Sustainable Treatment of Oral Traumatic Ulcers with Licorice Containing Hydrogels: Integrating Computational Modeling, Quality by Design, Green Synthesis, and Molecular Biological Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Licorice Extract
2.2.2. Identification of Metabolites in Licorice Extract Using UPLC-ESI-MS/MS
2.2.3. Preparation of Licorice-Based Hydrogels (LHGs)
2.2.4. Design of Experiment (DOE) and Construction of the 21.31 Full Factorial Experimental Design
2.2.5. Characterization of the Prepared LHGs
pH Determination of the Prepared LHGs
Rheological Study of the Prepared LHGs
Evaluation of the Biological Performance of the Prepared LHGs
- Animals
- Experimental Design
- Traumatic Ulcer Healing Score (UHS)
- Degree of Erythema and Exudate (DEE)
- Biochemical Study
- Histopathological Study
2.2.6. Statistical Analysis of Data
3. Results and Discussion
3.1. Preparation of Licorice-Based Hydrogels (LHGs)
3.2. Identification of Metabolites in Licorice Extract Using UPLC-ESI-MS/MS
3.3. Statistical Analysis of the 21.31 Full Factorial Experimental Design
3.3.1. The Influence of Formulation Factors on the pH of the Prepared LHGs
3.3.2. The Influence of Formulation Factors on the Rheological Behavior of the Synthesized LHGs
3.3.3. The Influence of Formulation Factors on the Traumatic Ulcer Healing Score (UHS)
3.3.4. The Influence of Formulation Factors on the Investigated Biological Markers
3.3.5. The Influence of Formulation Factors on Wound Healing Score (WHS)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Sunarjo, L.; Hendari, R.; Rimbyastuti, H. Manfaat xanthone terhadap kesembuhan ulkus rongga mulut dilihat dari jumlah sel PMN dan fibroblast. ODONTO Dent. J. 2016, 2, 14–21. [Google Scholar] [CrossRef]
- Fourie, J.; Boy, S. Oral mucosal ulceration-a clinician’s guide to diagnosis and treatment. S. Afr. Dent. J. 2016, 71, 500–508. [Google Scholar]
- Tremolati, M.; Farronato, M.; Ferrantino, L.; Rusconi, F.; Lodi, G.; Maspero, C. Clinical Performance Evaluation of a Hyaluronic Acid Dental Gel for the Treatment of Traumatic Ulcers in Patients with Fixed Orthodontic Appliances: A Randomized Controlled Trial. Bioengineering 2022, 9, 761. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.B.; Setterfield, J.F.; Greenberg, M.S. Ulcerative, Vesicular, and Bullous Lesions. In Burket’s Oral Medicine; Wiley: Hoboken, NJ, USA, 2021; pp. 35–84. [Google Scholar]
- Gao, L.; Xu, T.; Huang, G.; Jiang, S.; Gu, Y.; Chen, F. Oral microbiomes: More and more importance in oral cavity and whole body. Protein Cell 2018, 9, 488–500. [Google Scholar] [CrossRef] [PubMed]
- Politis, C.; Schoenaers, J.; Jacobs, R.; Agbaje, J.O. Wound healing problems in the mouth. Front. Physiol. 2016, 7, 507. [Google Scholar] [CrossRef] [PubMed]
- El-Rab, S.; Basha, S.; Ashour, A.A.; Enan, E.T.; Alyamani, A.A.; Felemban, N.H. Green Synthesis of Copper Nano-Drug and Its Dental Application upon Periodontal Disease-Causing Microorganisms. J. Microbiol. Biotechnol. 2021, 31, 1656–1666. [Google Scholar] [CrossRef] [PubMed]
- Mosaddad, S.A.; Hussain, A.; Tebyaniyan, H. Green Alternatives as Antimicrobial Agents in Mitigating Periodontal Diseases: A Narrative Review. Microorganisms 2023, 11, 1269. [Google Scholar] [CrossRef]
- Hegab, H.; Shaban, I.; Jamil, M.; Khanna, N. Toward sustainable future: Strategies, indicators, and challenges for implementing sustainable production systems. Sustain. Mater. Technol. 2023, 36, e00617. [Google Scholar] [CrossRef]
- Fiore, C.; Eisenhut, M.; Ragazzi, E.; Zanchin, G.; Armanini, D. A history of the therapeutic use of liquorice in Europe. J. Ethnopharmacol. 2005, 99, 317–324. [Google Scholar] [CrossRef]
