Recent Advances in Localized Immunomodulation Technology: Application of NIR-PIT toward Clinical Control of the Local Immune System
Abstract
:1. Introduction
1.1. Need for Methods of Local Immunomodulation
1.2. Recent Technologies for Local Immunomodulation
1.3. Near-Infrared Photoimmunotherapy (NIR-PIT)
1.4. Unique Necrotic Cell Death Mechanism in NIR-PIT
2. Light Irradiation Enabling Localized NIR-PIT
3. Demonstration of NIR-PIT for Local Immunomodulation: Targeting Tregs at the Tumor Site
3.1. CD25
3.2. CD103
3.3. CD73
3.4. CCR4
3.5. CTLA-4
3.6. GITR
3.7. Gr1
3.8. IL-5Rα(CD125)
3.9. IL-4 Receptors
3.10. RANKL
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hubbell, J.A.; Thomas, S.N.; Swartz, M.A. Materials Engineering for Immunomodulation. Nature 2009, 462, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Headen, D.M.; Woodward, K.B.; Coronel, M.M.; Shrestha, P.; Weaver, J.D.; Zhao, H.; Tan, M.; Hunckler, M.D.; Bowen, W.S.; Johnson, C.T.; et al. Local Immunomodulation with Fas Ligand-Engineered Biomaterials Achieves Allogeneic Islet Graft Acceptance. Nat. Mater. 2018, 17, 732–739. [Google Scholar] [CrossRef]
- Nishino, M.; Sholl, L.M.; Hatabu, H.; Ramaiya, N.H.; Hodi, F.S. Anti–PD-1–Related Pneumonitis during Cancer Immunotherapy. N. Engl. J. Med. 2015, 373, 288–290. [Google Scholar] [CrossRef] [PubMed]
- Michot, J.M.; Bigenwald, C.; Champiat, S.; Collins, M.; Carbonnel, F.; Postel-Vinay, S.; Berdelou, A.; Varga, A.; Bahleda, R.; Hollebecque, A.; et al. Immune-Related Adverse Events with Immune Checkpoint Blockade: A Comprehensive Review. Eur. J. Cancer 2016, 54, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Riley, R.S.; June, C.H.; Langer, R.; Mitchell, M.J. Delivery Technologies for Cancer Immunotherapy. Nat. Rev. Drug Discov. 2019, 18, 175–196. [Google Scholar] [CrossRef] [PubMed]
- Boutros, C.; Tarhini, A.; Routier, E.; Lambotte, O.; Ladurie, F.L.; Carbonnel, F.; Izzeddine, H.; Marabelle, A.; Champiat, S.; Berdelou, A.; et al. Safety Profiles of Anti-CTLA-4 and Anti-PD-1 Antibodies Alone and in Combination. Nat. Rev. Clin. Oncol. 2016, 13, 473–486. [Google Scholar] [CrossRef]
- Byun, D.J.; Wolchok, J.D.; Rosenberg, L.M.; Girotra, M. Cancer Immunotherapy—Immune Checkpoint Blockade and Associated Endocrinopathies. Nat. Rev. Endocrinol. 2017, 13, 195–207. [Google Scholar] [CrossRef]
- Hotaling, N.A.; Tang, L.; Irvine, D.J.; Babensee, J.E. Biomaterial Strategies for Immunomodulation. Annu. Rev. Biomed. Eng. 2015, 17, 317–349. [Google Scholar] [CrossRef]
- Goodwin, T.J.; Shen, L.; Hu, M.; Li, J.; Feng, R.; Dorosheva, O.; Liu, R.; Huang, L. Liver Specific Gene Immunotherapies Resolve Immune Suppressive Ectopic Lymphoid Structures of Liver Metastases and Prolong Survival. Biomaterials 2017, 141, 260–271. [Google Scholar] [CrossRef]
- Berraondo, P.; Sanmamed, M.F.; Ochoa, M.C.; Etxeberria, I.; Aznar, M.A.; Pérez-Gracia, J.L.; Rodríguez-Ruiz, M.E.; Ponz-Sarvise, M.; Castañón, E.; Melero, I. Cytokines in Clinical Cancer Immunotherapy. Br. J. Cancer 2019, 120, 6–15. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Margolin, K. Cytokines in Cancer Immunotherapy. Cancers 2011, 3, 3856–3893. [Google Scholar] [CrossRef]
- Enblad, G.; Karlsson, H.; Gammelgård, G.; Wenthe, J.; Lövgren, T.; Amini, R.M.; Wikstrom, K.I.; Essand, M.; Savoldo, B.; Hallböök, H.; et al. A Phase I/IIa Trial Using CD19-Targeted Third-Generation CAR T Cells for Lymphoma and Leukemia. Clin. Cancer Res. 2018, 24, 6185–6194. [Google Scholar] [CrossRef] [PubMed]
