Montmorillonite–Rifampicin Nanohybrid for pH-Responsive Release of the Tuberculostatic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.3. Characterization of Materials
2.4. In Vitro Release Studies and Release Kinetics
3. Results
3.1. Experimental Design
- Variables X1 (mass of Mt) and X3 (pH) showed negative effects, indicating that higher incorporated drug dose values are obtained when the values of both variables were minimal.
- The variable X2 (RIF concentration) showed a positive effect, indicating that by increasing the RIF concentration in solution, the incorporated drug dose is maximized.
- The variable X4 (time) is not statistically significant and, therefore, does not have a considerable influence on the response of interest.
- To validate the previously presented results, the process was repeated in triplicate under the optimized conditions: Mt mass of 100 mg, RIF concentration of 0.125 and pH of 2. The incorporated dose was 98.60 ± 1.21 mg/g.
3.2. Characterization of Materials
3.2.1. XRD
3.2.2. FTIR
3.2.3. Thermal Analysis
3.2.4. SEM
3.3. In Vitro Release Studies and Release Kinetics
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carazo, E.; Borrego-Sánchez, A.; García-Villén, F.; Sánchez-Espejo, R.; Viseras, C.; Cerezo, P.; Aguzzi, C. Adsorption and Characterization of Palygorskite-Isoniazid Nanohybrids. Appl. Clay Sci. 2018, 160, 180–185. [Google Scholar] [CrossRef]
- Adeleke, O.A.; Tsai, P.-C.; Karry, K.M.; Monama, N.O.; Michniak-Kohn, B.B. Isoniazid-Loaded Orodispersible Strips: Methodical Design, Optimization and in Vitro-in Silico Characterization. Int. J. Pharm. 2018, 547, 347–359. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Global Tuberculosis Report 2022; World Health Organization: Geneva, Switzerland, 2022.
- Damasceno Junior, E.; de Almeida, J.M.F.; Silva, I.D.N.; de Assis, M.L.M.; dos Santos, L.M.I.; Dias, E.F.; da Silva, F.E.; Fernandes, N.S.; da Silva, D.R. Obtaining and Applying Nanohybrid Palygorskite-Rifampicin in the PH-Responsive Release of the Tuberculostatic Drug. Langmuir 2020, 36, 10251–10269. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Takkella, D.; Kumar, P.; Gavvala, K. Spectroscopic Analysis to Identify the Binding Site for Rifampicin on Bovine Serum Albumin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 283, 121721. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Amarnath Praphakar, R.; Munusamy, M.A.; Alarfaj, A.A.; Suresh Kumar, S.; Rajan, M. Mucoadhesive Guargum Hydrogel Inter-Connected Chitosan-g-Polycaprolactone Micelles for Rifampicin Delivery. Carbohydr. Polym. 2019, 206, 1–10. [Google Scholar] [CrossRef]
- Grobbelaar, M.; Louw, G.E.; Sampson, S.L.; van Helden, P.D.; Donald, P.R.; Warren, R.M. Evolution of Rifampicin Treatment for Tuberculosis. Infect. Genet. Evol. 2019, 74, 103937. [Google Scholar] [CrossRef]
- Castañeda-Fernandez, C.; Chávez-Santos, R.M.; Silva-Miranda, M.; Espitia-Pinzón, C.; Martínez, R.; Kozina, A. Optimization of Rifampicin Encapsulation in PLGA Polymeric Reservoirs. Int. J. Pharm. 2022, 622, 121844. [Google Scholar] [CrossRef]