- Assar, D.H.; Elhabashi, N.; Mokhbatly, A.-A.A.; Ragab, A.E.; Elbialy, Z.I.; Rizk, S.A.; Albalawi, A.E.; Althobaiti, N.A.; Al Jaouni, S.; Atiba, A. Wound healing potential of licorice extract in rat model: Antioxidants, histopathological, immunohistochemical and gene expression evidences. Biomed. Pharmacother. 2021, 143, 112151. [Google Scholar] [CrossRef]
- Sidhu, P.; Shankargouda, S.; Rath, A.; Ramamurthy, P.H.; Fernandes, B.; Singh, A.K. Therapeutic benefits of liquorice in dentistry. J. Ayurveda Integr. Med. 2020, 11, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.F.; Shetty, B.; Fazal, I.; Khan, A.M.; Mir, F.M.; Moothedath, M.; Reshma, V.; Muhamood, M. Licorice as a herbal extract in periodontal therapy. Drug Target Insights 2023, 17, 70. [Google Scholar] [CrossRef] [PubMed]
- Mazumdar, S.; Prabhakar, B.; Khairnar, S.I.; Singh, K. Mucoadhesive Films of Liquorice and Chlorhexidine Gluconate for Treating Mouth Ulcers. Indian J. Pharm. Educ. Res. 2023, 57, s274–s280. [Google Scholar] [CrossRef]
- Desai, A.; Jaiswal, S.; Mitra, D.; Mitra, G.; Chandak, R.; Gurav, P. Effect of liquorice (root extract) mouth rinse on dental plaque and gingivitis-A randomized controlled clinical trial. JIDAS J. Indian Dent. Assoc. 2023, 17, 26–29. [Google Scholar]
- Dorsareh, F.; Vahid-Dastjerdi, G.; Bouyahya, A.; Zarshenas, M.M.; Rezaie, M.; Yang, W.M.; Amiri-Ardekani, E. Topical Licorice for Aphthous: A Systematic Review of Clinical Trials. Iran J. Med. Sci. 2023, 48, 437–447. [Google Scholar]
- Chojnacka, K.; Moustakas, K.; Mikulewicz, M. Multifunctional cellulose-based biomaterials for dental applications: A sustainable approach to oral health and regeneration. Ind. Crops Prod. 2023, 203, 117142. [Google Scholar] [CrossRef]
- Buang, F.; Fu, M.; Chatzifragkou, A.; Amin, M.C.I.M.; Khutoryanskiy, V.V. Hydroxyethyl cellulose functionalised with maleimide groups as a new excipient with enhanced mucoadhesive properties. Int. J. Pharm. 2023, 642, 123113. [Google Scholar] [CrossRef]
- Tak, U.N.; Rashid, S.; Kour, P.; Nazir, N.; Zargar, M.I.; Dar, A.A. Bergenia stracheyi extract-based hybrid hydrogels of biocompatible polymers with good adhesive, stretching, swelling, self-healing, antibacterial, and antioxidant properties. Int. J. Biol. Macromol. 2023, 234, 123718. [Google Scholar] [CrossRef]
- Paul, M.; Pramanik, S.D.; Sahoo, R.N.; Dey, Y.N.; Nayak, A.K. Dental delivery systems of antimicrobial drugs using chitosan, alginate, dextran, cellulose and other polysaccharides: A review. Int. J. Biol. Macromol. 2023, 247, 125808. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Amin, M.A.; Zayed, G.; Hassan, Y.; El-Mokhtar, M.; Saddik, M.S. In vitro and in vivo synergistic wound healing and anti-methicillin-resistant Staphylococcus aureus (MRSA) evaluation of liquorice-decorated silver nanoparticles. J. Antibiot. B 2023, 76, 291–300. [Google Scholar] [CrossRef]
- Estabragh, M.A.R.; Bami, M.S.; Dehghannoudeh, G.; Noudeh, Y.D.; Moghimipour, E. Cellulose derivatives and natural gums as gelling agents for preparation of emulgel-based dosage forms: A brief review. Int. J. Biol. Macromol. 2023, 241, 124538. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Wang, Z.; Liang, X.; Xiong, T.; Kang, Z.; Lei, S.; Wu, B.; Cheng, B. A composite hydrogel with antibacterial and promoted cell proliferation dual properties for healing of infected wounds. Am. J. Transl. Res. 2023, 15, 4467. [Google Scholar] [PubMed]
- Chavan, A.V.; Gandhimathi, R. Quality by Design Approach: Progress in Pharmaceutical Method Development and Validation. Biomed. Pharmacol. J. 2023, 16, 1669–1679. [Google Scholar] [CrossRef]
- Silva, A.V.D.; Breitkreitz, M.C. Pharmaceutical Quality by Design (QbD) Overview and Major Elements. In Introduction to Quality by Design in Pharmaceutical Manufacturing and Analytical Development; Springer: Cham, Switzerland, 2023; pp. 3–27. [Google Scholar]
- Majus, A. Egyptian Herbal Monograph, Glycyrrhiza Glabra; EDA: Cairo, Egypt, 2022; pp. 277–283.