- Oelsner, S.; Waldmann, A.; Billmeier, A.; Röder, J.; Lindner, A.; Ullrich, E.; Marschalek, R.; Dotti, G.; Jung, G.; Große-Hovest, L.; et al. Genetically Engineered CAR NK Cells Display Selective Cytotoxicity against FLT3-positive B-ALL and Inhibit in Vivo Leukemia Growth. Int. J. Cancer 2019, 145, 1935–1945. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Wang, X.; Liang, X.; Yang, J.; Zhang, C.; Kong, D.; Wang, W. Nano-, Micro-, and Macroscale Drug Delivery Systems for Cancer Immunotherapy. Acta Biomater. 2019, 85, 1–26. [Google Scholar] [CrossRef]
- Dolmans, D.E.J.G.J.; Fukumura, D.; Jain, R.K. Photodynamic Therapy for Cancer. Nat. Rev. Cancer 2003, 3, 380–387. [Google Scholar] [CrossRef]
- Mitsunaga, M.; Ogawa, M.; Kosaka, N.; Rosenblum, L.T.; Choyke, P.L.; Kobayashi, H.; Author, N.M. Cancer Cell-Selective In Vivo Near Infrared Photoimmunotherapy Targeting Specific Membrane Molecules HHS Public Access Author Manuscript. Nat. Med. 2012, 17, 1685–1691. [Google Scholar] [CrossRef]
- Graham, J.G.; Zhang, X.; Goodman, A.; Pothoven, K.; Houlihan, J.; Wang, S.; Michael Gower, R.; Luo, X.; Shea, L.D. PLG Scaffold Delivered Antigen-Specific Regulatory t Cells Induce Systemic Tolerance in Autoimmune Diabetes. Tissue Eng. Part A 2013, 19, 1465–1475. [Google Scholar] [CrossRef]
- Liu, J.M.H.; Zhang, J.; Zhang, X.; Hlavaty, K.A.; Ricci, C.F.; Leonard, J.N.; Shea, L.D.; Gower, R.M. Transforming Growth Factor-Beta 1 Delivery from Microporous Scaffolds Decreases Inflammation Post-Implant and Enhances Function of Transplanted Islets. Biomaterials 2016, 80, 11–19. [Google Scholar] [CrossRef]
- Lin, C.C.; Metters, A.T.; Anseth, K.S. Functional PEG-Peptide Hydrogels to Modulate Local Inflammation Inducedby the pro-Inflammatory Cytokine TNFα. Biomaterials 2009, 30, 4907–4914. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.C.; Boyer, P.D.; Aimetti, A.A.; Anseth, K.S. Regulating MCP-1 Diffusion in Affinity Hydrogels for Enhancing Immuno-Isolation. J. Control Release 2010, 142, 384–391. [Google Scholar] [CrossRef]
- Park, H.S.; Kim, J.W.; Lee, S.H.; Yang, H.K.; Ham, D.S.; Sun, C.L.; Hong, T.H.; Khang, G.; Park, C.G.; Yoon, K.H. Antifibrotic Effect of Rapamycin Containing Polyethylene Glycol-Coated Alginate Microcapsule in Islet Xenotransplantation. J. Tissue Eng. Regen. Med. 2017, 11, 1274–1284. [Google Scholar] [CrossRef] [PubMed]
- Camara, C.I.; Bertocchi, L.; Ricci, C.; Bassi, R.; Bianchera, A.; Cantu’, L.; Bettini, R.; del Favero, E. Hyaluronic Acid-Dexamethasone Nanoparticles for Local Adjunct Therapy of Lung Inflammation. Int. J. Mol. Sci. 2021, 22, 480. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Zheng, Y.; Melo, M.B.; Mabardi, L.; Castaño, A.P.; Xie, Y.Q.; Li, N.; Kudchodkar, S.B.; Wong, H.C.; Jeng, E.K.; et al. Enhancing T Cell Therapy through TCR-Signaling-Responsive Nanoparticle Drug Delivery. Nat. Biotechnol. 2018, 36, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Kubo Watanabe, M.; Karasuyama, H.; Nakae, S.; Ishiwata, H.; Oboki, K.; Kambayashi, T.; Yasuyo Harada, N.; Mukai, K.; Matsunaga, Y.; Minoru Sawaguchi, K.; et al. Role of Mast Cells and Basophils in IgE Responses and in Allergic Airway Hyperresponsiveness. J. Immunol. 2012, 188, 1809–1818. [Google Scholar] [CrossRef]
- Miller, I.C.; Zamat, A.; Sun, L.K.; Phuengkham, H.; Harris, A.M.; Gamboa, L.; Yang, J.; Murad, J.P.; Priceman, S.J.; Kwong, G.A. Enhanced Intratumoural Activity of CAR T Cells Engineered to Produce Immunomodulators under Photothermal Control. Nat. Biomed. Eng. 2021, 5, 1348–1359. [Google Scholar] [CrossRef]