- Alizadeh, M.; Asrami, P.N.; Altuner, E.E.; Gulbagca, F.; Tiri, R.N.E.; Aygun, A.; Kaynak, İ.; Sen, F.; Cheraghi, S. An Ultra-Sensitive Rifampicin Electrochemical Sensor Based on Fe3O4 Nanoparticles Anchored Multiwalled Carbon Nanotube Modified Glassy Carbon Electrode. Chemosphere 2022, 309, 136566. [Google Scholar] [CrossRef]
- Snejdrova, E.; Loskot, J.; Martiska, J.; Soukup, T.; Prokes, L.; Frolov, V.; Kucera, T. Rifampicin-Loaded PLGA Nanoparticles for Local Treatment of Musculoskeletal Infections: Formulation and Characterization. J. Drug Deliv. Sci. Technol. 2022, 73, 103435. [Google Scholar] [CrossRef]
- Abruzzo, A.; Croatti, V.; Zuccheri, G.; Pasquale Nicoletta, F.; Sallustio, V.; Corazza, E.; Vitali, B.; Cerchiara, T.; Luppi, B.; Bigucci, F. Drug-in-Cyclodextrin-in-Polymeric Nanoparticles: A Promising Strategy for Rifampicin Administration. Eur. J. Pharm. Biopharm. 2022, 180, 190–200. [Google Scholar] [CrossRef]
- Thomas, D.; Latha, M.S.; Thomas, K.K. Synthesis and in Vitro Evaluation of Alginate-Cellulose Nanocrystal Hybrid Nanoparticles for the Controlled Oral Delivery of Rifampicin. J. Drug Deliv. Sci. Technol. 2018, 46, 392–399. [Google Scholar] [CrossRef]
- Bhat, A.R.; Wani, F.A.; Behera, K.; Khan, A.B.; Patel, R. Formulation of Biocompatible Microemulsions for Encapsulation of Anti-TB Drug Rifampicin: A Physicochemical and Spectroscopic Study. Colloids Surf. A Physicochem. Eng. Asp. 2022, 645, 128846. [Google Scholar] [CrossRef]
- Rajabnezhad, S.; Casettari, L.; Lam, J.K.W.; Nomani, A.; Torkamani, M.R.; Palmieri, G.F.; Rajabnejad, M.R.; Darbandi, M.A. Pulmonary Delivery of Rifampicin Microspheres Using Lower Generation Polyamidoamine Dendrimers as a Carrier. Powder Technol. 2016, 291, 366–374. [Google Scholar] [CrossRef]
- Ahmed, R.; Aucamp, M.; Ebrahim, N.; Samsodien, H. Supramolecular Assembly of Rifampicin and PEGylated PAMAM Dendrimer as a Novel Conjugate for Tuberculosis. J. Drug Deliv. Sci. Technol. 2021, 66, 102773. [Google Scholar] [CrossRef]
- Wu, T.; Liao, W.; Wang, W.; Zhou, J.; Tan, W.; Xiang, W.; Zhang, J.; Guo, L.; Chen, T.; Ma, D.; et al. Genipin-Crosslinked Carboxymethyl Chitosan Nanogel for Lung-Targeted Delivery of Isoniazid and Rifampin. Carbohydr. Polym. 2018, 197, 403–413. [Google Scholar] [CrossRef]
- Ngwabebhoh, F.A.; Zandraa, O.; Patwa, R.; Saha, N.; Capáková, Z.; Saha, P. Self-Crosslinked Chitosan/Dialdehyde Xanthan Gum Blended Hypromellose Hydrogel for the Controlled Delivery of Ampicillin, Minocycline and Rifampicin. Int. J. Biol. Macromol. 2021, 167, 1468–1478. [Google Scholar] [CrossRef]
- Hussain, A.; Altamimi, M.A.; Alshehri, S.; Imam, S.S.; Singh, S.K. Vesicular Elastic Liposomes for Transdermal Delivery of Rifampicin: In-vitro, in-vivo and in Silico GastroPlusTM Prediction Studies. Eur. J. Pharm. Sci. 2020, 151, 105411. [Google Scholar] [CrossRef]