- Al Mousawi, H.G.; Saleh, R.H.; Omran, A.M.; Sa, A.; Talib, A.; Ghasemian, A. Chemical Analysis and Antibacterial Activity of Glycyrrhiza glabra roots. Egypt. J. Chem. 2022, 65, 667–672. [Google Scholar]
- Mamedov, N.A.; Egamberdieva, D. Phytochemical constituents and pharmacological effects of licorice: A review. Plant Hum. Health 2019, 3, 1–21. [Google Scholar]
- He, S.; Mu, H. Microenvironmental pH Modification in Buccal/Sublingual Dosage Forms for Systemic Drug Delivery. Pharmaceutics 2023, 15, 637. [Google Scholar] [CrossRef]
- Jain, S.K.; Sahu, A.; Keservani, R.K. Oral Drug Delivery System. In Advances in Novel Formulations for Drug Delivery; Keservani, R.K., Kesharwani, R.K., Sharma, A.K., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2023; pp. 383–400. [Google Scholar]
- Tarse, D.T.; Emire, S.A. The State of the Art of PH Sensors for Fish Products Safety and Quality Controls. Biotechnol. Bioprocess Eng. 2023, 13, 1–15. [Google Scholar] [CrossRef]
- Ammar, H.O.; Ibrahim, M.; Mahmoud, A.A.; Shamma, R.N.; El Hoffy, N.M. Non-ionic Surfactant Based In Situ Forming Vesicles as Controlled Parenteral Delivery Systems. AAPS PharmSciTech 2018, 19, 1001–1010. [Google Scholar] [CrossRef]
- Hala, M.A.; Khaled, M.H. Aloe Vera as Topical Hydrogel; Formulation and Rheological Assessment. Int. J. Pharm. Sci. Res. 2019, 10, 3682–3687. [Google Scholar] [CrossRef]
- Clark, J.D.; Gebhart, G.F.; Gonder, J.C.; Keeling, M.E.; Kohn, D.F. The 1996 guide for the care and use of laboratory animals. ILAR J. 1997, 38, 41–48. [Google Scholar] [CrossRef]
- Surboyo, M.D.C.; Arundina, I.; Rahayu, R.P. Increase of collagen in diabetes-related traumatic ulcers after the application of liquid smoke coconut shell. Dent. J. 2017, 71, 71–75. [Google Scholar] [CrossRef]
- Rivera, C. Essentials of recurrent aphthous stomatitis. Biomed. Rep. 2019, 11, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.; Sujatha, D. A clinical evaluation of 5% amlexanox oral paste in the treatment of minor recurrent aphthous ulcers and comparison with the placebo paste: A randomized, vehicle controlled, parallel, single center clinical trial. Indian J. Dent. Res. 2013, 24, 593–598. [Google Scholar] [CrossRef]
- Greer, R.O., Jr.; Lindenmuth, J.E.; Juarez, T.; Khandwala, A. A double-blind study of topically applied 5% amlexanox in the treatment of aphthous ulcers. J. Oral Maxillofac. Surg. 1993, 51, 243–248; discussion 248–249. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, G.M.; Paula, R.J.S.D.; Souza, L.P.D.; Sousa, F.B.; Mota, M.R.L.; Alves, A.P.N.N. Experimental model of traumatic ulcer in the cheek mucosa of rats. Acta Cir. Bras. 2011, 26, 227–234. [Google Scholar] [CrossRef]
