Relationship between Body Composition and Serum Immunoglobulin Concentrations after Administration of Intravenous Immune Globulin–Preclinical and Clinical Evidence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preclinical Study
2.1.1. Materials
2.1.2. Animals
2.1.3. Assessment of Body Size and Composition in Animals
2.1.4. Experimental Procedure
2.2. Clinical Study
2.2.1. Population
2.2.2. Assessment of Body Size and Composition in Humans
2.2.3. Study Design
2.3. Bioanalytical Procedure
2.4. Data Analysis
3. Results
3.1. Preclinical Study
3.2. Clinical Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Menzin, J.; Sussman, M.; Munsell, M.; Zbrozek, A. Economic impact of infections among patients with primary immunodeficiency disease receiving IVIG therapy. Clin. Outcomes Res. 2014, 6, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Rocchio, M.A.; Hussey, A.P.; Southard, R.A.; Szumita, P.M. Impact of ideal body weight dosing for all inpatient i.v. immune globulin indications. Am. J. Heal. Syst. Pharm. 2013, 70, 751–752. [Google Scholar] [CrossRef] [PubMed]
- Kerr, J.; Quinti, I.; Eibl, M.; Chapel, H.; Spã¤Th, P.J.; Sewell, W.A.C.; Salama, A.; Van Schaik, I.N.; Kuijpers, T.W.; Peter, H.-H. Is dosing of therapeutic immunoglobulins optimal? A review of a three-decade long debate in europe. Front. Immunol. 2014, 5, 629. [Google Scholar] [CrossRef] [PubMed]
- Ameratunga, R. Initial intravenous immunoglobulin doses should be based on adjusted body weight in obese patients with primary immunodeficiency disorders. Allergy Asthma Clin. Immunol. 2017, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- Lagasse, C.; Hatton, R.C.; Pyles, E. A survey of intravenous immune globulin (IVIG) dosing strategies. Ann. Pharmacother. 2015, 49, 254–257. [Google Scholar] [CrossRef]
- Stump, S.E.; Schepers, A.J.; Jones, A.R.; Alexander, M.D.; Auten, J.J. Comparison of Weight-Based Dosing Strategies for Intravenous Immunoglobulin in Patients with Hematologic Malignancies. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2017, 37, 1530–1536. [Google Scholar] [CrossRef] [PubMed]
- White, D.A.; Leonard, M.C. Acute stroke with high-dose intravenous immune globulin. Am. J. Heal. Syst. Pharm. 2007, 64, 1611–1614. [Google Scholar] [CrossRef]
- Hodkinson, J.P. Considerations for dosing immunoglobulin in obese patients. Clin. Exp. Immunol. 2017, 188, 353–362. [Google Scholar] [CrossRef]
- Emerson, G.G.; Herndon, C.N.; Sreih, A.G. Thrombotic complications after intravenous immunoglobulin therapy in two patients. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2002, 22, 1638–1641. [Google Scholar] [CrossRef]
- Reinhart, W.; Berchtold, P. Effect of high-dose intravenous immunoglobulin therapy on blood rheology. Lancet 1992, 339, 662–664. [Google Scholar] [CrossRef]