- Pereira, M.N.; Tolentino, S.; Pires, F.Q.; Anjos, J.L.V.; Alonso, A.; Gratieri, T.; Cunha-Filho, M.; Gelfuso, G.M. Nanostructured Lipid Carriers for Hair Follicle-Targeted Delivery of Clindamycin and Rifampicin to Hidradenitis Suppurativa Treatment. Colloids Surf. B Biointerfaces 2021, 197, 111448. [Google Scholar] [CrossRef]
- Damasceno Junior, E.; Almeida, J.M.F.D.; Silva, I.D.N.; Moreira de Assis, M.L.; Santos, L.M.D.; Dias, E.F.; Bezerra Aragão, V.E.; Veríssimo, L.M.; Fernandes, N.S.; da Silva, D.R. PH-Responsive Release System of Isoniazid Using Palygorskite as a Nanocarrier. J. Drug Deliv. Sci. Technol. 2020, 55, 101399. [Google Scholar] [CrossRef]
- Vorobjova, A.; Tishkevich, D.; Shimanovich, D.; Zdorovets, M.; Kozlovskiy, A.; Zubar, T.; Vinnik, D.; Dong, M.; Trukhanov, S.; Trukhanov, A.; et al. Electrochemical Behaviour of Ti/Al2O3/Ni Nanocomposite Material in Artificial Physiological Solution: Prospects for Biomedical Application. Nanomaterials 2020, 10, 173. [Google Scholar] [CrossRef] [Green Version]
- Pavitra, E.; Dariya, B.; Srivani, G.; Kang, S.-M.; Alam, A.; Sudhir, P.-R.; Kamal, M.A.; Raju, G.S.R.; Han, Y.-K.; Lakkakula, B.V.K.S.; et al. Engineered Nanoparticles for Imaging and Drug Delivery in Colorectal Cancer. Semin. Cancer Biol. 2021, 69, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Dukenbayev, K.; Korolkov, I.; Tishkevich, D.; Kozlovskiy, A.; Trukhanov, S.; Gorin, Y.; Shumskaya, E.; Kaniukov, E.; Vinnik, D.; Zdorovets, M.; et al. Fe3O4 Nanoparticles for Complex Targeted Delivery and Boron Neutron Capture Therapy. Nanomaterials 2019, 9, 494. [Google Scholar] [CrossRef] [PubMed]
- Carazo, E.; Borrego-Sánchez, A.; García-Villén, F.; Sánchez-Espejo, R.; Cerezo, P.; Aguzzi, C.; Viseras, C. Advanced Inorganic Nanosystems for Skin Drug Delivery. Chem. Rec. 2018, 18, 891–899. [Google Scholar] [CrossRef] [PubMed]
- El-Hamshary, H.; El-Newehy, M.H.; Moydeen Abdulhameed, M.; El-Faham, A.; Elsherbiny, A.S. Evaluation of Clay-Ionene Nanocomposite Carriers for Controlled Drug Delivery: Synthesis, in vitro Drug Release, and Kinetics. Mater. Chem. Phys. 2019, 225, 122–132. [Google Scholar] [CrossRef]
- Viseras, C.; Cerezo, P.; Sanchez, R.; Salcedo, I.; Aguzzi, C. Current Challenges in Clay Minerals for Drug Delivery. Appl. Clay Sci. 2010, 48, 291–295. [Google Scholar] [CrossRef]
- Nisticò, R. A Comprehensive Study on the Applications of Clays into Advanced Technologies, with a Particular Attention on Biomedicine and Environmental Remediation. Inorganics 2022, 10, 40. [Google Scholar] [CrossRef]
- Silva, D.T.C.; Fonseca, M.G.; Borrego-Sánchez, A.; Soares, M.F.R.; Viseras, C.; Sainz-Díaz, C.I.; Soares- Sobrinho, J.L. Adsorption of Tamoxifen on Montmorillonite Surface. Micropor. Mesopor. Mat. 2020, 297, 110012. [Google Scholar] [CrossRef]
- García-Villén, F.; Faccendini, A.; Aguzzi, C.; Cerezo, P.; Bonferoni, M.C.; Rossi, S.; Grisoli, P.; Ruggeri, M.; Ferrari, F.; Sandri, G.; et al. Montmorillonite-Norfloxacin Nanocomposite Intended for Healing of Infected Wounds. Int. J. Nanomed. 2019, 14, 5051–5060. [Google Scholar] [CrossRef]
