Cisplatin-Loaded Thermosensitive Liposomes Functionalized with Hyaluronic Acid: Cytotoxicity and In Vivo Acute Toxicity Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cisplatin Thermosensitive Liposomes (TSL-CDDP)
2.3. Determination of Diameter and Zeta Potential
2.4. Content of Cisplatin Encapsulation
2.5. In Vitro Experimentation
2.5.1. In Vitro Cell Viability
2.5.2. Nuclear Morphology Analysis
2.6. In Vivo Toxicity Study
2.7. Statistical Analysis
3. Results
3.1. Average Diameter, PDI, Zeta Potential and EP
3.2. In Vitro Cell Viability
3.3. Analysis of Nuclear Morphology
3.4. In Vivo Toxicity Study
3.4.1. Assessment of Clinical Signs, Weight and Mortality of Animals
3.4.2. Hematological Investigation
3.4.3. Biochemical Investigation
3.4.4. Histopathological Investigation
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alam, N.; Dubey, R.D.; Kumar, A.; Koul, M.; Sharma, N.; Sharma, P.R.; Chandan, B.K.; Singh, S.K.; Singh, G.; Gupta, P.N. Reduced toxicological manifestations of cisplatin following encapsulation in folate grafted albumin nanoparticles. Life Sci. 2015, 142, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.P.; Tadagavadi, R.K.; Ramesh, G.; Reeves, W.B. Mechanisms of Cisplatin Nephrotoxicity. Toxins 2010, 2, 2490–2518. [Google Scholar] [CrossRef] [PubMed]
- Ait-Oudhia, S.; Mager, D.E.; Straubinger, R.M. Application of Pharmacokinetic and Pharmacodynamic Analysis to the Development of Liposomal Formulations for Oncology. Pharmaceutics 2014, 6, 137–174. [Google Scholar] [CrossRef] [PubMed]
- Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 2017, 9, 12. [Google Scholar] [CrossRef]
- Liu, D.; He, C.; Wang, A.Z.; Lin, W. Application of liposomal technologies for delivery of platinum analogs in oncology. Int. J. Nanomed. 2013, 8, 3309–3319. [Google Scholar]
- Gomes, I.P.; Duarte, J.A.; Maia, A.L.C.; Rubello, D.; Townsend, D.M.; de Barros, A.L.B.; Leite, E.A. Thermosensitive Nanosystems Associated with Hyperthermia for Cancer Treatment. Pharmaceuticals 2019, 12, 171. [Google Scholar] [CrossRef]
- Huang, X.; Li, M.; Bruni, R.; Messa, P.; Cellesi, F. The effect of thermosensitive liposomal formulations on loading and re-lease of high molecular weight biomolecules. Int. J. Pharm. 2017, 524, 279–289. [Google Scholar] [CrossRef]
- Lokerse, W.J.; Bolkestein, M.; Dalm, S.U.; Eggermont, A.M.; de Jong, M.; Grüll, H.; Koning, G.A. Comparing the therapeutic potential of thermosensitive liposomes and hyperthermia in two distinct subtypes of breast cancer. J. Control. Release 2017, 258, 34–42. [Google Scholar] [CrossRef]
- Lv, Y.; Xu, C.; Zhao, X.; Lin, C.; Yang, X.; Xin, X.; Zhang, L.; Qin, C.; Han, X.; Yang, L.; et al. Nanoplatform Assembled from a CD44-Targeted Prodrug and Smart Liposomes for Dual Targeting of Tumor Microenvironment and Cancer Cells. ACS Nano 2018, 12, 1519–1536. [Google Scholar] [CrossRef]
- Gasperini, A.A.M.; Puentes-Martinez, X.E.; Balbino, T.A.; Rigoletto, T.D.P.; Corrêa, G.D.S.C.; Cassago, A.; Portugal, R.V.; de La Torre, L.G.; Cavalcanti, L.P. Association between Cationic Liposomes and Low Molecular Weight Hyaluronic Acid. Am. Chem. Soc. 2015, 31, 3308–3317. [Google Scholar] [CrossRef]
- Mattheolabakis, G.; Milane, L.; Singh, A.; Amiji, M.M. Hyaluronicacid targeting of CD44 for cancer therapy: From receptor biology to nanomedicine. J. Drug. Target. 2015, 23, 605–618. [Google Scholar] [CrossRef] [PubMed]