- Chow, S.; Salmasi, G.; Callum, J.L.; Lin, Y. Trimming the fat with an IVIG approval process. Transfus. Apher. Sci. 2012, 46, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Steinberger, B.A.; Ford, S.M.; Coleman, T.A. Intravenous immunoglobulin therapy results in post-infusional hyperproteinemia, increased serum viscosity, and pseudohyponatremia. Am. J. Hematol. 2003, 73, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Gustine, J.; Meid, K.; Manning, R.R.; Dubeau, T.; Ghobrial, I.M.; Treon, S.P.; Castillo, J.J. The High Risk for Symptomatic Hyperviscosity in Patients with High Serum IgM Levels Can be Used to Support Initiation of Treatment in Waldenström Macroglobulinemia. Blood 2016, 128, 2983. [Google Scholar] [CrossRef]
- Modell, V.; Gee, B.; Lewis, D.B.; Orange, J.S.; Roifman, C.M.; Routes, J.M.; Sorensen, R.U.; Notarangelo, L.D.; Modell, F. Global study of primary immunodeficiency diseases (PI)--diagnosis, treatment, and economic impact: An updated report from the Jeffrey Modell Foundation. Immunol. Res. 2011, 51, 61–70. [Google Scholar] [CrossRef]
- Leong, H.; Stachnik, J.; Bonk, M.E.; Matuszewski, K.A. Unlabeled uses of intravenous immune globulin. Am. J. Heal. Syst. Pharm. 2008, 65, 1815–1824. [Google Scholar] [CrossRef]
- Gurwitch, K.D.; Goldwire, M.A.; Baker, C.J. Intravenous Immune Globulin Shortage: Experience at a Large Children’s Hospital. Pediatrics 1998, 102, 645–647. [Google Scholar] [CrossRef] [PubMed]
- Figgins, B.S.; Aitken, S.L.; Whited, L.K. Optimization of intravenous immune globulin use at a comprehensive cancer center. Am. J. Heal. Syst. Pharm. 2019, 76 (Suppl. S4), S102–S106. [Google Scholar] [CrossRef]
- Brown, R.P.; Delp, M.; Lindstedt, S.L.; Rhomberg, L.R.; Beliles, R.P. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol. Ind. Heal. 1997, 13, 407–484. [Google Scholar] [CrossRef]
- Ochs, H.D.; Fischer, S.H.; Wedgwood, R.J.; Wara, D.W.; Cowan, M.J.; Ammann, A.J.; Saxon, A.; Budinger, M.D.; Allred, R.U.; Rousell, R.H. Comparison of high-dose and low-dose intravenous immunoglobulin therapy in patients with primary immunodeficiency diseases. Am. J. Med. 1984, 76, 78–82. [Google Scholar] [CrossRef]
- Hume, R. Prediction of lean body mass from height and weight. J. Clin. Pathol. 1966, 19, 389–391. [Google Scholar] [CrossRef] [Green Version]
- Janson, B.; Thursky, K. Dosing of antibiotics in obesity. urr. Opin. Infect. Dis. 2012, 25, 634–649. [Google Scholar] [CrossRef] [PubMed]
- Earthman, C.P. Body Composition Tools for Assessment of Adult Malnutrition at the Bedside: A Tutorial on Research Considerations and Clinical Applications. J. Parenter. Enter. Nutr. 2015, 39, 787–822. [Google Scholar] [CrossRef]
- Mulasi, U.; Kuchnia, A.J.; Cole, A.J.; Earthman, C.P. Bioimpedance at the bedside: Current applications, limitations, and opportunities. Nutr. Clin. Pr. 2015, 30, 180–193. [Google Scholar] [CrossRef]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gomez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.-C.; Pirlich, M.; et al. Bioelectrical impedance analysis--part I: Review of principles and methods. Clin. Nutr. 2004, 23, 1226–1243. [Google Scholar] [CrossRef]
- Kushner, R.F.; De Vries, P.M.; Gudivaka, R. Use of bioelectrical impedance analysis measurements in the clinical management of patients undergoing dialysis. Am. J. Clin. Nutr. 1996, 64 (Suppl. S3), 503S–509S. [Google Scholar] [CrossRef] [PubMed]