- Hickey, J.W.; Dong, Y.; Chung, J.W.; Salathe, S.F.; Pruitt, H.C.; Li, X.; Chang, C.; Fraser, A.K.; Bessell, C.A.; Ewald, A.J.; et al. Engineering an Artificial T-Cell Stimulating Matrix for Immunotherapy. Adv. Mater. 2019, 31, 1807359. [Google Scholar] [CrossRef]
- Aghajanian, H.; Kimura, T.; Rurik, J.G.; Hancock, A.S.; Leibowitz, M.S.; Li, L.; Scholler, J.; Monslow, J.; Lo, A.; Han, W.; et al. Targeting Cardiac Fibrosis with Engineered T Cells. Nature 2019, 573, 430–433. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, J.; Fukunaga, K.; Ishihara, A.; Larsson, H.M.; Potin, L.; Hosseinchi, P.; Galliverti, G.; Swartz, M.A.; Hubbell, J.A. Matrix-binding checkpoint immunotherapies enhance antitumor efficacy and reduce adverse events. Sci. Transl. Med. 2017, 9, eaan0401. [Google Scholar] [CrossRef]
- Momin, N.; Mehta, N.K.; Bennett, N.R.; Ma, L.; Palmeri, J.R.; Chinn, M.M.; Lutz, E.A.; Kang, B.; Irvine, D.J.; Spranger, S.; et al. Anchoring of Intratumorally Administered Cytokines to Collagen Safely Potentiates Systemic Cancer Immunotherapy. Sci. Transl. Med. 2019, 11, eaaw2614. [Google Scholar] [CrossRef] [PubMed]
- Mansurov, A.; Ishihara, J.; Hosseinchi, P.; Potin, L.; Marchell, T.M.; Ishihara, A.; Williford, J.M.; Alpar, A.T.; Raczy, M.M.; Gray, L.T.; et al. Collagen-Binding IL-12 Enhances Tumour Inflammation and Drives the Complete Remission of Established Immunologically Cold Mouse Tumours. Nat. Biomed. Eng. 2020, 4, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Lasarte-Cia, A.; Lozano, T.; Pérez-González, M.; Gorraiz, M.; Iribarren, K.; Hervás-Stubbs, S.; Sarobe, P.; Rabal, O.; Cuadrado-Tejedor, M.; García-Osta, A.; et al. Immunomodulatory Properties of Carvone Inhalation and Its Effects on Contextual Fear Memory in Mice. Front. Immunol. 2018, 9, 68. [Google Scholar] [CrossRef] [PubMed]
- Kasemsuk, N.; Ngaotepprutaram, P.; Kanjanawasee, D.; Suwanwech, T.; Durham, S.R.; Canonica, G.W.; Tantilipikorn, P. Local Nasal Immunotherapy for Allergic Rhinitis: A Systematic Review and Meta-Analysis. Int. Forum. Allergy Rhinol. 2022, 12, 1503–1516. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.Y.; Yu, C.H.; Tsai, J.J.; Tseng, H.K.; Liao, E.C. Effects of Local Nasal Immunotherapy with FIP-Fve Peptide and Denatured Tyrophagus Putrescentiae for Storage Mite-Induced Airway Inflammation. Arch. Immunol. Ther. Exp. 2022, 70, 6. [Google Scholar] [CrossRef]
- Sato, K.; Gorka, A.P.; Nagaya, T.; Michie, M.S.; Nakamura, Y.; Nani, R.R.; Coble, V.L.; Vasaltiy, O.V.; Swenson, R.E.; Choyke, P.L.; et al. Effect of Charge Localization on the In Vivo Optical Imaging Properties of Near-Infrared Cyanine Dye/Monoclonal Antibody Conjugates HHS Public Access. Mol. Biosyst. 2016, 12, 3046–3056. [Google Scholar] [CrossRef]
- Watanabe, R.; Sato, K.; Hanaoka, H.; Harada, T.; Nakajima, T.; Kim, I.; Paik, C.H.; Wu, A.M.; Choyke, P.L.; Kobayashi, H. Minibody-Indocyanine Green Based Activatable Optical Imaging Probes: The Role of Short Polyethylene Glycol Linkers. ACS Med. Chem. Lett. 2014, 5, 411–415. [Google Scholar] [CrossRef]
- Kobayashi, H.; Choyke, P.L. Near-Infrared Photoimmunotherapy of Cancer. Acc. Chem. Res. 2019, 52, 2332–2339. [Google Scholar] [CrossRef]
- Maruoka, Y.; Nagaya, T.; Sato, K.; Ogata, F.; Okuyama, S.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy with Combined Exposure of External and Interstitial Light Sources. Mol. Pharm. 2018, 15, 3634–3641. [Google Scholar] [CrossRef]
- Sato, K.; Nakajima, T.; Choyke, P.L.; Kobayashi, H. Selective Cell Elimination in Vitro and in Vivo from Tissues and Tumors Using Antibodies Conjugated with a near Infrared Phthalocyanine. RSC Adv. 2015, 5, 25105–25114. [Google Scholar] [CrossRef]
