A Systematic Overview of Eudragit® Based Copolymer for Smart Healthcare
Abstract
:1. Introduction
2. Classification of Eudragit Polymer
3. Characterization of Eudragit
4. Synthesis of Eudragit Polymer
4.1. Atom Transfer Radical Polymerization
4.2. Reversible Addition–Fragmentation
4.3. Chain Transfer Polymerization
5. Functionalized Eudragit-Based Nanomedicine for Targeted Drug Delivery
5.1. Eudragit-Based Hydrogel Drug Delivery
5.2. Eudragit-Based Microneedle Drug Delivery
5.3. Eudragit-Based Nanofiber Drug Delivery
5.4. Eudragit-Based Nanoparticles Drug Delivery
6. Gene-Based Drug Delivery
Eudragit-Based Drug Delivery against DNA/RNA
7. Cancer-Based Drug Delivery
7.1. Eudragit-Based Drug Delivery against Colon Cancer
7.2. Eudragit-Based Drug Delivery against Oral and Buccal Cancer
8. Applications of Eudragit in Biosensor
9. Patent on Eudragit-Based Pharmaceutical Formulation for Drug Delivery
10. Future Prospective
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RAFT | Reversible addition–fragmentation chain transfer |
ATRP | Atom transfer radical polymerization |
GIT | Gastro-intestine tract |
DSC | Differential scanning calorimetry |
FT-IR | Fourier-transform infrared spectroscopy |
TGA | Thermal gravimetric analysis |
DMSO | Dimethyl sulfoxide |
TB | Toluidine blue |
MPPD | 2-methoxy-N−4-phenyl-1,4-phenylenediamine |
EDC | 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide |
CDI | 1,1′-Carbonyldiimidazole |
DMF | Dimethyl formamide |
DCC | N,N′-Dicyclohexylcarbodiimide |
SEM | Scanning electron microscopy |
ROS | Reactive oxygen species |
DMNs | Dissolving microneedles |
PVP-K90 | Polyvinylpyrrolidone K90 |
MNs | Microneedles |
PLGA | poly(lactic acid-co-glycolic acid) |
FESEM | Field emission scanning electron microscopy |
NSAIDs | Non-steroidal anti-inflammatory drugs |
5-FU | 5-fluourouacil |
VLPVPR | Val-LeuPro-Val-Pro-Arg |
FITC-BSA | Fluorescein isothiocyanate labeled bovine serum albumin |
MHC | Major histocompatibility complex |
PBS | Phosphate-buffered saline |
BSA | Bovine serum albumin |
TBSS-IER | Tract-based spatial statistics-ion exchange resins |
TNBS | 2: 4, 6-triniteobenzenesulfonic acid |
E-CPNs | Eudragit S100-loaded Citrus-Pectin Nanoparticles |
WGMR | Whispering Gallery Mode Resonator |
GO | glucose oxidase |
References
- Shah, H.; Jain, A.; Laghate, G.; Prabhudesai, D. Pharmaceutical Excipients. In Remington: The Science and Practice of Pharmacy; Academic Press: Cambridge, MA, USA, 2020; pp. 633–643. [Google Scholar] [CrossRef]
- Patra, C.N.; Priya, R.; Swain, S.; Kumar Jena, G.; Panigrahi, K.C.; Ghose, D. Pharmaceutical Significance of Eudragit: A Review. Futur. J. Pharm. Sci. 2017, 3, 33–45. [Google Scholar] [CrossRef]
- Thakral, S.; Thakral, N.K.; Majumdar, D.K. Eudragit®: A Technology Evaluation. Expert Opin. Drug Deliv. 2013, 10, 131–149. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Park, K. Oral Controlled Release Formulation Design and Drug Delivery: Theory to Practice; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Lin, S.Y.; Chen, K.S.; Run-Chu, L. Organic Esters of Plasticizers Affecting the Water Absorption, Adhesive Property, Glass Transition Temperature and Plasticizer Permanence of Eudragit Acrylic Films. J. Control. Release 2000, 68, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Sharma, V.; Panda, A.K.; Majumdar, D.K. Development of Enteric Submicron Particles Formulation of α-Amylase for Oral Delivery. Pharm. Dev. Technol. 2013, 18, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Maghsoodi, M. Physicomechanical Properties of Naproxen-Loaded Microparticles Prepared from Eudragit L100. AAPS PharmSciTech 2009, 10, 120–128. [Google Scholar] [CrossRef]
