H.K. Image acquisition techniques for assessment of legume quality. Trends Food Sci. Technol. 2015,
42, 116–133. [CrossRef]

40. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.
Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

41. Bradski, G.; Kaehler, A. Learning OpenCV: Computer Vision with the OpenCV Library; O’Reilly Media, Inc.: Sebastopol, CA,
USA, 2008.

42. Vocaturo, E.; Zumpano, E.; Veltri, P. Image pre-processing in computer vision systems for melanoma detection. In Proceedings
of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018;
pp. 2117–2124.

43. Alibrahim, H.; Ludwig, S.A. Hyperparameter optimization: Comparing genetic algorithm against grid search and bayesian
optimization. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Kraków, Poland, 28 June–1 July
2021; pp. 1551–1559.

https://doi.org/10.3390/pharmaceutics14030589
https://www.ncbi.nlm.nih.gov/pubmed/35335965
https://doi.org/10.1016/j.ijpx.2022.100148
https://www.ncbi.nlm.nih.gov/pubmed/36590827
https://doi.org/10.1016/j.ijpharm.2023.122628
https://www.ncbi.nlm.nih.gov/pubmed/36682506
https://doi.org/10.1016/j.jconrel.2021.07.046
https://doi.org/10.1073/pnas.1803294115
https://doi.org/10.1021/acs.iecr.2c00026
https://doi.org/10.1038/s41578-021-00337-5
https://doi.org/10.3390/pharmaceutics13122187
https://www.ncbi.nlm.nih.gov/pubmed/34959468
https://doi.org/10.1109/TIM.2018.2800258
https://doi.org/10.1016/j.ijpharm.2022.121957
https://www.ncbi.nlm.nih.gov/pubmed/35760260
https://doi.org/10.1016/j.jpba.2023.115396
https://doi.org/10.1016/j.ijpharm.2022.121668
https://doi.org/10.1016/j.tics.2021.11.008
https://doi.org/10.1007/s10845-022-01976-3
https://www.gov.uk/government/news/new-synthetic-datasets-to-assist-covid-19-and-cardiovascular-research
https://www.gov.uk/government/news/new-synthetic-datasets-to-assist-covid-19-and-cardiovascular-research
https://doi.org/10.1016/j.msec.2020.111773
https://doi.org/10.1016/j.tifs.2015.01.001


Pharmaceutics 2023, 15, 2630 22 of 23

44. Wang, F.; Elbadawi, M.; Tsilova, S.L.; Gaisford, S.; Basit, A.W.; Parhizkar, M. Machine learning to empower electrohydrodynamic
processing. Mater. Sci. Eng. C 2022, 132, 112553. [CrossRef]

45. Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997,
30, 1145–1159. [CrossRef]

46. Chen, Q.; Zou, B.; Lai, Q.; Zhu, K. SLA-3d printing and compressive strength of PEGDA/nHAP biomaterials. Ceram. Int. 2022,
48, 30917–30926. [CrossRef]

47. Al Hassanieh, S.; Alhantoobi, A.; Khan, K.A.; Khan, M.A. Mechanical properties and energy absorption characteristics of
additively manufactured lightweight novel re-entrant plate-based lattice structures. Polymers 2021, 13, 3882. [CrossRef]

48. Kennedy, B.M.; De Barra, E.; Hampshire, S.; Kelleher, M.C. Investigation of oleic acid as a dispersant for hydroxyapatite powders
for use in ceramic filled photo-curable resins for stereolithography. J. Eur. Ceram. Soc. 2023, 43, 7146–7166. [CrossRef]

49. Voet, V.S.; Strating, T.; Schnelting, G.H.; Dijkstra, P.; Tietema, M.; Xu, J.; Woortman, A.J.; Loos, K.; Jager, J.; Folkersma, R. Biobased
acrylate photocurable resin formulation for stereolithography 3D printing. ACS Omega 2018, 3, 1403–1408. [CrossRef]

50. Chouhan, G.; Bidare, P.; Doodi, R.; Murali, G.B. Identification of Surface Defects on an SLA-Printed Gyroid Lattice Structure. In
Proceedings of the International Conference on Research into Design, Bangalore, India, 9–11 January 2023; pp. 697–707.