- Sato, K.; Nagaya, T.; Mitsunaga, M.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy for Lung Metastases. Cancer Lett. 2015, 365, 112–121. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Nagaya, T.; Nakamura, Y.; Harada, T.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy Prevents Lung Cancer Metastases in a Murine Model. Oncotarget 2015, 6, 19747–19758. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Watanabe, R.; Hanaoka, H.; Harada, T.; Nakajima, T.; Kim, I.; Paik, C.H.; Choyke, P.L.; Kobayashi, H. Photoimmunotherapy: Comparative Effectiveness of Two Monoclonal Antibodies Targeting the Epidermal Growth Factor Receptor. Mol. Oncol. 2014, 8, 620–632. [Google Scholar] [CrossRef]
- Sato, K.; Hanaoka, H.; Watanabe, R.; Nakajima, T.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy in the Treatment of Disseminated Peritoneal Ovarian Cancer. Mol. Cancer Ther. 2015, 14, 141–150. [Google Scholar] [CrossRef]
- Sato, K.; Nagaya, T.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy in the Treatment of Pleural Disseminated NSCLC: Preclinical Experience. Theranostics 2015, 5, 698–709. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Watanabe, R.; Hanaoka, H.; Nakajima, T.; Choyke, P.L.; Kobayashi, H. Comparative Effectiveness of Light Emitting Diodes (LEDs) and Lasers in near Infrared Photoimmunotherapy. Oncotarget 2016, 7, 14324–14335. [Google Scholar] [CrossRef]
- Takahashi, K.; Taki, S.; Yasui, H.; Nishinaga, Y.; Isobe, Y.; Matsui, T.; Shimizu, M.; Koike, C.; Sato, K. HER2 Targeting Near-infrared Photoimmunotherapy for a CDDP-resistant Small-cell Lung Cancer. Cancer Med. 2021, 10, 8808–8819. [Google Scholar] [CrossRef] [PubMed]
- Yasui, H.; Nishinaga, Y.; Taki, S.; Takahashi, K.; Isobe, Y.; Shimizu, M.; Koike, C.; Taki, T.; Sakamoto, A.; Katsumi, K.; et al. Near-Infrared Photoimmunotherapy Targeting GPR87: Development of a Humanised Anti-GPR87 MAb and Therapeutic Efficacy on a Lung Cancer Mouse Model. EBioMedicine 2021, 67, 103372. [Google Scholar] [CrossRef]
- Isobe, Y.; Sato, K.; Nishinaga, Y.; Takahashi, K.; Taki, S.; Yasui, H.; Shimizu, M.; Endo, R.; Koike, C.; Kuramoto, N.; et al. Near Infrared Photoimmunotherapy Targeting DLL3 for Small Cell Lung Cancer. EBioMedicine 2020, 52, 102632. [Google Scholar] [CrossRef]
- Nishinaga, Y.; Sato, K.; Yasui, H.; Taki, S.; Takahashi, K.; Shimizu, M.; Endo, R.; Koike, C.; Kuramoto, N.; Nakamura, S.; et al. Targeted Phototherapy for Malignant Pleural Mesothelioma: Near-Infrared Photoimmunotherapy Targeting Podoplanin. Cells 2020, 9, 1019. [Google Scholar] [CrossRef]
- Ogata, F.; Nagaya, T.; Nakamura, Y.; Sato, K.; Okuyama, S.; Maruoka, Y.; Choyke, P.L.; Kobayashi, H. Near-Infrared Photoimmunotherapy: A Comparison of Light Dosing Schedules. Oncotarget 2017, 8, 35069–35075. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Choyke, P.L.; Hisataka, K. Selective Cell Elimination from Mixed 3D Culture Using a near Infrared Photoimmunotherapy Technique. J. Vis. Exp. 2016, 2016, 8–11. [Google Scholar] [CrossRef]
- Takahashi, K.; Yasui, H.; Taki, S.; Shimizu, M.; Koike, C.; Taki, K.; Yukawa, H.; Baba, Y.; Kobayashi, H.; Sato, K. Near-infrared-induced Drug Release from Antibody–Drug Double Conjugates Exerts a Cytotoxic Photo-bystander Effect. Bioeng. Transl. Med. 2022, 7, e10388. [Google Scholar] [CrossRef] [PubMed]
- Yasui, H.; Takahashi, K.; Taki, S.; Shimizu, M.; Koike, C.; Umeda, K.; Rahman, S.; Akashi, T.; Nguyen, V.S.; Nakagawa, Y.; et al. Near Infrared Photo-Antimicrobial Targeting Therapy for Candida Albicans. Adv. Ther. 2021, 4, 2000221. [Google Scholar] [CrossRef]