- Arpicco, S.; Lerda, C.; Pozza, E.D.; Costanzo, C.; Tsapis, N.; Stella, B.; Donadelli, M.; Dando, I.; Fattal, E.; Cattel, L.; et al. Hyaluronic acid-coated liposomes for active targeting of gemcitabine. Eur. J. Pharm. Biopharm. 2013, 85, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Qhattal, H.S.S.; Hye, T.; Alali, A.; Liu, X. Hyaluronan polymer length, grafting density, and surface poly(ethylene glycol) coating influence in vivo circulation and tumor targeting of hyaluronan-grafted liposomes. ACS Nano 2014, 8, 5423–5440. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Mo, R.; Bellotti, A.; Zhou, J.; Gu, Z. Gel-liposome-mediated co-delivery of anticancer membrane-associated proteins and small-molecule drugs for enhanced therapeutic efficacy. Adv. Funct. Mater 2014, 24, 2295–2304. [Google Scholar] [CrossRef]
- Hornof, M.; Urtti, A. Low molecular weight hyaluronan shielding of DNA/PEI polyplexes facilitates CD44 receptor mediated uptake in human corneal epithelial cells. J. Gene Med. 2008, 10, 70–80. [Google Scholar] [CrossRef]
- Gomes, I.P.; Malachias, Â.; Maia, A.L.C.; Lages, E.B.; Ferreira, F.A.; Alves, R.J.; Giuberti, C.S.; de Barros, A.L.B.; Leite, E.A. Thermosensitive liposomes containing cisplatin functionalized by hyaluronic acid: Preparation and physicochemical characterization. J. Nanoparticle Res. 2022, 24, 30. [Google Scholar] [CrossRef]
- Ravar, F.; Saadat, E.; Gholami, M.; Dehghankelishadi, P.; Mahdavi, M.; Azami, S.; Dorkoosh, F.A. Hyaluronic acid-coated liposomes for targeted delivery of paclitaxel, in-vitro characterization and in-vivo evaluation. J. Control. Release 2016, 229, 10–22. [Google Scholar] [CrossRef]
- Al-Ahmady, Z.S.; Chaloin, O.; Kostarelos, K. Monoclonal antibody-targeted, temperature-sensitive liposomes: In vivo tu-mor chemotherapeutics in combination with mild hyperthermia. J. Control Release 2014, 196, 332–343. [Google Scholar] [CrossRef]
- Alavizadeh, S.H.; Gheybi, F.; Nikpoor, A.R.; Badiee, A.; Golmohammadzadeh, S.; Jaafari, M.R. Therapeutic Efficacy of Cisplatin Thermosensitive Liposomes upon Mild Hyperthermia in C26 Tumor Bearing BALB/c Mice. Mol. Pharm. 2017, 14, 712–721. [Google Scholar] [CrossRef]
- Leite, E.A.; Lana, Â.M.Q.; Junior, Á.D.C.; Coelho, L.G.V.; De Oliveira, M.C. Acute toxicity study of cisplatin loaded long-circulating and pH-sensitive liposomes administered in mice. J. Biomed. Nanotechnol. 2012, 8, 229–239. [Google Scholar] [CrossRef]
- Sheridan, C.; Kishimoto, H.; Fuchs, R.K.; Mehrotra, S.; Bhat-Nakshatri, P.; Turner, C.H.; Goulet, R.; Badve, S.; Nakshatri, H. CD44+/CD24-Breast cancer cells exhibit enhanced invase properties: An early step necessary for metastasis. Breast Cancer Res. 2006, 8, R59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filippi-Chiela, E.C.; Oliveira, M.M.; Jurkovski, B.; Callegari-Jacques, S.M.; da Silva, V.D.; Lenz, G. Nuclear morphomet-ric analysis (NMA): Screening of senescence, apoptosis and nuclear irregularities. PLoS ONE 2012, 7, e42522. [Google Scholar] [CrossRef] [PubMed]
- Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and Challenges of Liposome Assisted Drug Delivery. Front. Pharmacol. 2015, 6, 286. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Chen, J.; Gu, X.; Liang, W.; Wang, J. Efficacy and toxicity of cisplatin liposomes modified with polyethylenimine. Pharmazie 2014, 69, 281–286. [Google Scholar] [CrossRef]
- Filion, M.C.; Phillips, N.C. Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim. Biophys. Acta (BBA)—Biomembr. 1997, 1329, 345–356. [Google Scholar] [CrossRef]
- Schwendener, R.A.; Lagocki, P.A.; Rahman, Y.E. The effects of charge and size on the interaction with macrophages. Biochimt. Biophys. Acta 1984, 772, 93–101. [Google Scholar] [CrossRef]
- Stevens, F.E.; Beamish, H.; Warrener, R.; Gabrielli, B. Histone deacetylase inhibitors induce mitotic slippage. Oncogene 2008, 27, 1345–1354. [Google Scholar] [CrossRef]