- Arthur, P.K.; Amarh, V.; Blessie, E.J.S.; Yeboah, R.; Kankpeyeng, B.W.; Nkumbaan, S.N.; Tiburu, E.K. In vitro Antibacterial Activities of Selected TB Drugs in the Presence of Clay Minerals against Multidrug-Resistant Strain of Myco Bacterium smegmatis. Cogent. Eng. 2020, 7, 1742853. [Google Scholar] [CrossRef]
- Yang, F.; Wang, A. Recent Researches on Antimicrobial Nanocomposite and Hybrid Materials Based on Sepiolite and Palygorskite. Appl. Clay Sci. 2022, 219, 106454. [Google Scholar] [CrossRef]
- Ribeiro, L.N.M.; Alcântara, A.C.S.; Rodrigues Da Silva, G.H.; Franz-Montan, M.; Nista, S.V.G.; Castro, S.R.; Couto, V.M.; Guilherme, V.A.; de Paula, E. Advances in Hybrid Polymer-Based Materials for Sustained Drug Release. Int. J. Polym. Sci. 2017, 2017, 1231464. [Google Scholar] [CrossRef]
- Saadat, S.; Rawtani, D.; Parikh, G. Clay Minerals-Based Drug Delivery Systems for Anti-Tuberculosis Drugs. J. Drug Deliv. Sci. Technol. 2022, 76, 103755. [Google Scholar] [CrossRef]
- Carazo, E.; Borrego-Sánchez, A.; Sánchez-Espejo, R.; García-Villén, F.; Cerezo, P.; Aguzzi, C.; Viseras, C. Kinetic and Thermodynamic Assessment on Isoniazid/Montmorillonite Adsorption. Appl. Clay Sci. 2018, 165, 82–90. [Google Scholar] [CrossRef]
- Carazo, E.; Borrego-Sánchez, A.; García-Villén, F.; Sánchez-Espejo, R.; Aguzzi, C.; Viseras, C.; Sainz-Díaz, C.I.; Cerezo, P. Assessment of Halloysite Nanotubes as Vehicles of Isoniazid. Colloids Surf. B Biointerfaces 2017, 160, 337–344. [Google Scholar] [CrossRef]
- Carazo, E.; Sandri, G.; Cerezo, P.; Lanni, C.; Ferrari, F.; Bonferoni, C.; Viseras, C.; Aguzzi, C. Halloysite Nanotubes as Tools to Improve the Actual Challenge of Fixed Doses Combinations in Tuberculosis Treatment. J. Biomed. Mater. Res. A 2019, 107, 1513–1521. [Google Scholar] [CrossRef]
- Meirelles, L.; Carazo, E.; Borrego-Sánchez, A.; Barbosa, R.; Moura, T.; Aguzzi, C.; Sainz-Diaz, C.I.; Viseras, C.; Raffin, F. Design and Characterization of a Tuberculostatic Hybrid Based on Interaction of Ethambutol with a Raw Palygorskite. Appl. Clay Sci. 2019, 181, 105213. [Google Scholar] [CrossRef]
- Hun Kim, M.; Choi, G.; Elzatahry, A.; Vinu, A.; bin Choy, Y.; Choy, J.-H. Review of Clay-Drug Hybrid Materials for Biomedical Applications: Administration Routes. Clays Clay Miner. 2016, 64, 115–130. [Google Scholar] [CrossRef]
- Jain, S.; Datta, M. Montmorillonite-Alginate Microspheres as a Delivery Vehicle for Oral Extended Release of Venlafaxine Hydrochloride. J. Drug Deliv. Sci. Technol. 2016, 33, 149–156. [Google Scholar] [CrossRef]
- Moraes, J.D.D.; Bertolino, S.R.A.; Cuffini, S.L.; Ducart, D.F.; Bretzke, P.E.; Leonardi, G.R. Clay Minerals: Properties and Applications to Dermocosmetic Products and Perspectives of Natural Raw Materials for Therapeutic Purposes—A Review. Int. J. Pharm. 2017, 534, 213–219. [Google Scholar] [CrossRef]
- Rebitski, E.P.; Souza, G.P.; Santana, S.A.A.; Pergher, S.B.C.; Alcântara, A.C.S. Bionanocomposites Based on Cationic and Anionic Layered Clays as Controlled Release Devices of Amoxicillin. Appl. Clay Sci. 2019, 173, 35–45. [Google Scholar] [CrossRef]