- Tucker, I.M.; Burley, A.; Petkova, R.E.; Hosking, S.L.; Penfold, J.; Thomas, R.K.; Li, P.X.; Webster, J.R.P.; Welbourn, R.; Doutch, J. Adsorption and self-assembly properties of the plant based biosurfactant, Glycyrrhizic acid. J. Colloid Interface Sci. 2021, 598, 444–454. [Google Scholar] [CrossRef]
- Jagetia, G.C.; Rajanikant, G.; Rao, K.M. Ascorbic acid increases healing of excision wounds of mice whole body exposed to different doses of γ-radiation. Burns 2007, 33, 484–494. [Google Scholar] [CrossRef]
- Osborne, J. Improving your data transformations: Applying the Box-Cox transformation. Pract. Assess. Res. Eval. 2010, 15, 12. [Google Scholar]
- Box, G.E.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. B Stat. 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Alsayed, Z.; Mohammed, E.B.; Alaa, F. Effect of licorice on wound healing in rabbits. Egypt. J. Hosp. Med. 2005, 20, 58–65. [Google Scholar]
- Raeesi, V.; Arbabi-Kalati, F.; Akbari, N.; Hamishekar, H. Comparison effectiveness of the bioadhesive paste containing licorice 5% with bioadhesive paste without drug in the management of recurrent aphthous stomatitis. Popul. Environ. 2015, 1, 2. [Google Scholar]
- Burgess, J.; Martin, M.; Haley, J. Cankermelts oral patches with licorice extract reduce pain and speed resolution of aphthous ulcers. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2007, 6, 788. [Google Scholar] [CrossRef]
- Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound repair and regeneration. Nat. Biotechnol. 2008, 453, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Arundina, I.; Diyatri, I.; Surboyo, M.D.; Monica, E.; Afanda, N.M. Growth factor stimulation for the healing of traumatic ulcers with liquid rice hull smoke. J. Taibah Univ. Med. Sci. 2021, 16, 431–439. [Google Scholar] [CrossRef]
- Diller, R.B.; Tabor, A.J. The role of the extracellular matrix (ECM) in wound healing: A review. Biomimetics 2022, 7, 87. [Google Scholar] [CrossRef]
- Shams, F.; Moravvej, H.; Hosseinzadeh, S.; Mostafavi, E.; Bayat, H.; Kazemi, B.; Bandehpour, M.; Rostami, E.; Rahimpour, A.; Moosavian, H. Overexpression of VEGF in dermal fibroblast cells accelerates the angiogenesis and wound healing function: In vitro and in vivo studies. Sci. Rep. Ist. Super. Sanita 2022, 12, 18529. [Google Scholar] [CrossRef]
- Miricescu, D.; Badoiu, S.C.; Stanescu-Spinu, I.-I.; Totan, A.R.; Stefani, C.; Greabu, M. Growth Factors, Reactive Oxygen Species, and Metformin—Promoters of the Wound Healing Process in Burns? Int. J. Mol. Sci. 2021, 22, 9512. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, C.; Graves, D.T. Abnormal cell responses and role of TNF-in impaired diabetic wound healing. Biomed Res. Int. 2013, 2013, 754802. [Google Scholar] [CrossRef]
- Ghabaee, D.N.Z.; Ebrahimzadeh, M.A.; Akbari, J.; Amiri, F.T. Wound healing activity of Sambucus ebulus. Int. J. Pharm. Sci. Res. 2017, 8, 132–135. [Google Scholar]