- Lin, S.Y.; Yu, H.L. Thermal Stability of Methacrylic Acid Copolymers of Eudragits L, S, and L30D and the Acrylic Acid Polymer of Carbopol. J. Polym. Sci. Part A Polym. Chem. 1999, 37, 2061–2067. [Google Scholar] [CrossRef]
- Lin, S.Y.; Liao, C.M.; Liang, R.C. Use of Microscopic FT-IR/DSC Combined System for the Study of Glass Transition Temperatures of Polymers. Polym. J. 1995, 27, 201–204. [Google Scholar] [CrossRef]
- Parsons, R.L. Drug Absorption in Gastrointestinal Disease with Particular Reference to Malabsorption Syndromes. Clin. Pharm. 1977, 2, 45–60. [Google Scholar] [CrossRef]
- Effinger, A.; O’Driscoll, C.M.; McAllister, M.; Fotaki, N. Impact of Gastrointestinal Disease States on Oral Drug Absorption—Implications for Formulation Design—A PEARRL Review. J. Pharm. Pharmacol. 2019, 71, 674–698. [Google Scholar] [CrossRef]
- Salamat-Miller, N.; Chittchang, M.; Johnston, T.P. The Use of Mucoadhesive Polymers in Buccal Drug Delivery. Adv. Drug Deliv. Rev. 2005, 57, 1666–1691. [Google Scholar] [CrossRef]
- Gilhotra, R.M.M.; Ikram, S.; Srivastava, N.; Gilhotra, N. A clinical perspective on mucoadhesive buccal drug delivery systems. J. Biomed. Res. 2014, 28, 81. [Google Scholar] [CrossRef]
- Li, H.; Singh, B.; Park, T.; Hong, Z.; Kang, S.; Cho, C.; Choi, Y. European Journal of Pharmaceutical Sciences Mannan-Decorated Thiolated Eudragit Microspheres for Targeting Antigen Presenting Cells via Nasal Vaccination. PHASCI 2015, 80, 16–25. [Google Scholar] [CrossRef]
- Majdanski, T.C.; Schubert, S.; Windhab, N.; Schubert, U.S. Synthesis and Characterization of Colored EUDRAGIT V as Enteric Coating Material. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 2386–2393. [Google Scholar] [CrossRef]
- Kim, M.; Kim, D.H.; Nguyen, D.; Lee, H.S.; Kang, N.; Baek, M.; An, J.; Yoo, S.; Mun, Y.; Lee, W.; et al. Preparation and Evaluation of Eudragit L100-PEG Proliponiosomes for Enhanced Oral Delivery of Celecoxib. Pharmaceutics 2020, 12, 718. [Google Scholar] [CrossRef]
- Porfiryeva, N.N.; Nasibullin, S.F.; Abdullina, S.G.; Tukhbatullina, I.K.; Moustafine, R.I.; Khutoryanskiy, V.V. Acrylated Eudragit® E PO as a Novel Polymeric Excipient with Enhanced Mucoadhesive Properties for Application in Nasal Drug Delivery. Int. J. Pharm. 2019, 562, 241–248. [Google Scholar] [CrossRef]
- Moustafine, R.I.; Bukhovets, A.V.; Sitenkov, A.Y.; Kemenova, V.A.; Rombaut, P.; Van Den Mooter, G. Eudragit e PO as a Complementary Material for Designing Oral Drug Delivery Systems with Controlled Release Properties: Comparative Evaluation of New Interpolyelectrolyte Complexes with Countercharged Eudragit L100 Copolymers. Mol. Pharm. 2013, 10, 2630–2641. [Google Scholar] [CrossRef]
- Psimadas, D.; Georgoulias, P.; Valotassiou, V.; Loudos, G. Molecular Nanomedicine Towards Cancer. J. Pharm. Sci. 2012, 101, 2271–2280. [Google Scholar] [CrossRef]