- Rebitski, E.P.; Aranda, P.; Darder, M.; Carraro, R.; Ruiz-Hitzky, E. Intercalation of Metformin into Montmorillonite. Dalton Trans. 2018, 47, 3185–3192. [Google Scholar] [CrossRef]
- Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Biomedical Applications of Cationic Clay Minerals. RSC Adv. 2015, 5, 29467–29481. [Google Scholar] [CrossRef]
- Ruiz-Hitzky, E.; Darder, M.; Wicklein, B.; Castro-Smirnov, F.A.; Aranda, P. Clay-based biohybrid materials for biomedical and pharmaceutical applications. Clays Clay Miner. 2019, 67, 44–58. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Alcântara, A.C.S.; Pergher, S.B.C. Bionanocomposite Systems Based on Montmorillonite and Biopolymers for the Controlled Release of Olanzapine. Mater. Sci. Eng. C 2017, 75, 1250–1258. [Google Scholar] [CrossRef] [PubMed]
- Sutradhar, I.; Zaman, M.H. Evaluation of the Effect of Temperature on the Stability and Antimicrobial Activity of Rifampicin Quinone. J. Pharm. Biomed. Anal. 2021, 197, 113941. [Google Scholar] [CrossRef]
- ICH. ICH Harmonised Tripartite Guideline; Validation of Analytical Procedures: Text and Methodology. Q2 (R1); ICH: Geneva, Switzerland, 2005; Volume 1, p. 5. [Google Scholar]
- Li, T.; Zhao, L.; Zheng, Z.; Zhang, M.; Sun, Y.; Tian, Q.; Zhang, S. Design and Preparation Acid-Activated Montmorillonite Sustained-Release Drug Delivery System for Dexibuprofen in vitro and in vivo Evaluations. Appl. Clay Sci. 2018, 163, 178–185. [Google Scholar] [CrossRef]
- Huh, K.M.; Kang, H.C.; Lee, Y.J.; Bae, Y.H. pH-sensitive polymers for drug delivery. Macromol. Res. 2012, 20, 224–690. [Google Scholar] [CrossRef]
- de Almeida, J.M.F.; Júnior, E.D.; Verríssimo, L.M.; Fernandes, N.S. PH-Dependent Release System of Isoniazid Carried on Nanoparticles of Silica Obtained from Expanded Perlite. Appl. Surf. Sci. 2019, 489, 297–312. [Google Scholar] [CrossRef]
- Rajaram, S.; Vemuri, V.D.; Natham, R. Ascorbic Acid Improves Stability and Pharmacokinetics of Rifampicin in the Presence of Isoniazid. J. Pharm. Biomed. Anal. 2014, 100, 103–108. [Google Scholar] [CrossRef]
- Manadas, R.; Pina, M.E.; Veiga, F.; Veiga, F. A Dissolução in vitro Na Previsão Da Absorção Oral de Fármacos Em Formas Farmacêuticas de Liberação Modificada. Braz. J. Pharm. Sci. 2002, 38, 375–399. [Google Scholar] [CrossRef] [Green Version]
- Bello, M.L.; Junior, A.M.; Freitas, C.A.; Moreira, M.L.A.; da Costa, J.P.; de Souza, M.A.; Santos, B.A.M.C.; de Sousa, V.P.; Castro, H.C.; Rodrigues, C.R.; et al. Development of Novel Montmorillonite-Based Sustained Release System for Oral Bromopride Delivery. Eur. J. Pharm. Sci. 2022, 175, 106222. [Google Scholar] [CrossRef]
- Rodrigues, M.I.; Iemma, A.F. Experimental Design and Process Optimization; CRC Press: Boca Raton, FL, USA, 2015; ISBN 9781482299557. [Google Scholar]
- Neto, B.B.; Scarminio, I.S.; Bruns, R.E. Como Fazer Experimentos: Pesquisa e Desenvolvimento Na Ciência e Na Indústria, 4th ed.; Bookman: Porto Alegre, Brazil, 2010; ISBN 9788577807130. [Google Scholar]