- Wells, A.; Nuschke, A.; Yates, C.C. Skin tissue repair: Matrix microenvironmental influences. Matrix Biol. 2016, 49, 25–36. [Google Scholar] [CrossRef]
- Sharma, A.; Khanna, S.; Kaur, G.; Singh, I. Medicinal plants and their components for wound healing applications. FJPS 2021, 7, 53. [Google Scholar] [CrossRef]
- Oloumi, M.M.; Derakhshanfar, A.; Nikpour, A. Healing potential of liquorice root extract on dermal wounds in rats. J. Vet. Res 2007, 62, 147–154. [Google Scholar]
- Hanafi, N.; Amiri, F.T.; Shahani, S.; Enayatifard, R.; Ghasemi, M.; Karimpour, A.A. Licorice cream promotes full-thickness wound healing in Guinea pigs. J. Res. Pharm 2018, 22, 84–94. [Google Scholar] [CrossRef]
- Najeeb, V.D.; Al-Refai, A.S. Antibacterial effect and healing potential of topically applied licorice root extract on experimentally induced oral wounds in rabbits. Saudi J. Oral. Sci. 2015, 2, 10. [Google Scholar]
Formula | Independent Factors | Dependent Factors * | |||||||
---|---|---|---|---|---|---|---|---|---|
HEC g% (w/w) | Dried Licorice Roots Concentration g% (w/w) | pH | Vmin (cp) | UHS | COL-1 (ng/mg) | EGF (pg/mg) | VEGF (pg/mg) | TNF-α (pg/mg) | |
LHG1 | 2 | 0 | 7.03 ± 0.01 | 819.16 ± 10.93 | 5.61 ± 0.12 | 5.21 ± 0.08 | 275.80 ± 9.64 | 200.92 ± 6.13 | 270.94 ± 6.13 |
LHG2 | 2 | 20 | 8.19 ± 0.06 | 746.13 ± 15.13 | 2.09 ± 0.09 | 5.85 ± 0.38 | 289.85 ± 8.29 | 217.67 ± 3.47 | 174.00 ± 13.12 |
LHG3 | 2 | 30 | 9.03 ± 0.05 | 1000.14 ± 29.40 | 0.82 ± 0.02 | 6.01 ± 0.23 | 292.75 ± 11.64 | 227.71 ± 1.51 | 162.44 ± 9.88 |
LHG4 | 4 | 0 | 6.91 ± 0.02 | 1016.01 ± 13.01 | 6.27 ± 0.12 | 5.43 ± 0.12 | 273.90 ± 3.38 | 215.23 ± 2.87 | 262.11 ± 3.24 |
LHG5 | 4 | 20 | 8.01 ± 0.05 | 2127.28 ± 72.84 | 0.71 ± 0.01 | 6.28 ± 0.15 | 293.53 ± 5.81 | 242.10 ± 15.16 | 153.54 ± 8.02 |
LHG6 | 4 | 30 | 9.19 ± 0.15 | 35798.6 ± 121.01 | 1.08 ± 0.08 | 6.48 ± 0.02 | 360.41 ± 3.52 | 250.08 ± 2.10 | 142.33 ± 3.30 |
Peak No. | Rt | Compound | Class | Relative Abundance (%) | Molecular Formula | [M−H]- (m/z) | MS2 Fragments |
---|---|---|---|---|---|---|---|
1 | 2.41 | Neoliquiritin | Phenolic | 2.46 ± 0.23 | C21H21O9 | 418.134 | 257,239,137 |
2 | 3.16 | Glycyrol | Phenolic | 1.44 ± 0.26 | C21H17O6 | 365.110 | 257,147 |
3 | 3.53 | Glycyrrhetol | Saponin | 0.78 ± 0.17 | C30H47O3 | 455.360 | 452,137 |
4 | 3.71 | Glabric acid | Saponin | 2.11 ± 1.02 | C30H45O5 | 486.345 | 469,451,317 |
5 | 4.23 | Isoliquiritigenin | Phenolic | 3.64 ± 0.44 | C15H11O4 | 255.065 | 255,135 |
6 | 4.31 | Isoliquiritin | Phenolic | 3.55 ± 0.95 | C21H21O9 | 417.119 | 255,135 |
7 | 4.58 | Licorice saponin G2 | Saponin | 0.49 ± 0.07 | C42H61O17 | 837.386 | 351,289 |
8 | 4.89 | Neoisoliquiritin | Phenolic | 2.12 ± 0.55 | C21H21O9 | 417.119 | 257,147 |
9 | 5.32 | Dehydroglyasperin D | Saponin | 0.92 ± 0.09 | C22H23O5 | 368.112 | 298,162 |