- Matsuoka, K.; Sato, M.; Sato, K. Hurdles for the Wide Implementation of Photoimmunotherapy. Immunotherapy 2021, 13, 1427–1438. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Ando, K.; Okuyama, S.; Moriguchi, S.; Ogura, T.; Totoki, S.; Hanaoka, H.; Nagaya, T.; Kokawa, R.; Takakura, H.; et al. Photoinduced Ligand Release from a Silicon Phthalocyanine Dye Conjugated with Monoclonal Antibodies: A Mechanism of Cancer Cell Cytotoxicity after Near-Infrared Photoimmunotherapy. ACS Cent. Sci. ACS Cent. Sci. 2018, 4, 1559–1569. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, K.; Yamada, M.; Sato, M.; Sato, K. Near-Infrared Photoimmunotherapy for Thoracic Cancers: A Translational Perspective. Biomedicines 2022, 10, 1662. [Google Scholar] [CrossRef]
- Freund, L.; Oehrl, S.; Gräbe, G.; Gholam, P.; Plum, T.; Schäkel, K. Skin-Selective CD8 T-Cell Depletion by Photoimmunotherapy Inhibits Human Cutaneous Acute Graft-Versus-Host Disease. J. Investig. Dermatol. 2020, 140, 1455–1459.e6. [Google Scholar] [CrossRef] [PubMed]
- Shigemitsu, H.; Ohkubo, K.; Sato, K.; Bunno, A.; Mori, T.; Osakada, Y.; Fujitsuka, M.; Kida, T. Fluorescein-Based Type I Supramolecular Photosensitizer via Induction of Charge Separation by Self-Assembly. JACS Au 2022, 2, 1472–1478. [Google Scholar] [CrossRef]
- Shigemitsu, H.; Sato, K.; Hagio, S.; Tani, Y.; Mori, T.; Ohkubo, K.; Osakada, Y.; Fujitsuka, M.; Kida, T. Amphiphilic Rhodamine Nano-Assembly as a Type i Supramolecular Photosensitizer for Photodynamic Therapy. ACS Appl. Nano Mater. 2022, 5, 14954–14960. [Google Scholar] [CrossRef]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic Therapy of Cancer: An Update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef]
- Henderson, T.A.; Morries, L.D. Near-Infrared Photonic Energy Penetration: Can Infrared Phototherapy Effectively Reach the Human Brain? Neuropsychiatr. Dis. Treat. 2015, 11, 2191–2208. [Google Scholar] [CrossRef]
- Yeh, N.; Ding, T.J.; Yeh, P. Light-Emitting Diodes’ Light Qualities and Their Corresponding Scientific Applications. Renew. Sustain. Energy Rev. 2015, 51, 55–61. [Google Scholar] [CrossRef]
- Okuyama, S.; Nagaya, T.; Sato, K.; Ogata, F.; Maruoka, Y.; Choyke, P.L.; Kobayashi, H. Interstitial Near-Infrared Photoimmunotherapy: Effective Treatment Areas and Light Doses Needed for Use with Fiber Optic Diffusers. Oncotarget 2018, 9, 11159. [Google Scholar] [CrossRef]
- Cognetti, D.M.; Johnson, J.M.; Curry, J.M.; Kochuparambil, S.T.; McDonald, D.; Mott, F.; Fidler, M.J.; Stenson, K.; Vasan, N.R.; Razaq, M.A.; et al. Phase 1/2a, Open-Label, Multicenter Study of RM-1929 Photoimmunotherapy in Patients with Locoregional, Recurrent Head and Neck Squamous Cell Carcinoma. Head Neck 2021, 43, 3875–3887. [Google Scholar] [CrossRef]
- Nagaya, T.; Okuyama, S.; Ogata, F.; Maruoka, Y.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy Using a Fiber Optic Diffuser for Treating Peritoneal Gastric Cancer Dissemination. Gastric Cancer 2019, 22, 463–472. [Google Scholar] [CrossRef]
- Nagaya, T.; Okuyama, S.; Ogata, F.; Maruoka, Y.; Choyke, P.L.; Kobayashi, H. Endoscopic near Infrared Photoimmunotherapy Using a Fiber Optic Diffuser for Peritoneal Dissemination of Gastric Cancer. Cancer Sci. 2018, 109, 1902–1908. [Google Scholar] [CrossRef]
- Okada, R.; Furusawa, A.; Inagaki, F.; Wakiyama, H.; Kato, T.; Okuyama, S.; Furumoto, H.; Fukushima, H.; Choyke, P.L.; Kobayashi, H. Endoscopic Near-Infrared Photoimmunotherapy in an Orthotopic Head and Neck Cancer Model. Cancer Sci. 2021, 112, 3041–3049. [Google Scholar] [CrossRef]
