Evaluation of Therapeutic Efficacy and Imaging Capabilities of 153Sm2O3-Loaded Polystyrene Microspheres for Intra-Tumoural Radionuclide Therapy of Liver Cancer Using Sprague-Dawley Rat Model
Abstract
:1. Introduction
2. Materials
3. Methods
3.1. Preparation of [153Sm]Sm2O3-PS Microspheres
3.2. Laboratory Animals
3.3. Tumour Cell Line
3.4. Tumour Implantation
3.5. Monitoring of Tumour Volume
3.6. Intra-Tumoural Injection of [153Sm]Sm2O3-PS Microspheres and Saline Solution
3.7. SPECT/CT Imaging
3.8. Histopathological Evaluation
3.9. Statistical Analysis
4. Results
4.1. Therapeutic Efficacy of [153Sm]Sm2O3-PS Microspheres
4.2. Diagnostic Imaging Capabilities of [153Sm]Sm2O3-PS Microspheres
4.3. Histopathological Examinations
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Walton, M.; Wade, R.; Claxton, L.; Sharif-Hurst, S.; Harden, M.; Patel, J.; Rowe, I.; Hodgson, R.; Eastwood, A. Selective internal radiation therapies for unresectable early-, intermediate-or advanced-stage hepatocellular carcinoma: Systematic review, network meta-analysis and economic evaluation. Health Technol. Assess. 2020, 24, 1–300. [Google Scholar] [CrossRef]
- Westcott, M.A.; Coldwell, D.M.; Liu, D.M.; Zikria, J.F. The development, commercialization and clinical context of Yttrium-90 radiolabeled resin and glass microspheres. Adv. Radiat. Oncol. 2016, 1, 351–364. [Google Scholar] [CrossRef]
- Wang, E.A.; Stein, J.P.; Bellavia, R.J.; Broadwell, S.R. Treatment options for unresectable HCC with a focus on SIRT with Yttrium-90 resin microspheres. Int. J. Clin. Pract. 2017, 71, e12972. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.L.; Zhang, J.; Tweedle, M.F.; Knopp, M.V.; Hall, N.C. Theranostic imaging of Yttrium-90. BioMed Res. Int. 2015, 2015, 481279. [Google Scholar] [CrossRef]
- Li, R.; Li, D.; Jia, G.; Li, X.; Sun, G.; Zuo, C. Diagnostic performance of theranostic radionuclides used in transarterial radioembolization for liver cancer. Front. Oncol. 2021, 10, 551622. [Google Scholar] [CrossRef] [PubMed]
- Stella, M.; Braat, A.J.A.T.; van Rooij, R.; de Jong, H.W.A.M.; Lam, M.G.E.H. Holmium-166 radioembolization: Current status and future prospective. Cardiovasc. Interv. Radiol. 2022, 45, 1634–1645. [Google Scholar] [CrossRef] [PubMed]
- Klaassen, N.J.; Arntz, M.J.; Arranja, A.G.; Roosen, J.; Nijsen, J.F.W. The various therapeutic applications of the medical isotope Holmium-166: A narrative review. EJNMMI Radiopharm. Chem. 2019, 4, 19. [Google Scholar] [CrossRef]
- Lepareur, N.; Lacœuille, F.; Bouvry, C.; Hindré, F.; Garcion, E.; Chérel, M.; Noiret, N.; Garin, E.; Knapp, F. Rhenium-188 labeled radiopharmaceuticals: Current clinical applications in oncology and promising perspectives. Front. Med. 2019, 6, 132. [Google Scholar] [CrossRef]
- Patel, A.; Subbanna, I.; Bhargavi, V.; Swamy, S.; Kallur, K.G.; Patil, S. Transarterial radioembolization (TARE) with 131Iodine-lipiodol for unresectable primary hepatocellular carcinoma: Experience from a tertiary care center in India. South Asian J. Cancer 2021, 10, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Pillai, M. Radionuclides for Targeted Therapy; Academia: San Francisco, CA, USA, 2007; pp. 50–86. [Google Scholar]
- O’Malley, J.P.; Ziessman, H.A.; Thrall, J.H. Nuclear Medicine and Molecular Imaging: The Requisites e-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2020; pp. 152–179. [Google Scholar]
- Iwano, S.; Kato, K.; Nihashi, T.; Ito, S.; Tachi, Y.; Naganawa, S. Comparisons of I-123 diagnostic and I-131 post-treatment scans for detecting residual thyroid tissue and metastases of differentiated thyroid cancer. Ann. Nucl. Med. 2009, 23, 777–782. [Google Scholar] [CrossRef]