- Moustafine, R.I.; Sitenkov, A.Y.; Bukhovets, A.V.; Nasibullin, S.F.; Appeltans, B.; Kabanova, T.V.; Khutoryanskiy, V.V.; Van den Mooter, G. Indomethacin-Containing Interpolyelectrolyte Complexes Based on Eudragit® E PO/S 100 Copolymers as a Novel Drug Delivery System. Int. J. Pharm. 2017, 524, 121–133. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Xia, J. Atom Transfer Radical Polymerization. Chem. Rev. 2001, 101, 2921–2990. [Google Scholar] [CrossRef]
- Keddie, D.J. A Guide to the Synthesis of Block Copolymers Using Reversible-Addition Fragmentation Chain Transfer (RAFT) Polymerization. Chem. Soc. Rev. 2014, 43, 496–505. [Google Scholar] [CrossRef]
- Valente, A.; Mortreux, A.; Visseaux, M.; Zinck, P. Coordinative Chain Transfer Polymerization. Chem. Rev. 2013, 113, 3836–3857. [Google Scholar] [CrossRef] [PubMed]
- Beck, R.C.R.; Ourique, A.F.; Guterres, S.S.; Pohlmann, A.R. Spray-Dried Polymeric Nanoparticles for Pharmaceutics: A Review of Patents. Recent Pat. Drug Deliv. Formul. 2012, 6, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Dos, P.; Chaves, S.; Frank, L.A.; Frank, A.G.; Pohlmann, A.R.; Guterres, S.S.; Carlos, R.; Beck, R. Mucoadhesive Properties of Eudragit ® RS100, Eudragit ® S100, and Poly ( ε -Caprolactone ) Nanocapsules: In Fl Uence of the Vehicle and the Mucosal Surface. AAPS PharmSciTech. 2018, 19, 1637–1646. [Google Scholar] [CrossRef]
- Gupta, V.K.; Assmus, M.W.; Beckert, T.E.; Price, J.C. A Novel PH- and Time-Based Multi-Unit Potential Colonic Drug Delivery System. II. Optimization of Multiple Response Variables. Int. J. Pharm. 2001, 213, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, S.; Buabeid, M.A.; Ullah, K.; Murtaza, G.; Mannan, A. Synthesis, Characterization and Safety Profiling of Eudragit-Based PH Responsive Hydrogels: A Promising Platform for Colonic Delivery of Losartan Synthesis, Characterization and Safety Profiling of Eudragit-Based PH- Responsive Hydrogels: A Promising Platform for colonic drug delivery of losartan potassium. Curr. Drug Deliv. 2020, 16, 548–564. [Google Scholar] [CrossRef]
- Cazorla-luna, R.; Mart, A.; Notario-p, F.; Bedoya, L.M. Vaginal Polyelectrolyte Layer-by-Layer Films Based on Chitosan Derivatives and Eudragit® S100 for PH Responsive Release of Tenofovir. Mar. Drugs 2020, 18, 44. [Google Scholar] [CrossRef]
- Hironaka, K.; Inokuchi, Y.; Fujisawa, T.; Shimazaki, H.; Akane, M.; Tozuka, Y. European Journal of Pharmaceutics and Biopharmaceutics Edaravone-Loaded Liposomes for Retinal Protection against Oxidative Stress-Induced Retinal Damage. Eur. J. Pharm. Biopharm. 2011, 79, 119–125. [Google Scholar] [CrossRef]
- Jones, M.; Kujundzic, M.; John, S.; Bismarck, A. Crab vs. Mushroom: A Review of Crustacean and Fungal Chitin in Wound Treatment. Mar. Drugs. 2020, 18, 64. [Google Scholar] [CrossRef] [Green Version]
- Aung, N.N.; Ngawhirunpat, T.; Rojanarata, T.; Patrojanasophon, P.; Opanasopit, P.; Pamornpathomkul, B. HPMC/PVP Dissolving Microneedles: A Promising Delivery Platform to Promote Trans-Epidermal Delivery of Alpha-Arbutin for Skin Lightening. AAPS PharmSciTech 2020, 21, 1–13. [Google Scholar] [CrossRef]
- Pamornpathomkul, B.; Ngawhirunpat, T.; Tekko, I.A.; Vora, L.; McCarthy, H.O.; Donnelly, R.F. Dissolving Polymeric Microneedle Arrays for Enhanced Site-Specific Acyclovir Delivery. Eur. J. Pharm. Sci. 2018, 121, 200–209. [Google Scholar] [CrossRef]