- Furumoto, H.; Kato, T.; Wakiyama, H.; Furusawa, A.; Choyke, P.L.; Kobayashi, H. Endoscopic Applications of Near-Infrared Photoimmunotherapy (NIR-PIT) in Cancers of the Digestive and Respiratory Tracts. Biomedicines 2022, 10, 846. [Google Scholar] [CrossRef] [PubMed]
- Hirata, H.; Kuwatani, M.; Nakajima, K.; Kodama, Y.; Yoshikawa, Y.; Ogawa, M.; Sakamoto, N. Near-Infrared Photoimmunotherapy (NIR-PIT) on Cholangiocarcinoma Using a Novel Catheter Device with Light Emitting Diodes. Cancer Sci. 2021, 112, 828–838. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, T.; Fujita, Y.; Shimogami, M.; Kaneda, K.; Seto, T.; Mizukami, K.; Takei, M.; Isobe, Y.; Yasui, H.; Sato, K. Inside-the-Body Light Delivery System Using Endovascular Therapy-Based Light Illumination Technology. EBioMedicine 2022, 85, 104289. [Google Scholar] [CrossRef] [PubMed]
- Mitsunaga, M.; Nakajima, T.; Sano, K.; Choyke, P.L.; Kobayashi, H. Near-Infrared Theranostic Photoimmunotherapy (PIT): Repeated Exposure of Light Enhances the Effect of Immunoconjugate. Bioconjug Chem. 2012, 23, 604–609. [Google Scholar] [CrossRef]
- Maawy, A.A.; Hiroshima, Y.; Zhang, Y.; Garcia-Guzman, M.; Luiken, G.A.; Kobayashi, H.; Hoffman, R.M.; Bouvet, M. Photoimmunotherapy Lowers Recurrence after Pancreatic Cancer Surgery in Orthotopic Nude Mouse Models. J. Surg. Res. 2015, 197, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Sato, N.; Xu, B.; Nakamura, Y.; Nagaya, T.; Choyke, P.L.; Hasegawa, Y.; Kobayashi, H. Spatially Selective Depletion of Tumor-Associated Regulatory T Cells with near-Infrared Photoimmunotherapy. Sci. Transl. Med. 2016, 8, 352ra110. [Google Scholar] [CrossRef] [PubMed]
- Taki, S.; Matsuoka, K.; Nishinaga, Y.; Takahashi, K.; Yasui, H.; Koike, C.; Shimizu, M.; Sato, M.; Sato, K. Spatiotemporal Depletion of Tumor-Associated Immune Checkpoint PD-L1 with near-Infrared Photoimmunotherapy Promotes Antitumor Immunity. J. Immunother. Cancer 2021, 9, e003036. [Google Scholar] [CrossRef] [PubMed]
- Okada, R.; Maruoka, Y.; Furusawa, A.; Inagaki, F.; Nagaya, T.; Fujimura, D.; Choyke, P.L.; Kobayashi, H. The Effect of Antibody Fragments on CD25 Targeted Regulatory T Cell Near Infrared Photoimmunotherapy (NIR-PIT). Bioconjugate Chem. 2019, 30, 2624–2633. [Google Scholar] [CrossRef]
- Anz, D.; Mueller, W.; Golic, M.; Kunz, W.G.; Rapp, M.; Koelzer, V.H.; Ellermeier, J.; Ellwart, J.W.; Schnurr, M.; Bourquin, C.; et al. CD103 Is a Hallmark of Tumor-Infiltrating Regulatory T Cells. Int. J. Cancer 2011, 129, 2417–2426. [Google Scholar] [CrossRef]
- Vijayan, D.; Young, A.; Teng, M.W.; Smyth, M.J. Targeting Immunosuppressive Adenosine in Cancer. Nat. Rev. Cancer 2017, 17, 709–724. [Google Scholar] [CrossRef]
- Xue, G.; Wang, Z.; Zheng, N.; Fang, J.; Mao, C.; Li, X.; Jin, G.; Ming, X.; Lu, Y. Elimination of Acquired Resistance to PD-1 Blockade via the Concurrent Depletion of Tumour Cells and Immunosuppressive Cells. Nat. Biomed. Eng. 2021, 5, 1306–1319. [Google Scholar] [CrossRef]
- Sugiyama, D.; Nishikawa, H.; Maeda, Y.; Nishioka, M.; Tanemura, A.; Katayama, I.; Ezoe, S.; Kanakura, Y.; Sato, E.; Fukumori, Y.; et al. Anti-CCR4 MAb Selectively Depletes Effector-Type FoxP3+CD4+ Regulatory T Cells, Evoking Antitumor Immune Responses in Humans. Proc. Natl. Acad. Sci. USA 2013, 110, 17945–17950. [Google Scholar] [CrossRef]