10 | 5.50 | Glucoliquiritin apioside | Saponin | 1.07 ± 0.14 | C32H39O18 | 711.121 | 256 |
11 | 5.73 | Glycyrrhetinic acid | Saponin | 5.74 ± 1.02 | C30H45O4 | 470.347 | 452,406 |
12 | 6.26 | Licoflavone B | Phenolic | 0.25 ± 0.08 | C25H25O4 | 389.174 | 333 |
13 | 7.44 | Licochalcone D | Phenolic | 0.94 ± 0.06 | C21H21O5 | 353.141 | 338,297 |
14 | 8.98 | Licorice saponin A3 | Saponin | 0.59 ± 0.11 | C48H71O21 | 1000.446 | 825,649,451 |
15 | 10.25 | Neolicuroside | Phenolic | 1.54 ± 0.21 | C26H29O13 | 549.160 | 255,135 |
16 | 11.42 | Glabrolide | Saponin | 0.79 ± 0.24 | C30H43O4 | 468.331 | 451,439,395 |
17 | 11.68 | Nicotiflorin | Phenolic | 1.04 ± 0.09 | C27H29O15 | 593.576 | 461,414,374 |
18 | 12.50 | Licochalcon B | Phenolic | 0.77 ± 0.55 | C16H13O5 | 385.078 | 270 |
19 | 13.01 | Licorice saponin J2 | Saponin | 0.28 ± 0.13 | C42H63O16 | 824.236 | 454,436,314 |
20 | 13.76 | Glycyrrhizic acid (Glycyrrhizin) | Saponin | 34.85 ± 2.77 | C42H61O16 | 821.396 | 351,193 |
21 | 13.92 | Glycyrrhetic acid | Saponin | 2.60 ± 0.95 | C30H45O4 | 469.330 | 451,317 |
22 | 14.24 | 3-hydroxyglabrol | Phenolic | 1.36 ± 1.01 | C25H27O5 | 407.185 | 198 |
23 | 14.88 | Liquoric acid | Saponin | 0.52 ± 0.04 | C30H43O5 | 483.318 | 450,193 |
24 | 15.05 | Isoglabrolide | Saponin | 0.23 ± 0.03 | C30H43O4 | 468.331 | 451,439,395 |
25 | 15.34 | Licoflavonol | Phenolic | 0.72 ± 0.15 | C20H17O6 | 353.401 | 135 |
26 | 16.41 | Licorisoflavan A | Phenolic | 0.58 ± 0.12 | C27H33O5 | 437.231 | 167,135 |
27 | 16.52 | Glucoisoliquiritin | Phenolic | 0.11 ± 0.04 | C27H30O14 | 579.169 | 417,255 |
28 | 18.29 | Glabrene | Phenolic | 0.76 ± 0.17 | C20H17O4 | 321.113 | 277 |
29 | 20.11 | Liquiritin apioside | Phenolic | 1.25 ± 0.05 | C26H29O13 | 549.155 | 429,255,135 |
30 | 20.66 | Isoglycyrol | Phenolic | 0.26 ± 0.11 | C21H17O6 | 366.233 | 335,321,203 |
31 | 21.18 | Glucoliquiritin | Phenolic | 0.53 ± 0.05 | C27H31O14 | 579.169 | 417,255 |
32 | 21.79 | Hispaglabridin | Phenolic | 0.72 ± 0.02 | C25H27O4 | 391.438 | 215,177 |
33 | 22.05 | Glabridin | Phenolic | 2.46 ± 0.23 | C20H19O4 | 323.127 | 305,201,135 |
34 | 23.43 | Licorice saponin E2 | Saponin | 4.52 ± 0.98 | C42H59O16 | 819.383 | 383,352 |
35 | 23.52 | Glabrol | Phenolic | 1.14 ± 0.07 | C25H27O4 | 391.189 | 221,203,187 |
36 | 24.22 | Isoviolanthin | Phenolic | 1.03 ± 0.12 | C27H29O14 | 577.149 | 559,503,415 |
37 | 24.61 | Formononetin | Phenolic | 0.39 ± 0.02 | C16H11O4 | 268.014 | 253,237,137 |
38 | 24.98 | Glyzaglabrin | Phenolic | 0.86 ± 0.03 | C16H9O6 | 297.250 | 135 |
39 | 26.03 | Liquiritigenin | Phenolic | 1.60 ± 0.45 | C15H11O4 | 247.081 | 165,137 |
40 | 28.39 | Liquiritin | Phenolic | 2.47 ± 0.23 | C21H21O9 | 417.155 | 255,135 |
41 | 28.46 | Liquiritin apioside | Phenolic | 1.12 ± 0.03 | C26H29O13 | 550.177 | 257,239,137 |