- Hassani, A.; Soltani, R.D.C.; Karaca, S.; Khataee, A. Preparation of Montmorillonite-Alginate Nanobiocomposite for Adsorption of a Textile Dye in Aqueous Phase: Isotherm, Kinetic and Experimental Design Approaches. J. Ind. Eng. Chem. 2015, 21, 1197–1207. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J.; Bryce, D.L. Spectrometric: Identification of Organic Compounds, 8th ed.; Wiley: Hoboken, NJ, USA, 2014; ISBN 978-0-470-61637-6. [Google Scholar]
- Sharifzadeh, G.; Hezaveh, H.; Muhamad, I.I.; Hashim, S.; Khairuddin, N. Montmorillonite-Based Polyacrylamide Hydrogel Rings for Controlled Vaginal Drug Delivery. Mater. Sci. Eng. C 2020, 110, 110609. [Google Scholar] [CrossRef]
- Xu, W.; Peng, J.; Ni, D.; Zhang, W.; Wu, H.; Mu, W. Preparation, Characterization and Application of Levan/Montmorillonite Biocomposite and Levan/BSA Nanoparticle. Carbohydr. Polym. 2020, 234, 115921. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, T.; Li, H.; Yi, H.; Song, S. Can Carboxymethyl Cellulose Molecules Bind Swelling Montmorillonite Layers in Water? Colloids Surf. A Physicochem. Eng. Asp. 2018, 553, 515–519. [Google Scholar] [CrossRef]
- Jain, S.; Datta, M. Oral Extended Release of Dexamethasone: Montmorillonite-PLGA Nanocomposites as a Delivery Vehicle. Appl. Clay Sci. 2015, 104, 182–188. [Google Scholar] [CrossRef]
- Gong, N.; Liu, Y.; Huang, R. Simultaneous Adsorption of Cu2+ and Acid Fuchsin (AF) from Aqueous Solutions by CMC/Bentonite Composite. Int. J. Biol. Macromol. 2018, 115, 580–589. [Google Scholar] [CrossRef]
- Alves, R.; Reis, T.V.d.S.; Silva, L.C.C.d.; Mercuri, L.P.; Matos, J.d.R. Thermal Behavior and Decomposition Kinetics of Rifampicin Polymorphs under Isothermal and Non-Isothermal Conditions. Braz. J. Pharm. Sci. 2010, 46, 343–351. [Google Scholar] [CrossRef]
- Panchagnula, R.; Bedi, S.; Yasvanth, A. Rifampicin Dissolution: Polymorphism or Crystal Defects. Clin. Res. Regul. Aff. 2006, 23, 71–83. [Google Scholar] [CrossRef]
- Khlibsuwan, R.; Siepmann, F.; Siepmann, J.; Pongjanyakul, T. Chitosan-Clay Nanocomposite Microparticles for Controlled Drug Delivery: Effects of the MAS Content and TPP Crosslinking. J. Drug Deliv. Sci. Technol. 2017, 40, 1–10. [Google Scholar] [CrossRef]
- Thiebault, T.; Boussafir, M. Adsorption Mechanisms of Psychoactive Drugs onto Montmorillonite. Colloids Interface Sci. Commun. 2019, 30, 100183. [Google Scholar] [CrossRef]
- de Pinho Pessoa Nogueira, L.; de Oliveira, Y.S.d.C.; Fonseca, J.; Costa, W.S.; Raffin, F.N.; Ellena, J.; Ayala, A.P. Crystalline Structure of the Marketed Form of Rifampicin: A Case of Conformational and Charge Transfer Polymorphism. J. Mol. Struct. 2018, 1155, 260–266. [Google Scholar] [CrossRef]
- Ramazani Afarani, Z.; Sarvi, M.N.; Akbari Alavijeh, M. Modification of Montmorillonite Nanolayers as a PH-Responsive Carrier of Biomolecules: Delivery of Vitamin B12. J. Taiwan Inst. Chem. Eng. 2018, 84, 19–27. [Google Scholar] [CrossRef]
- Bello, M.L.; Junior, A.M.; Vieira, B.A.; Dias, L.R.S.; de Sousa, V.P.; Castro, H.C.; Rodrigues, C.R.; Cabral, L.M. Sodium Montmorillonite/Amine-Containing Drugs Complexes: New Insights on Intercalated Drugs Arrangement into Layered Carrier Material. PLoS ONE 2015, 10, e0121110. [Google Scholar] [CrossRef]