- Tanaka, A.; Sakaguchi, S. Regulatory T Cells in Cancer Immunotherapy. Cell Res. 2017, 27, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Ko, K.; Yamazaki, S.; Nakamura, K.; Nishioka, T.; Hirota, K.; Yamaguchi, T.; Shimizu, J.; Nomura, T.; Chiba, T.; Sakaguchi, S. BRIEF DEFINITIVE REPORT Treatment of Advanced Tumors with Agonistic Anti-GITR MAb and Its Effects on Tumor-Infiltrating Foxp3 CD25 CD4 Regulatory T Cells. J. Exp. Med. 2005, 202, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Barnett, J.D.; Jin, J.; Penet, M.-F.; Kobayashi, H.; Bhujwalla, Z.M. Citation: Phototheranostics of Splenic Myeloid-Derived Suppressor Cells and Its Impact on Spleen Metabolism in Tumor-Bearing Mice. Cancers 2022, 14, 3578. [Google Scholar] [CrossRef]
- Sehmi, R.; Wood, L.J.; Watson, R.; Foley, R.; Hamid, Q.; O’byrne, P.M.; Denburg, J.A. Allergen-Induced Increases in IL-5 Receptor-Subunit Expression on Bone Marrow-Derived CD34 Cells from Asthmatic Subjects A Novel Marker of Progenitor Cell Commitment towards Eosinophilic Differentiation. J. Clin. Investig. 1997, 100, 2466–2475. [Google Scholar] [CrossRef] [PubMed]
- Drick, N.; Milger, K.; Seeliger, B.; Fuge, J.; Korn, S.; Buhl, R.; Schuhmann, M.; Herth, F.; Kendziora, B.; Behr, J.; et al. Switch from Il-5 to Il-5-Receptor α Antibody Treatment in Severe Eosinophilic Asthma. J. Asthma Allergy 2020, 13, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Guttman-Yassky, E.; Bissonnette, R.; Ungar, B.; Suárez-Fariñas, M.; Ardeleanu, M.; Esaki, H.; Suprun, M.; Estrada, Y.; Xu, H.; Peng, X.; et al. Dupilumab Progressively Improves Systemic and Cutaneous Abnormalities in Patients with Atopic Dermatitis. J. Allergy Clin. Immunol. 2019, 143, 155–172. [Google Scholar] [CrossRef]
- Ordovas-Montanes, J.; Dwyer, D.F.; Nyquist, S.K.; Buchheit, K.M.; Vukovic, M.; Deb, C.; Wadsworth II, M.H.; Hughes, T.K.; Kazer, S.W.; Yoshimoto, E.; et al. Allergic Inflammatory Memory in Human Respiratory Epithelial Progenitor Cells HHS Public Access. Nature 2018, 560, 649–654. [Google Scholar] [CrossRef]
- Komatsu, N.; Okamoto, K.; Sawa, S.; Nakashima, T.; Oh-Hora, M.; Kodama, T.; Tanaka, S.; Bluestone, J.A.; Takayanagi, H. Pathogenic Conversion of Foxp3 + T Cells into T H 17 Cells in Autoimmune Arthritis. Nat. Med. 2014, 20, 62–68. [Google Scholar] [CrossRef]
Methods | Examples | Characteristics | Ref. |
---|---|---|---|
Methods using synthetic biomaterials | PLG scaffolds | <PLAGA+Treg> Co-localizing immunomodulatory cells with islets to affect the immune system on a local and systemic level. | [18] |
<PLGA+TGF-β> Localized TGF-β1 delivery modulates the immune response to biomaterial implants and enhance cell function in cell-based therapies. | [19] | ||
PEG biomaterials | <Peptide-functionalized PEG hydrogels> (TNFα-antagonizing PEG- WP9QY hydrogels/MCP-1-antagonizing PEG-WKNFQTI hydrogels) PEG hydrogels presenting peptides which sequester the pro-inflammatory cytokine TNFα and chemokine MCP-1 reduce the host’s innate immune response to transplanted cells by decreasing the recruitment and activation of immune cells. | [20,21] | |
<Drug-PEG-coating> (Rapa-PEG-coating around alginate microspheres) PEG biomaterials are used to locally deliver drugs that suppress the immune response. | [22] | ||
<SA-FasL microgels> SA-FasL locally immunomodulates (increase ratio of Treg to CD4+ and CD8+ Teff cells) in allograft. | [2] | ||
Methods using nanoparticles | pTrap LCP | <pDNAs encoding PD-L1 and CXCL12 traps into the LCP vector> Greatly increased the concentrations of immunotherapeutic agents in local tissue, allowing the therapy to inhibit the accumulation of immune-suppressive cells. | [9] |
Nanosuspension | <Hyaluronic Acid—Dexamethasone Nanoparticles> Local delivery directly to the lung in the form of liquid aerosol administered into the pipe of the ventilator. | [23] | |