42 | 30.77 | Glyasperin D | Saponin | 1.09 ± 0.77 | C22H25O5 | 370.103 | 249,218,204 |
43 | 31.32 | Licorice saponin K2 | Saponin | 2.11 ± 0.65 | C42H61O16 | 821.395 | 351 |
Total no. of identified compounds | 43 | ||||||
Total % of identified compounds | 93.80 | ||||||
Total no. of identified saponins | 16 | ||||||
Total % of identified saponins | 58.69 | ||||||
Total no. of identified phenolics | 27 | ||||||
Total % of identified phenolics | 35.11 |
ANOVA | pH | Vmin | UHS | COL-1 | EGF | VEGF | TNF-α | WHS |
---|---|---|---|---|---|---|---|---|
Model | Linear | 2FI | Liner | Liner | 2FI | Linear | Linear | Linear |
R-Squared | 0.990 | 1.000 | 0.999 | 0.98 | 1.00 | 1.00 | 0.97 | 1.00 |
Adj R-Squared | 0.981 | 0.999 | 0.998 | 0.96 | 1.00 | 1.00 | 0.94 | 1.00 |
Pred R-Squared | 0.923 | N/A | 0.997 | 0.84 | N/A | 1.00 | 0.90 | 1.00 |
Adeq Precision | 18.977 | 252.135 | 67.486 | 16.25 | 43.90 | 762.60 | 11.29 | 618.518 |
Coded Equation | pH = +8.01 + 0.042 * A + 1.06 * B | Visc Min = +9627.35 + 8779.96 * A + 8730.52 * B + 8660.78 * A * B | Sqrt(Ulcer healing score) = +1.71 + 0.059 * A − 0.73 * B | COL1 = +5.80 + 0.16 * A + 0.47 * B | EGF = +301.16 + 16.00 * A + 26.01 * B + 17.24 * A * B | (VEGF)^−2.21 = +6.575 × 10−6 −5.740 × 10−7 * A −9.847 × 10−7 * B | TNF = +205.58 −3.36 * A −58.36 * B | (WHS + 0.02)^1.59 = +1.53 − 1.826 × 10−3 * A − 1.53 * B |
Day | Score | Experimental Groups (Number of Rats) | ||||||
---|---|---|---|---|---|---|---|---|
1-UINC Self-Healing | 2-UIPC LHG1 | 3-UIPC LHG4 | 4-UI LHG2 | 5-UI LHG3 | 6-UI LHG5 | 7-UI LHG6 | ||
Day 3 | Score 0 | NF | NF | NF | NF | NF | NF | 3 |
Score 1 | NF | NF | NF | 1 | NF | 5 | 3 | |
Score 2 | 1 | 3 | 3 | 5 | 3 | 1 | NF | |
Score 3 | 5 | 3 | 3 | NF | 3 | NF | NF | |
Score 4 | NF | NF | NF | NF | NF | NF | NF | |
Day 5 | Score 0 | NF | NF | NF | NF | 2 | 4 | 5 |
Score 1 | 2 | NF | 2 | 5 | 4 | 2 | 1 | |
Score 2 | 4 | 6 | 4 | 1 | NF | NF | NF | |
Score 3 | NF | NF | NF | NF | NF | NF | NF | |
Score 4 | NF | NF | NF | NF | NF | NF | NF | |
Day 7 | Score 0 | NF | NF | 2 | 3 | 4 | 5 | 6 |
Score 1 | 5 | 3 | 3 | 3 | 2 | 1 | NF | |
Score 2 | 1 | 3 | 1 | NF | NF | NF | NF | |
Score 3 | NF | NF | NF | NF | NF | NF | NF | |
Score 4 | NF | NF | NF | NF | NF | NF | NF |
Day | Score | Experimental Groups (Exudate) (Number of Rats) | ||||||
---|---|---|---|---|---|---|---|---|
1-UINC Self-Healing | 2-UIPC LHG1 | 3-UIPC LHG4 | 4-UI LHG2 | 5-UI LHG3 | 6-UI LHG5 | 7-UI LHG6 | ||
Day 3 | Score 0 | NF | NF | NF | NF | NF | 1 | 4 |
Score 1 | NF | NF | NF | 1 | 3 | 4 | 2 | |
Score 2 | 1 | 3 | 4 | 4 | 2 | 1 | NF | |
Score 3 | 3 | 3 | 2 | 1 | 1 | NF | NF | |
Score 4 | 2 | NF | NF | NF | NF | NF | NF | |
Day 5 | Score 0 | NF | NF | NF | NF | 3 | 4 | 5 |
Score 1 | 2 | 1 | 3 | 5 | 3 | 2 | 1 | |
Score 2 | 4 | 5 | 3 | 1 | NF | NF | NF | |