- Thomson, R.; Brinkworth, G.D.; Buckley, J.D.; Noakes, M.; Clifton, P.M. Good agreement between bioelectrical impedance and dual-energy X-ray absorptiometry for estimating changes in body composition during weight loss in overweight young women. Clin. Nutr. 2007, 26, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Ruffner, M.A.; Group UBW; Sullivan, K.E. Complications Associated with Underweight Primary Immunodeficiency Patients: Prevalence and Associations Within the USIDNET Registry. J. Clin. Immunol. 2018, 38, 283–293. [Google Scholar] [CrossRef]
- Ruffner, M.A.; Sullivan, K.E. Body Weight and Infectious Outcomes in Patients with Primary Immunodeficiency Diseases: Outcomes from within the US Immunodeficiency Network (USIDNET). J. Allergy Clin. Immunol. 2016, 137, AB179. [Google Scholar] [CrossRef]
- Wang, W.; Wang, E.Q.; Balthasar, J.P. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin. Pharmacol. Ther. 2008, 84, 548–558. [Google Scholar] [CrossRef]
- Freiberger, T.; Grodecká, L.; Ravčuková, B.; Kuřecová, B.; Postránecká, V.; Vlček, J.; Jarkovský, J.; Thon, V.; Litzman, J. Association of FcRn expression with lung abnormalities and IVIG catabolism in patients with common variable immunodeficiency. Clin. Immunol. 2010, 136, 419–425. [Google Scholar] [CrossRef]
- Martins, J.P.; Kennedy, P.J.; Santos, H.A.; Barrias, C.; Sarmento, B. A comprehensive review of the neonatal Fc receptor and its application in drug delivery. Pharmacol. Ther. 2016, 161, 22–39. [Google Scholar] [CrossRef]
- Borvak, J.; Richardson, J.; Medesan, C.; Antohe, F.; Radu, C.; Simionescu, M.; Ghetie, V.; Ward, E.S. Functional expression of the MHC class I-related receptor, FcRn, in endothelial cells of mice. Int. Immunol. 1998, 10, 1289–1298. [Google Scholar] [CrossRef]
- Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W., Jr. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 2003, 112, 1796–1808. [Google Scholar] [CrossRef]
- Morell, A.; Terry, W.D.; Waldmann, T.A. Metabolic properties of IgG subclasses in man. J. Clin. Investig. 1970, 49, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.; Pinciaro, P.J.; Flebogamma, I. Safety, efficacy, and pharmacokinetics of Flebogamma 5% [immune globulin intravenous (human)] for replacement therapy in primary immunodeficiency diseases. J. Clin. Immunol. 2004, 24, 389–396. [Google Scholar] [CrossRef]
- Alyanakian, M.-A.; Bernatowska, E.; Scherrmann, J.-M.; Aucouturier, P.; Poplavsky, J.-L. Pharmacokinetics of total immunoglobulin G and immunoglobulin G subclasses in patients undergoing replacement therapy for primary immunodeficiency syndromes. Vox Sang. 2003, 84, 188–192. [Google Scholar] [CrossRef]
- Björkander, J.; Nikoskelainen, J.; Leibl, H.; Lanbeck, P.; Wallvik, J.; Lumio, J.T.; Braconier, J.H.; Pavlova, B.G.; Birthistle, K.; Engl, W.; et al. Prospective open-label study of pharmacokinetics, efficacy and safety of a new 10% liquid intravenous immunoglobulin in patients with hypo- or agammaglobulinemia. Vox Sang. 2006, 90, 286–293. [Google Scholar] [CrossRef]