- Saraste, A. Morphologic criteria and detection of apoptosis. Herz 1999, 24, 189–195. [Google Scholar] [CrossRef]
- Wu, P.C.; Wang, Q.; Grobman, L.; Chu, E.; Wu, D.Y. Accelerated cellular senescence in solid tumor therapy. Exp. Oncol. 2012, 34, 298–305. [Google Scholar]
- Milczarek, M. The Premature Senescence in Breast Cancer Treatment Strategy. Cancers 2020, 12, 1815. [Google Scholar] [CrossRef]
- Pandey, M.S.; Harris, E.N.; Weigel, J.A.; Weigel, P.H. The cytoplasmic domain of the hyaluronan receptor for endocyto-sis (hare) contains multiple endocytic motifs targeting coated pit-mediated internalization. J. Biol. Chem. 2008, 283, 21453–21461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Formulations | TSL-CDDP | TSL-CDDP-HA | |
---|---|---|---|
Parameters | |||
Mean Diameter (nm) | 104.1 ± 1.9 | 103.6 ± 2.2 | |
PDI | 0.14 ± 0.01 | 0.06 ± 0.01 | |
Zeta Potential (mV) | +21.4 ± 0.3 | +0.3 ± 1.4 * | |
Encapsulation (μg/mL) | 266.3 ± 19.9 | 239.7 ± 12.7 | |
EP (%) | 13.7 ± 1.8 | 13.1 ± 0.9 |
Treatments | Without HT | With HT | ||
---|---|---|---|---|
IC50 (µM) | CI | IC50 (μM) | CI | |
Free CDDP | 50.3 | 37.5 to 67.2 | 42.1 | 32.2 to 54.9 |
TSL-CDDP | 16.6 * | 11.4 to 24.1 | 17.0 | 10.9 to 26.5 |
TSL-CDDP-HA | 30.6 | 21.4 to 43.6 | 28.3 | 21.6 to 37.0 |
Treatments | Number of Dead Animals/Number of Treaties | Day of Death |
---|---|---|
Saline | 0/6 | - |
TSL-CDDP | 0/6 | - |
TSL-CDDP-HA | 0/6 | - |
Free CDDP | 1/6 | 7 |
Parameters | Saline | Free CDDP | TSL-CDDP | TSL-CDDP-HA |
---|---|---|---|---|
WBC (103/µL) | 5.1 ± 0.3 | 4.7 ± 0.5 | 7.8 ± 0.9 abc | 4.9 ± 0.6 |
LINF (103/µL) | 2.8 ± 0.2 | 2.8 ± 0.3 | 5.0 ± 0.6 abc | 2.8 ± 0.3 |
RBC (106/µL) | 6.4 ± 0.1 | 5.6 ± 0.1 b | 5.2 ± 0.1 abc | 5.7 ± 0.1 b |
HGB (g/dL) | 13.2 ± 0.2 | 11.4 ± 0.3 b | 10.5 ± 0.2 ab | 11.4 ± 0.1 b |
HCT (%) | 34.1 ± 0.6 | 31.1 ± 0.9 b | 27.7 ± 0.5 bc | 30.1 ± 0.5 b |
RDW (%) | 14.9 ± 0.3 | 15.4 ± 0.6 | 16.2 ± 0.1 b | 15.5 ± 0.2 |
PLT (103/µL) | 251.5 ± 11.5 | 233.6 ± 16.3 | 283.1 ± 28.8 | 276.7 ± 16.9 |
Parameters | Saline | Free CDDP | TSL-CDDP | TSL-CDDP-HA |
---|---|---|---|---|
Urea (mg/dL) | 49.2 ± 2.8 | 66.5 ± 1.0 b | 73.1 ± 2.4 ab | 59.3 ± 4.6 |
Creatinine(mg/dL) | 0.3 ± 0.01 | 0.4 ± 0.01 b | 0.3 ± 0.01 | 0.3 ± 0.01 c |
AST (U/L) | 89.8 ± 6.3 | 78.1 ± 2.4 | 94.9 ± 5.2 a | 121.1 ± 10.2 bc |
ALT (U/L) | 37.2 ± 2.1 | 43.5 ± 3.8 | 44.9 ± 2.8 a | 65.1 ± 7.6 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, I.P.; Silva, J.d.O.; Cassali, G.D.; De Barros, A.L.B.; Leite, E.A. Cisplatin-Loaded Thermosensitive Liposomes Functionalized with Hyaluronic Acid: Cytotoxicity and In Vivo Acute Toxicity Evaluation. Pharmaceutics 2023, 15, 583. https://doi.org/10.3390/pharmaceutics15020583
Gomes IP, Silva JdO, Cassali GD, De Barros ALB, Leite EA. Cisplatin-Loaded Thermosensitive Liposomes Functionalized with Hyaluronic Acid: Cytotoxicity and In Vivo Acute Toxicity Evaluation. Pharmaceutics. 2023; 15(2):583. https://doi.org/10.3390/pharmaceutics15020583
Chicago/Turabian StyleGomes, Isabela Pereira, Juliana de Oliveira Silva, Geovanni Dantas Cassali, André Luís Branco De Barros, and Elaine Amaral Leite. 2023. "Cisplatin-Loaded Thermosensitive Liposomes Functionalized with Hyaluronic Acid: Cytotoxicity and In Vivo Acute Toxicity Evaluation" Pharmaceutics 15, no. 2: 583. https://doi.org/10.3390/pharmaceutics15020583
APA StyleGomes, I. P., Silva, J. d. O., Cassali, G. D., De Barros, A. L. B., & Leite, E. A. (2023). Cisplatin-Loaded Thermosensitive Liposomes Functionalized with Hyaluronic Acid: Cytotoxicity and In Vivo Acute Toxicity Evaluation. Pharmaceutics, 15(2), 583. https://doi.org/10.3390/pharmaceutics15020583