- Lee, B.S.; Kim, M.H.; Chu, S.Y.; Jung, W.J.; Jeong, H.J.; Lee, K.; Kim, H.S.; Kim, M.H.; Kil, H.S.; Han, S.J.; et al. Improving theranostic Gallium-68/Lutetium-177-labeled PSMA Inhibitors with an albumin binder for prostate cancer. Mol. Cancer Ther. 2021, 20, 2410–2419. [Google Scholar] [CrossRef]
- Tan, H.Y.; Wong, Y.H.; Kasbollah, A.; Shah, M.; Abdullah, B.J.J.; Perkins, A.C.; Yeong, C.H. Development of neutron-activated samarium-153-loaded polystyrene microspheres as a potential theranostic agent for hepatic radioembolization. Nucl. Med. Commun. 2022, 43, 410–422. [Google Scholar] [CrossRef]
- Van de Voorde, M.; Duchemin, C.; Heinke, R.; Lambert, L.; Chevallay, E.; Schneider, T.; Van Stenis, M.; Cocolios, T.E.; Cardinaels, T.; Ponsard, B.; et al. Production of Sm-153 with very high specific activity for targeted radionuclide therapy. Front. Med. 2021, 8, 675221. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.Y.; Yeong, C.H.; Wong, Y.H.; McKenzie, M.; Kasbollah, A.; Shah, M.N.M.; Perkins, A.C. Neutron-activated theranostic radionuclides for nuclear medicine. Nucl. Med. Bio. 2020, 90-91, 55–68. [Google Scholar] [CrossRef] [PubMed]
- IAEA. Optimization of Production and Quality Control of Therapeutic Radionuclides and Radiopharmaceuticals; International Atomic Energy Agency: Vienna, Austria, 1999. [Google Scholar]
- Gomes Marin, J.F.; Nunes, R.F.; Coutinho, A.M.; Zaniboni, E.C.; Costa, L.B.; Barbosa, F.G.; Queiroz, M.A.; Cerri, G.G.; Buchpiguel, C.A. Theranostics in nuclear medicine: Emerging and re-emerging integrated imaging and therapies in the era of precision oncology. Radiographics 2020, 40, 1715–1740. [Google Scholar] [CrossRef] [PubMed]
- Jeelani, S.; Reddy, R.J.; Maheswaran, T.; Asokan, G.; Dany, A.; Anand, B. Theranostics: A treasured tailor for tomorrow. J Pharm. Bioallied. Sci. 2014, 6, S6–S8. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.-Y.; Shih, Y.-H.; Chen, C.-Y.; Tang, I.-C.; Wu, Y.-L.; Kung, H.-C.; Lin, W.-J.; Lin, X.-Z. Evaluating the potential of 188Re-ECD/lipiodol as a therapeutic radiopharmaceutical by intratumoral injection for hepatoma treatment. Cancer Biotherapy Radiopharm. 2009, 24, 535–541. [Google Scholar] [CrossRef]
- Wang, S.-J.; Lin, W.-Y.; Chen, M.-N.; Chi, C.-S.; Chen, J.-T.; Ho, W.-L.; Hsieh, B.-T.; Shen, L.-H.; Tsai, Z.-T.; Ting, G. Intratumoral injection of Rhenium-188 microspheres into an animal model of hepatoma. J. Nucl. Med. 1998, 39, 1752–1757. [Google Scholar]
- Lin, W.-Y.; Tsai, S.-C.; Hsieh, J.-F.; Wang, S.-J. Effects of 90Y-microspheres on liver tumors: Comparison of intratumoral injection method and intra-arterial injection method. J. Nucl. Med. 2000, 41, 1892–1897. [Google Scholar]
- Chi, J.-L.; Li, C.-C.; Xia, C.-Q.; Li, L.; Ma, Y.; Li, J.-H.; Chen, Z.; Chen, X.-L. Effect of 131I gelatin microspheres on hepatocellular carcinoma in nude mice and its distribution after intratumoral injection. Radiat. Res. 2014, 181, 416–424. [Google Scholar] [CrossRef]
- Yeong, C.-H.; Abdullah, B.J.J.; Ng, K.-H.; Chung, L.-Y.; Goh, K.-L.; Sarji, S.A.; Perkins, A.C. Production and first use of 153SmCl3-ion exchange resin capsule formulation for assessing gastrointestinal motility. Appl. Radiat. Isot. 2012, 70, 450–455. [Google Scholar] [CrossRef]