- Mankarious, S.; Lee, M.; Fischer, S.; Pyun, K.H.; Ochs, H.D.; A Oxelius, V.; Wedgwood, R.J. The half-lives of IgG subclasses and specific antibodies in patients with primary immunodeficiency who are receiving intravenously administered immunoglobulin. J. Lab. Clin. Med. 1988, 112, 634–640. Available online: https://www.ncbi.nlm.nih.gov/pubmed/3183495 (accessed on 31 January 2023). [PubMed]
- Baba, R. Effect of immunoglobulin therapy on blood viscosity and potential concerns of thromboembolism, especially in patients with acute Kawasaki disease. Recent Pat Cardiovasc Drug Discov. 2008, 3, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Baba, R.; Shibata, A.; Tsurusawa, M. Single high-dose intravenous immunoglobulin therapy for kawasaki disease increases plasma viscosity. Circ. J. 2005, 69, 962–964. [Google Scholar] [CrossRef] [Green Version]
- Orange, J.S.; Hossny, E.; Weiler, C.R.; Ballow, M.; Berger, M.; Bonilla, F.A.; Buckley, R.; Chinen, J.; El-Gamal, Y.; Mazer, B.D. Use of intravenous immunoglobulin in human disease: A review of evidence by members of the Primary Immunodeficiency Committee of the American Academy of Allergy, Asthma and Immunology. J. Allergy Clin. Immunol. 2006, 117 (Suppl. S4), S525–S553. [Google Scholar] [CrossRef]
- Perez, E.E.; Orange, J.S.; Bonilla, F.; Chinen, J.; Chinn, I.K.; Dorsey, M.; El-Gamal, Y.; Harville, T.O.; Hossny, E.; Mazer, B.; et al. Update on the use of immunoglobulin in human disease: A review of evidence. J. Allergy Clin. Immunol. 2017, 139, S1–S46. [Google Scholar] [CrossRef] [PubMed]
- Buckley, R.H.; Schiff, R.I. The use of intravenous immune globulin in immunodeficiency diseases. N. Engl. J. Med. 1991, 325, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Zdziarski, P.; Gamian, A.; Majda, J.; Korzeniowska-Kowal, A. Passive blood anaphylaxis: Subcutaneous immunoglobulins are a cause of ongoing passive anaphylactic reaction. Allergy Asthma Clin. Immunol. 2017, 13, 41. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, E.; Notarangelo, L.D.; Geha, R.S. Primary immune deficiencies with aberrant IgE production. J. Allergy Clin. Immunol. 2008, 122, 1054–1062. [Google Scholar] [CrossRef]
- Tovo, P.-A.; Gabiano, C.; Roncarolo, M.; Altare, F. IgE content of commercial intravenous IgG preparations. Lancet 1984, 1, 458. [Google Scholar] [CrossRef]
- Paganelli, R.; Quinti, I.; D’Offizi, G.P.; Papetti, C.; Cabello, A.; Aiuti, F. A Study of IgE in Immunoglobulin Preparations for Intravenous Administration. Vox Sang. 1986, 51, 87–91. [Google Scholar] [CrossRef]
- Sigman, K.; Ghibu, F.; Sommerville, W.; Toledano, B.J.; Bastein, Y.; Cameron, L.; Hamid, Q.A.; Mazer, B. Intravenous immunoglobulin inhibits IgE production in human B lymphocytes. J. Allergy Clin. Immunol. 1998, 102, 421–427. [Google Scholar] [CrossRef]
- Wakim, M.; Alazard, M.; Yajima, A.; Speights, D.; Saxon, A.; Stiehm, E.R. High dose intravenous immunoglobulin in atopic dermatitis and hyper-IgE syndrome. Ann. Allergy, Asthma Immunol. 1998, 81, 153–158. [Google Scholar] [CrossRef]