- Summerfield, A.; Meurens, F.; Ricklin, M.E. The Immunology of the Porcine Skin and Its Value as a Model for Human Skin. Mol. Immunol. 2015, 66, 14–21. [Google Scholar] [CrossRef]
- Aung, N.N.; Ngawhirunpat, T.; Rojanarata, T.; Patrojanasophon, P.; Pamornpathomkul, B.; Opanasopit, P. Fabrication, Characterization and Comparison of α-Arbutin Loaded Dissolving and Hydrogel Forming Microneedles. Int. J. Pharm. 2020, 586, 119508. [Google Scholar] [CrossRef]
- Larrañeta, E.; Moore, J.; Vicente-Pérez, E.M.; González-Vázquez, P.; Lutton, R.; Woolfson, A.D.; Donnelly, R.F. A Proposed Model Membrane and Test Method for Microneedle Insertion Studies. Int. J. Pharm. 2014, 472, 65–73. [Google Scholar] [CrossRef]
- Aung, N.N.; Ngawhirumpat, T.; Rojanarata, T.; Patrojanasophon, P.; Opanasopit, P.; Pamornpathomkul, B. Enhancement of transdermal delivery of resveratrol using Eudragit and polyvinyl pyrrolidone-based dissolving microneedle patches. J. Drug Deliv. Sci. Technol. 2020, 102284. [Google Scholar] [CrossRef]
- Ullah, A.; Jang, M.; Khan, H.; Jin, H.; An, S.; Kim, D.; Kim, Y.; Kim, U.; Man, G. Sensors and Actuators: B. Chemical Microneedle Array with a PH-Responsive Polymer Coating and Its Application in Smart Drug Delivery for Wound Healing. Sens. Actuators B. Chem. 2021, 345, 130441. [Google Scholar] [CrossRef]
- Yang, G.; He, M.; Zhang, S.; Wu, M.; Gao, Y. An Acryl Resin-Based Swellable Microneedles for Controlled Release Intradermal Delivery of Granisetron. Drug Dev. Ind. Pharm. 2017, 44, 1–9. [Google Scholar] [CrossRef]
- Greiner, A.; Wendorff, J.H. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers. Angew. Chem. Int. Edition. 2007, 46, 5670–5703. [Google Scholar] [CrossRef]
- Persano, L.; Camposeo, A.; Tekmen, C.; Pisignano, D. Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review. Macromol. Mater. Eng. 2013, 298, 504–520. [Google Scholar] [CrossRef]
- Mansfield, K.; Sanders, E.; Kenawy, E.; Cooper, J.; Simpson, G.; Sanders, E.H.; Wnek, G.E. Release of Tetracycline Hydrochloride from Electrospun Poly ( Ethylene-Co- Vinylacetate ), Poly ( Lactic Acid ), And a blend. J. Control. Release 2002, 81, 57–64. [Google Scholar]
- Sill, T.J.; Recum, H.A. Von Electrospinning: Applications in Drug Delivery and Tissue Engineering Electrospinning: Applications in Drug Delivery and Tissue Engineering. Biomaterials 2008, 29, 1989–2006. [Google Scholar] [CrossRef]
- Erik, L.; Rajan, A.; Amarjargal, A.; Prasad, A.; Tshool, S.; Hee, C.; Sang, C. Electrospun Polyurethane / Eudragit 1 L100-55 Composite Mats for the PH Dependent Release of Paclitaxel on Duodenal Stent Cover Application. Int. J. Pharm. 2015, 478, 1–8. [Google Scholar] [CrossRef]
- Karthikeyan, K.; Guhathakarta, S.; Rajaram, R.; Sai, P. Electrospun Zein / Eudragit Nanofibers Based Dual Drug Delivery System for the Simultaneous Delivery of Aceclofenac and Pantoprazole. Int. J. Pharm. 2012, 438, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable Polymeric Nanoparticles Based Drug Delivery Systems. Colloids Surf. B: Biointerfaces 2010, 75, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.K.; Wang, Y.; Hanes, J. Mucus-Penetrating Nanoparticles for Drug and Gene Delivery to Mucosal Tissues. Adv. Drug Deliv. Rev. 2009, 61, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Moturi, V.; Lee, Y. Thixotropic Property in Pharmaceutical Formulations. J. Control. Release 2009, 136, 88–98. [Google Scholar] [CrossRef]