- Nakayama, M.; Smith, C.L.; Feltis, B.N.; Piva, T.J.; Tabatabaie, F.; Harty, P.D.; Gagliardi, F.M.; Platts, K.; Otto, S.; Blencowe, A. Samarium doped titanium dioxide nanoparticles as theranostic agents in radiation therapy. Phys. Medica 2020, 75, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Junfeng, Y.; Ruping, Z.; Xinlan, D.; Xiaofeng, M.; Jianying, X.; Weiqing, H.; Duanzhi, Y.; Wei, Z.; Hong, X.; Yongxian, W. Intratumoral injection with [188Re] Rhenium sulfide suspension for treatment of transplanted human liver carcinoma in nude mice. Nucl. Med. Biol. 2000, 27, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhou, M.; Li, C. Synthetic nanoparticles for delivery of radioisotopes and radiosensitizers in cancer therapy. Cancer Nanotechnol. 2016, 7, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Brans, B.; Bodei, L.; Giammarile, F.; Linden, O.; Luster, M.; Oyen, W.J.G.; Tennvall, J. Clinical radionuclide therapy dosimetry: The quest for the “Holy Gray”. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 772–786. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Shilyagina, N.Y.; Vodeneev, V.A.; Zvyagin, A.V. Targeted radionuclide therapy of human tumors. Int. J. Mol. Sci. 2015, 17, 33. [Google Scholar] [CrossRef]
- Dong, B.; Liang, P.; Jing, X. Combined treatment of hepatic carcinoma: Percutaneous intratumoral injection of Y-90 glass treatment microspheres with sonographic guidance. Zhonghua Yi Xue Za Zhi 1994, 74, 471–473. [Google Scholar]
- Tian, J.-H.; Xu, B.-X.; Zhang, J.-M.; Dong, B.-W. Ultrasound-guided internal radiotherapy using Yttrium-90-glass microspheres for liver malignancies. J. Nucl. Med. 1996, 37, 958–963. [Google Scholar]
- Lee, J.T.; Yoo, H.; Kim, M.; Han, K.; Park, C. Studies on Therapeutic Method of Liver Cancer (Hapatocellular carcinoma) by Holmium-166 Radionuclide. Master’s Thesis, Yonsei University, Seoul, Republic of Korea, 1997. [Google Scholar]
- Kim, J.K.; Han, K.-H.; Lee, J.T.; Paik, Y.H.; Ahn, S.H.; Lee, J.D.; Lee, K.S.; Chon, C.Y.; Moon, Y.M. Long-term clinical outcome of phase IIb clinical trial of percutaneous injection with Holmium-166/chitosan complex (Milican) for the treatment of small hepatocellular carcinoma. Clin. Cancer Res. 2006, 12, 543–548. [Google Scholar] [CrossRef]
- Goh, A.S.-W.; Chung, A.Y.-F.; Lo, R.H.-G.; Lau, T.-N.; Yu, S.W.-K.; Chng, M.; Satchithanantham, S.; Loong, S.L.-E.; Ng, D.C.-E.; Lim, B.-C. A novel approach to brachytherapy in hepatocellular carcinoma using a Phosphorous-32 (32P) brachytherapy delivery device—A first-in-man study. Int. J. Radiat. Oncol. 2007, 67, 786–792. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, H.Y.; Wong, Y.H.; Kasbollah, A.; Md Shah, M.N.; Yahya, N.; Abdullah, B.J.J.; Yeong, C.H. Evaluation of Therapeutic Efficacy and Imaging Capabilities of 153Sm2O3-Loaded Polystyrene Microspheres for Intra-Tumoural Radionuclide Therapy of Liver Cancer Using Sprague-Dawley Rat Model. Pharmaceutics 2023, 15, 536. https://doi.org/10.3390/pharmaceutics15020536
Tan HY, Wong YH, Kasbollah A, Md Shah MN, Yahya N, Abdullah BJJ, Yeong CH. Evaluation of Therapeutic Efficacy and Imaging Capabilities of 153Sm2O3-Loaded Polystyrene Microspheres for Intra-Tumoural Radionuclide Therapy of Liver Cancer Using Sprague-Dawley Rat Model. Pharmaceutics. 2023; 15(2):536. https://doi.org/10.3390/pharmaceutics15020536
Chicago/Turabian StyleTan, Hun Yee, Yin How Wong, Azahari Kasbollah, Mohammad Nazri Md Shah, Noorazrul Yahya, Basri Johan Jeet Abdullah, and Chai Hong Yeong. 2023. "Evaluation of Therapeutic Efficacy and Imaging Capabilities of 153Sm2O3-Loaded Polystyrene Microspheres for Intra-Tumoural Radionuclide Therapy of Liver Cancer Using Sprague-Dawley Rat Model" Pharmaceutics 15, no. 2: 536. https://doi.org/10.3390/pharmaceutics15020536
APA StyleTan, H. Y., Wong, Y. H., Kasbollah, A., Md Shah, M. N., Yahya, N., Abdullah, B. J. J., & Yeong, C. H. (2023). Evaluation of Therapeutic Efficacy and Imaging Capabilities of 153Sm2O3-Loaded Polystyrene Microspheres for Intra-Tumoural Radionuclide Therapy of Liver Cancer Using Sprague-Dawley Rat Model. Pharmaceutics, 15(2), 536. https://doi.org/10.3390/pharmaceutics15020536