Score 3 | NF | NF | NF | NF | NF | NF | NF | |
Score 4 | NF | NF | NF | NF | NF | NF | NF | |
Day 7 | Score 0 | NF | NF | 1 | 4 | 5 | 6 | 6 |
Score 1 | 4 | 5 | 3 | 2 | 1 | NF | NF | |
Score 2 | 2 | 1 | 2 | NF | NF | NF | NF | |
Score 3 | NF | NF | NF | NF | NF | NF | NF | |
Score 4 | NF | NF | NF | NF | NF | NF | NF |
Day | Score | Experimental Groups (Number of Rats) | ||||||
---|---|---|---|---|---|---|---|---|
1-UINC Self-Healing | 2-UIPC LHG1 | 3-UIPC LHG4 | 4-UI LHG2 | 5-UI4 LHG3 | 6-UI LHG5 | 7-UI LHG6 | ||
Day 3 | Score 0 | NF | NF | NF | NF | NF | NF | NF |
Score 1 | NF | NF | NF | NF | NF | NF | NF | |
Score 2 | NF | NF | NF | NF | NF | NF | 2 | |
Score 3 | NF | 2 | 2 | 1 | 2 | 2 | 1 | |
Score 4 | 3 | 1 | 1 | 2 | 1 | 1 | NF | |
Day 5 | Score 0 | NF | NF | NF | NF | NF | NF | 2 |
Score 1 | NF | NF | 1 | 1 | 2 | 3 | 1 | |
Score 2 | 1 | 2 | 2 | 2 | 1 | NF | NF | |
Score 3 | 2 | 1 | NF | NF | NF | NF | NF | |
Score 4 | NF | NF | NF | NF | NF | NF | NF | |
Day 7 | Score 0 | NF | NF | 1 | 1 | 2 | 1 | 2 |
Score 1 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | |
Score 2 | 2 | 1 | 1 | 1 | NF | NF | NF | |
Score 3 | NF | NF | NF | NF | NF | NF | NF | |
Score 4 | NF | NF | NF | NF | NF | NF | NF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moussa, S.G.; El Hoffy, N.M.; Mouselhy, Y.Y.; Mubarak, R.; Attia, R.T.; Khalil, N.; Amer, S.A. Sustainable Treatment of Oral Traumatic Ulcers with Licorice Containing Hydrogels: Integrating Computational Modeling, Quality by Design, Green Synthesis, and Molecular Biological Evaluation. Pharmaceutics 2023, 15, 2734. https://doi.org/10.3390/pharmaceutics15122734
Moussa SG, El Hoffy NM, Mouselhy YY, Mubarak R, Attia RT, Khalil N, Amer SA. Sustainable Treatment of Oral Traumatic Ulcers with Licorice Containing Hydrogels: Integrating Computational Modeling, Quality by Design, Green Synthesis, and Molecular Biological Evaluation. Pharmaceutics. 2023; 15(12):2734. https://doi.org/10.3390/pharmaceutics15122734
Chicago/Turabian StyleMoussa, Sarah G., Nada M. El Hoffy, Yara Y. Mouselhy, Ramy Mubarak, Reem T. Attia, Noha Khalil, and Sherif A. Amer. 2023. "Sustainable Treatment of Oral Traumatic Ulcers with Licorice Containing Hydrogels: Integrating Computational Modeling, Quality by Design, Green Synthesis, and Molecular Biological Evaluation" Pharmaceutics 15, no. 12: 2734. https://doi.org/10.3390/pharmaceutics15122734
APA StyleMoussa, S. G., El Hoffy, N. M., Mouselhy, Y. Y., Mubarak, R., Attia, R. T., Khalil, N., & Amer, S. A. (2023). Sustainable Treatment of Oral Traumatic Ulcers with Licorice Containing Hydrogels: Integrating Computational Modeling, Quality by Design, Green Synthesis, and Molecular Biological Evaluation. Pharmaceutics, 15(12), 2734. https://doi.org/10.3390/pharmaceutics15122734