51. Mennel, L.; Symonowicz, J.; Wachter, S.; Polyushkin, D.K.; Molina-Mendoza, A.J.; Mueller, T. Ultrafast machine vision with 2D
material neural network image sensors. Nature 2020, 579, 62–66. [CrossRef]

52. Galata, D.L.; Meszaros, L.A.; Kallai-Szabo, N.; Szabó, E.; Pataki, H.; Marosi, G.; Nagy, Z.K. Applications of machine vision in
pharmaceutical technology: A review. Eur. J. Pharm. Sci. 2021, 159, 105717. [CrossRef]

53. Mistry, P.; Neagu, D.; Trundle, P.R.; Vessey, J.D. Using random forest and decision tree models for a new vehicle prediction
approach in computational toxicology. Soft Comput. 2016, 20, 2967–2979. [CrossRef]

54. Talevi, A.; Morales, J.F.; Hather, G.; Podichetty, J.T.; Kim, S.; Bloomingdale, P.C.; Kim, S.; Burton, J.; Brown, J.D.;
Winterstein, A.G.; et al. Machine Learning in Drug Discovery and Development Part 1: A Primer. CPT Pharmacomet. Syst.
Pharmacol. 2020, 9, 129–142. [CrossRef]

55. Boldini, D.; Grisoni, F.; Kuhn, D.; Friedrich, L.; Sieber, S.A. Practical guidelines for the use of gradient boosting for molecular
property prediction. J. Cheminform. 2023, 15, 73. [CrossRef]

56. Afifi, K.; Al-Sadek, A.F. Improving classical scoring functions using random forest: The non-additivity of free energy terms’
contributions in binding. Chem. Biol. Drug Des. 2018, 92, 1429–1434. [CrossRef]

57. Mikołajczyk, A.; Grochowski, M. Data augmentation for improving deep learning in image classification problem. In Proceedings
of the 2018 international interdisciplinary PhD workshop (IIPhDW), Świnouście, Poland, 9–12 May 2018; pp. 117–122.

58. Banerjee, S.; Mohammed, A.; Wong, H.R.; Palaniyar, N.; Kamaleswaran, R. Machine learning identifies complicated sepsis course
and subsequent mortality based on 20 genes in peripheral blood immune cells at 24 H post-ICU admission. Front. Immunol. 2021,
12, 592303. [CrossRef]

59. Dinga, R.; Penninx, B.W.; Veltman, D.J.; Schmaal, L.; Marquand, A.F. Beyond accuracy: Measures for assessing machine learning
models, pitfalls and guidelines. BioRxiv 2019, 743138. [CrossRef]

60. Li, J.; Gu, J.; Huang, Z.; Wen, J. Application research of improved YOLO V3 algorithm in PCB electronic component detection.
Appl. Sci. 2019, 9, 3750. [CrossRef]

61. Židek, K.; Lazorík, P.; Pitel’, J.; Hošovský, A. An automated training of deep learning networks by 3D virtual models for object
recognition. Symmetry 2019, 11, 496. [CrossRef]

62. DeCost, B.L.; Holm, E.A. Characterizing powder materials using keypoint-based computer vision methods. Comput. Mater. Sci.
2017, 126, 438–445. [CrossRef]

63. Li, L.; McGuan, R.; Isaac, R.; Kavehpour, P.; Candler, R. Improving precision of material extrusion 3D printing by in-situ
monitoring & predicting 3D geometric deviation using conditional adversarial networks. Addit. Manuf. 2021, 38, 101695.

64. Wang, K.; Gou, C.; Zheng, N.; Rehg, J.M.; Wang, F.-Y. Parallel vision for perception and understanding of complex scenes:
Methods, framework, and perspectives. Artif. Intell. Rev. 2017, 48, 299–329. [CrossRef]
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