- Belaroui, L.S.; Ouali, A.; Bengueddach, A.; Lopez Galindo, A.; Peña, A. Adsorption of Linuron by an Algerian Palygorskite Modified with Magnetic Iron. Appl. Clay Sci. 2018, 164, 26–33. [Google Scholar] [CrossRef]
- Jawad, A.H.; Abdulhameed, A.S. Mesoporous Iraqi Red Kaolin Clay as an Efficient Adsorbent for Methylene Blue Dye: Adsorption Kinetic, Isotherm and Mechanism Study. Surf. Interfaces 2020, 18, 100422. [Google Scholar] [CrossRef]
- Adel Niaei, H.; Rostamizadeh, M. Adsorption of Metformin from an Aqueous Solution by Fe-ZSM-5 Nano-Adsorbent: Isotherm, Kinetic and Thermodynamic Studies. J. Chem. Thermodyn. 2020, 142, 106003. [Google Scholar] [CrossRef]
- Silva, D.T.C.; Arruda, I.E.S.; França, L.M.; França, D.B.; Fonseca, M.G.; Soares, M.F.L.R.; Iborra, C.V.; Soares-Sobrinho, J.L. Tamoxifen/Montmorillonite System—Effect of the Experimental Conditions. Appl. Clay Sci. 2019, 180, 105142. [Google Scholar] [CrossRef]
- Alavijeh, M.A.; Sarvi, M.N.; Afarani, Z.R.; Sarvi, M.N. Modified Montmorillonite Nanolayers for Nano-Encapsulation of Biomolecules. Heliyon 2019, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Borrego-Sánchez, A.; Carazo, E.; Aguzzi, C.; Viseras, C.; Sainz-Díaz, C.I. Biopharmaceutical Improvement of Praziquantel by Interaction with Montmorillonite and Sepiolite. Appl. Clay Sci. 2018, 160, 173–179. [Google Scholar] [CrossRef]
- Banerjee, S.; Roy, S.; Nath Bhaumik, K.; Kshetrapal, P.; Pillai, J. Comparative Study of Oral Lipid Nanoparticle Formulations (LNFs) for Chemical Stabilization of Antitubercular Drugs: Physicochemical and Cellular Evaluation. Artif. Cells Nanomed. Biotechnol. 2018, 46, 540–558. [Google Scholar] [CrossRef] [PubMed]
- Billat, P.-A.; Roger, E.; Faure, S.; Lagarce, F. Models for Drug Absorption from the Small Intestine: Where Are We and Where Are We Going? Drug Discov. Today 2017, 22, 761–775. [Google Scholar] [CrossRef] [PubMed]
- Moorcroft, S.C.T.; Jayne, D.G.; Evans, S.D.; Ong, Z.Y. Stimuli-Responsive Release of Antimicrobials Using Hybrid Inorganic Nanoparticle-Associated Drug-Delivery Systems. Macromol. Biosci. 2018, 18, 1800207. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Yang, Q.; Lin, X.; Qi, C.; Li, G. Preparation and Drug Release Property of Tanshinone IIA Loaded Chitosan-Montmorillonite Microspheres. Int. J. Biol. Macromol. 2019, 125, 721–729. [Google Scholar] [CrossRef]
Variable Name | −1 | 0 | +1 |
---|---|---|---|
Mass of Mt (mg, X1) | 100 | 200 | 300 |
RIF concentration (mg/mL, X2) | 0.05 | 0.09 | 0.13 |
pH (X3) | 2 | 5 | 8 |
Time (X4) | 6 | 15 | 24 |
Kinetic Model | Equation 1 | Plotted Graph |
---|---|---|
Zero order | Qt = Q0 + K0t | Qt versus t |
First order | log Qt = log Q0 + K1t | log Qt versus t |
Higuchi | Qt = KHt1/2 | Qt versus t1/2 |
Korsmeyer–Peppas | Mt/M∞ = Ktn | log (Mt/M∞) versus log tn |
Experiment | Mass of Mt (mg, X1) | RIF Concentration (mg/mL, X2) | pH (X3) | Time (h, X4) | Incorporated Drug Dose (mg/g, Y1) |