- Arumugham, V.B.; Rayi, A. Intravenous Immunoglobulin (IVIG); StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Wang, Z.; Deurenberg, P.; Heymsfield, S.B. Cellular-level body composition model. A new approach to studying fat-free mass hydration. Ann. N. Y. Acad. Sci. 2000, 904, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Trippel, T.D.; Lenk, J.; Gunga, H.-C.; Doehner, W.; von Haehling, S.; Loncar, G.; Edelmann, F.; Pieske, B.; Stahn, A.; Duengen, H.-D. Estimating fat mass in heart failure patients. Arch. Med Sci. Atheroscler. Dis. 2016, 1, e78–e89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Lean | Obese | ||
---|---|---|---|---|
Mean | SD | Mean | SD | |
T1/2, day | 18.8 | 2.1 | 6.0 # | 1.6 |
Cmax, mg/mL | 10.1 | 4.1 | 16.5 $ | 1.9 |
AUC, day·mg/mL | 68.8 | 11.3 | 41.0 # | 6.5 |
Vss, mL/kg | 173.9 | 45.9 | 77.6 # | 6.4 |
CL, mL/day/kg | 7.5 | 1.6 | 12.4 # | 1.8 |
Parameter | Lean | Obese | ||
---|---|---|---|---|
Mean | SD | Mean | SD | |
T1/2, day | 19.5 | 2.9 | 7.1 # | 1.2 |
Cmax, mg/mL | 1.6 | 0.3 | 1.1 $ | 0.2 |
Tmax, day | 3.2 | 0.8 | 2.8 | 0.7 |
AUC, day·mg/mL | 37.5 | 3.0 | 13.2 # | 3.2 |
F (%) | 54.4 | 4.3 | 32.3 # | 7.8 |
Overall Characteristic | Overall | Individual Characteristics | Patient 1 | Patient 2 | Patient 3 | Patient 4 | Patient 5 | Patient 6 | Patient 7 | Patient 8 |
---|---|---|---|---|---|---|---|---|---|---|
Median age (range) | 63 (58–71) | Age, years | 71 | 57 | 55 | 67 | 61 | 72 | 58 | 63 |
Percent female | 75 | Sex | Female | Female | Female | Male | Male | Female | Female | Female |
Mean dose, g/kg (SD) | 0.41 (0.04) | Dose, g/kg | 0.47 | 0.39 | 0.43 | 0.43 | 0.37 | 0.46 | 0.36 | 0.40 |
Product name | - | Product Name | Octagam | Gammagard | Octagam | Octagam | Octagam | Gamunex-C | Octagam | Octagam |
Mean height, cm (SD) | 161.6 (13.1) | Height, cm | 144.8 | 165.1 | 163.8 | 175.3 | 182.9 | 148.6 | 152.4 | 160.0 |
Mean weight, kg (SD) Weight range, kg | 71.9 (17.1) 43–93 | Weight, kg | 43 | 64 | 58 | 93 | 81 | 65 | 83 | 88 |
Ideal body weight **, kg (SD) | 57.9 (9.4) | Ideal body weight, kg | 46 | 60 | 59 | 68 | 74 | 49 | 51 | 57 |
Mean body mass index, kg/m2 (SD) | 27.5 (5.8) | Body mass index, kg/m2 | 20.5 | 23.5 | 21.6 | 30.3 | 24.2 | 29.4 | 35.7 | 34.4 |
Mean body fat percentage (SD) | 37.8 (8.7) | Body fat percentage | 35.5 | 31.5 | 35.2 | 34.8 | 23.7 | 46.6 | 49.0 | 46.3 |
Mean fat mass, kg (SD) | 27.3 (10.0) | Fat mass, kg | 15.3 | 20.0 | 20.2 | 32.2 | 19.1 | 30.4 | 40.4 | 40.8 |
Mean fat free mass w/BIA, kg | 44.3 (11.8) | Fat free mass, kg | 31.80 | 40.90 | 37.90 | 65.10 | 63.10 | 37.80 | 43.60 | 47.50 |
Mean fat free mass w/Janmahastian 2005, kg | 46.0 (12.1) | Fat free mass, kg | 27.70 | 43.50 | 37.27 | 60.36 | 61.45 | 34.82 | 42.09 | 47.36 |
Total body water, kg (SD) | 32.6 (7.8) | Total body water, kg | 22.5 | 28.9 | 28.1 | 45.3 | 43.3 | 28.1 | 31.6 | 33.0 |
Basal metabolic rate, kCal (SD) | 1346 (317.5) | Basal metabolic rate, kCal | 882 | 1293 | 1138 | 1784 | 1770 | 1105 | 1331 | 1465 |