Protein nanogels (NGs) | <Cell surface-conjugated NGs> The use of cell surface-conjugated protein nanogels (NGs) responsive to T cell receptor (TCR) activation as a local source of adjuvant could expand T cells in tumors and increase cytokine administration without toxicity, greatly improving therapeutic efficacy. | [24] | |
Methods of genetic engineering | Gene immunotherapies | <pCXCL12 trap / pPD-L1 trap> Increases the activation of cancer-specific CD8þ T-cells by gene immunotherapies. | [9] |
TRECK | <Mas-TRECK and Bas-TRECK mice> Specifically destroying target cells (mast cells/basophils) at an arbitrary time by creating transgenic mice in which a human-derived diphtheria toxin receptor (DTR) gene is introduced into the mouse downstream of a cell or organ-specific promoter. | [25] | |
(and photothermal control) | Engineered CAR T cells | <Bispecific T cell engager bearing an NKG2D receptor> The activity of intratumoral CAR T cells can be controlled photothermally via synthetic gene switches. | [26] |
Targeting the extracellular matrix | aTM | An artificial T cell-stimulating matrix (aTM), composed of a hyaluronic-based hydrogel with tunable stiffness; further promotes T cell expansion. | [27] |
T cells expressing CAR against FAP | Adoptive transference of T cells expressing a chimeric antigen receptor (CAR) against FAP; endogenous CF target specifically targets pathologic cardiac fibrosis. | [28] | |
Engineered ECM-binding checkpoint blockade Abs | <PlGF-2123–144–anti-CTLA4 / PlGF-2123–144–anti–PD-L1 Abs> These engineered ECM-binding checkpoint blockade Abs locally increase tumor-infiltrating activated CD8+and CD4+T cells. | [29] | |
Engineered cytokine–ECM fusion systems | <CBD-IL-2 and IL-12> A collagen-binding domain fused to IL-12 (CBD-IL-12) by direct injection into the tumor mass/intravenous injection prolongs and localizes therapeutic antitumor activity within the tumor microenvironment. | [30,31] | |
Method using compounds | Carvone (fragrance compound) | Some compounds have different immunomodulatory properties (differences in activation and suppression/ CD3+Tcell, cytokine variation) in the hippocampus among individuals with genetic variability, mutations, and polymorphisms. | [32] |
Method using antimicrobial peptide | LNIT | <Local nasal immunotherapy (LNIT) with FIP-fve and DN-Tp> LNIT with FIP-fve and DN-Tp had an anti-inflammatory effect on mite-induced airway inflammations and possesses potential as an immunomodulatory therapy agent for allergic airway diseases. | [33,34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamada, M.; Matsuoka, K.; Sato, M.; Sato, K. Recent Advances in Localized Immunomodulation Technology: Application of NIR-PIT toward Clinical Control of the Local Immune System. Pharmaceutics 2023, 15, 561. https://doi.org/10.3390/pharmaceutics15020561
Yamada M, Matsuoka K, Sato M, Sato K. Recent Advances in Localized Immunomodulation Technology: Application of NIR-PIT toward Clinical Control of the Local Immune System. Pharmaceutics. 2023; 15(2):561. https://doi.org/10.3390/pharmaceutics15020561
Chicago/Turabian StyleYamada, Mizuki, Kohei Matsuoka, Mitsuo Sato, and Kazuhide Sato. 2023. "Recent Advances in Localized Immunomodulation Technology: Application of NIR-PIT toward Clinical Control of the Local Immune System" Pharmaceutics 15, no. 2: 561. https://doi.org/10.3390/pharmaceutics15020561
APA StyleYamada, M., Matsuoka, K., Sato, M., & Sato, K. (2023). Recent Advances in Localized Immunomodulation Technology: Application of NIR-PIT toward Clinical Control of the Local Immune System. Pharmaceutics, 15(2), 561. https://doi.org/10.3390/pharmaceutics15020561