---|---|---|---|---|---|
1 | 100 | 0.05 | 2 | 6 | 37.65 |
2 | 300 | 0.05 | 2 | 6 | 12.8 |
3 | 100 | 0.125 | 2 | 6 | 95.5 |
4 | 300 | 0.125 | 2 | 6 | 33.3 |
5 | 100 | 0.05 | 8 | 6 | 0 |
6 | 300 | 0.05 | 8 | 6 | 0 |
7 | 100 | 0.125 | 8 | 6 | 0 |
8 | 300 | 0.125 | 8 | 6 | 0 |
9 | 100 | 0.05 | 2 | 24 | 37.1 |
10 | 300 | 0.05 | 2 | 24 | 13.33 |
11 | 100 | 0.125 | 2 | 24 | 90.9 |
12 | 300 | 0.125 | 2 | 24 | 32.33 |
13 | 100 | 0.05 | 8 | 24 | 0 |
14 | 300 | 0.05 | 8 | 24 | 0 |
15 | 100 | 0.125 | 8 | 24 | 0 |
16 | 300 | 0.125 | 8 | 24 | 0 |
17 | 200 | 0.0875 | 5 | 15 | 22.75 |
18 | 200 | 0.0875 | 5 | 15 | 22.75 |
19 | 200 | 0.0875 | 5 | 15 | 22.75 |
Name | Coefficient | Standard Error | Calculated t | p-Value |
---|---|---|---|---|
Mean | 22.17 | 1.22 | 15.03 | 0.0000 |
X1 | −10.59 | 1.33 | −6.59 | 0.0002 |
X2 | 9.45 | 1.33 | 5.88 | 0.0004 |
X3 | −22.06 | 1.33 | −13.72 | 0.0000 |
X4 | −0.35 | 1.61 | −0.22 | 0.8334 |
X1•X2 | −4.51 | 1.61 | −2.81 | 0.0230 |
X1•X3 | 10.59 | 1.61 | 6.59 | 0.0002 |
X1•X4 | 0.29 | 1.61 | 0.18 | 0.8592 |
X2•X3 | −9.45 | 1.61 | −5.88 | 0.0004 |
X2•X4 | −0.35 | 1.61 | −0.22 | 0.8345 |
X3•X4 | 0.35 | 1.61 | 0.22 | 0.8334 |
Variation Source | Sum of Squares | Degrees of Freedom | Mean Square | Fcalc | p-Value |
---|---|---|---|---|---|
Regression | 14,551.9 | 6 | 2425.3 | 86.1 | 0.0000 |
Residuals | 337.9 | 12 | 28.2 | - | - |
Lack of fit | 337.9 | 10 | 33.8 | Infinity | NaN |
Pure error | 0.0 | 2 | 0.0 | - | - |
Total | 14,889.8 | 18 | - | - | - |
R2 = 97.73% |
Kinetic Model | R2 | |
---|---|---|
pH 6.8 | pH 7.4 | |
Zero order | 0.9356 | 0.8443 |
First order | 0.8976 | 0.7486 |
Higuchi | 0.9840 | 0.9384 |
Korsmeyer–Peppas | 0.9817 | 0.9668 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damasceno Junior, E.; Barbosa, R.d.M.; da Silva, R.d.C.D.; Costa, F.d.S.; da Silva, D.R.; Viseras, C.; Perioli, L.; Fernandes, N.S. Montmorillonite–Rifampicin Nanohybrid for pH-Responsive Release of the Tuberculostatic. Pharmaceutics 2023, 15, 512. https://doi.org/10.3390/pharmaceutics15020512
Damasceno Junior E, Barbosa RdM, da Silva RdCD, Costa FdS, da Silva DR, Viseras C, Perioli L, Fernandes NS. Montmorillonite–Rifampicin Nanohybrid for pH-Responsive Release of the Tuberculostatic. Pharmaceutics. 2023; 15(2):512. https://doi.org/10.3390/pharmaceutics15020512
Chicago/Turabian StyleDamasceno Junior, Elmar, Raquel de Melo Barbosa, Rita de Cássia Dantas da Silva, Felipe dos Santos Costa, Djalma Ribeiro da Silva, César Viseras, Luana Perioli, and Nedja Suely Fernandes. 2023. "Montmorillonite–Rifampicin Nanohybrid for pH-Responsive Release of the Tuberculostatic" Pharmaceutics 15, no. 2: 512. https://doi.org/10.3390/pharmaceutics15020512
APA StyleDamasceno Junior, E., Barbosa, R. d. M., da Silva, R. d. C. D., Costa, F. d. S., da Silva, D. R., Viseras, C., Perioli, L., & Fernandes, N. S. (2023). Montmorillonite–Rifampicin Nanohybrid for pH-Responsive Release of the Tuberculostatic. Pharmaceutics, 15(2), 512. https://doi.org/10.3390/pharmaceutics15020512