Indication for IVIG | - | Indication for IVIG | CVID | CVID | CVID | CVID | CVID | CVID | CVID | CVID |
Parameter | IgGTotal | IgG1 | IgG2 | IgG3 | IgG4 |
---|---|---|---|---|---|
[Cmin], mg/dL ± SD | 575.6 ± 254.7 | 460.0 ± 223.0 | 50.6 ± 18.5 | 58.0 ± 26.5 | 8.0 ± 3.3 |
[Cmax], mg/dL ± SD | 1358.5 ± 295.3 | 1106.0 ± 261.2 | 97.8 ± 22.0 | 137.9 ± 39.5 | 16.9 ± 5.1 |
[Δ], mg/dL ± SD | 783.0 ± 209.3 | 646.0 ± 180.8 | 47.2 ± 23.4 | 79.9 ± 23.6 | 8.9 ± 5.1 |
T1/2 ± SD | 22.2 ± 7.4 | 21.2 ± 6.8 | 28.1 ± 8.8 | 21.0 ± 4.8 | 34.4 ± 20.8 |
Body Mass Index | |||||
---|---|---|---|---|---|
Parameter | IgGTotal | IgG1 | IgG2 | IgG3 | IgG4 |
T1/2 | −0.59 (−0.92, 0.19) | −0.55 (−0.25, 0.91) | −0.57 (−0.91, 0.22) | −0.77 * (−0.96, −0.15) | −0.50 (−0.89, 0.32) |
[Cmax] | 0.22 (−0.58, 0.80) | 0.23 (−0.57, 0.80) | 0.28 (−0.53, 0.82) | −0.07 (−0.71, 0.70) | 0.22 (−0.57, 0.80) |
[Cmin] | −0.36 (−0.46, 0.85) | −0.32 (−0.83, 0.50) | −0.37 (−0.45, 0.85) | −0.53 (−0.90, 0.27) | −0.29 (−0.52, 0.82) |
[Δ] | 0.75 * (0.09, 0.95) | 0.72 * (0.03, 0.95) | 0.55 (−0.25, 0.91) | 0.49 (−0.33, 0.89) | 0.41 (−0.42, 0.87) |
Body fat mass | |||||
T1/2 | −0.54 (−0.90, 0.27) | −0.50 (−0.31, 0.89) | −0.48 (−0.88, 0.34) | −0.73 * (−0.95, −0.05) | −0.42 (−0.87, 0.40) |
[Cmax] | 0.29 (−0.52, 0.83) | 0.30 (−0.51, 0.83) | 0.34 (−0.48, 0.84) | −0.05 (−0.68, 0.73) | 0.29 (−0.52, 0.83) |
[Cmin] | −0.28 (−0.53, 0.82) | −0.23 (−0.57, 0.80) | −0.28 (−0.53, 0.82) | −0.53 (−0.28, 0.90) | −0.18 (−0.79, 0.60) |
[Δ] | 0.74 * (0.08, 0.95) | 0.72 * (0.02, 0.94) | 0.53 (−0.71, 0.71) | 0.52 (−0.29, 0.90) | 0.41 (−0.42, 086) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brunetti, L.; Chapy, H.; Nahass, R.G.; Moore, R.; Wassef, A.; Adler, D.; Yurkow, E.; Kagan, L. Relationship between Body Composition and Serum Immunoglobulin Concentrations after Administration of Intravenous Immune Globulin–Preclinical and Clinical Evidence. Pharmaceutics 2023, 15, 510. https://doi.org/10.3390/pharmaceutics15020510
Brunetti L, Chapy H, Nahass RG, Moore R, Wassef A, Adler D, Yurkow E, Kagan L. Relationship between Body Composition and Serum Immunoglobulin Concentrations after Administration of Intravenous Immune Globulin–Preclinical and Clinical Evidence. Pharmaceutics. 2023; 15(2):510. https://doi.org/10.3390/pharmaceutics15020510
Chicago/Turabian StyleBrunetti, Luigi, Helene Chapy, Ronald G. Nahass, Rebecca Moore, Andrew Wassef, Derek Adler, Edward Yurkow, and Leonid Kagan. 2023. "Relationship between Body Composition and Serum Immunoglobulin Concentrations after Administration of Intravenous Immune Globulin–Preclinical and Clinical Evidence" Pharmaceutics 15, no. 2: 510. https://doi.org/10.3390/pharmaceutics15020510
APA StyleBrunetti, L., Chapy, H., Nahass, R. G., Moore, R., Wassef, A., Adler, D., Yurkow, E., & Kagan, L. (2023). Relationship between Body Composition and Serum Immunoglobulin Concentrations after Administration of Intravenous Immune Globulin–Preclinical and Clinical Evidence. Pharmaceutics, 15(2), 510. https://doi.org/10.3390/pharmaceutics15020510