- Maghsoodi, M.; Esfahani, M. Preparation of Microparticles of Naproxen with Eudragit RS and Talc by Spherical Crystallization Technique. Pharm. Dev. Technol. 2009, 14, 442–450. [Google Scholar] [CrossRef]
- Nandy, B.C.; Mazumder, B. Formulation and Characterizations of Delayed Release Multi-Particulates System of Indomethacin: Optimization by Response Surface Methodology. Curr. Drug Deliv. 2014, 11, 72–86. [Google Scholar] [CrossRef]
- Khachane, P.; Date, A.A.; Nagarsenker, M.S. Eudragit EPO Nanoparticles: Application in Improving Therapeutic Efficacy and Reducing Ulcerogenicity of Meloxicam on Oral Administration Eudragit EPO Nanoparticles: Application in Improving Therapeutic Efficacy and Reducing Ulcerogenicity of Meloxicam on Oral Administration. J. Biomed. Nanotechnol. 2011, 7, 590–597. [Google Scholar] [CrossRef]
- Li, P.; Yang, Z.; Wang, Y.; Peng, Z.; Li, S.; Kong, L.; Wang, Q. Microencapsulation of Coupled Folate and Chitosan Nanoparticles for Targeted Delivery of Combination Drugs to Colon. J. Microencapsul. Micro Nano Carr. 2014, 2048, 1–6. [Google Scholar] [CrossRef]
- Singh, G.; Pai, R.S. Atazanavir-Loaded Eudragit RL 100 Nanoparticles to Improve Oral Bioavailability: Optimization and in Vitro / in Vivo Appraisal Atazanavir-Loaded Eudragit RL 100 Nanoparticles to Improve Oral Bioavailability: Optimization and in Vitro / in Vivo Appraisal. Drug Deliv. 2016, 23, 7544. [Google Scholar] [CrossRef]
- Yoo, J.; Giri, N.; Lee, C.H. PH-Sensitive Eudragit Nanoparticles for Mucosal Drug Delivery PH-Sensitive Eudragit Nanoparticles for Mucosal Drug Delivery. Int. J. Pharm. 2010, 403, 262–267. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, X.; Zhang, Y.; Li, G.; Cai, C.; Xu, J. Thiolated Eudragit-Based Nanoparticles for Oral Insulin Delivery: Preparation, Characterization, and Evaluation Using Intestinal Epithelial Cells In Vitro. Macromol. Biosci. 2014, 14, 842–852. [Google Scholar] [CrossRef]
- Hao, S.; Wang, B.; Wang, Y.; Zhu, L.; Wang, B.; Guo, T. Colloids and Surfaces B: Biointerfaces Preparation of Eudragit L 100-55 Enteric Nanoparticles by a Novel Emulsion Diffusion Method. Colloids Surf. B Biointerfaces 2013, 108, 127–133. [Google Scholar] [CrossRef]
- Jelvehgari, M.; Zakeri-milani, P.; Siahi-shadbad, M.R.; Loveymi, B.D.; Nokhodchi, A.; Azari, Z.; Valizadeh, H. Development of PH-Sensitive Insulin Nanoparticles Using Eudragit L100-55 and Chitosan with Different Molecular Weights. AAPS PharmSciTech 2010, 11, 1237–1242. [Google Scholar] [CrossRef]
- Haiyan, S.; Dong, L.; Xuwei, T.; Yanli, C. Preparation and in Vitro / in Vivo Characterization of Enteric-Coated Nanoparticles Loaded with the Antihypertensive Peptide VLPVPR. Int. J. Nanomed. 2014, 1709, 1716. [Google Scholar] [CrossRef]
- Pignatello, R.; Ricupero, N.; Bucolo, C.; Maugeri, F.; Maltese, A.; Puglisi, G.; Farmaceutiche, S.; Universitaria, C.; Doria, V.A. Preparation and Characterization of Eudragit Retard Nanosuspensions for the Ocular Delivery of Cloricromene. AAPS PharmSciTech 2006, 7, 1–7. [Google Scholar] [CrossRef]
- Tayel, S.A.; El-nabarawi, M.A.; Tadros, M.I.; Abd-elsalam, W.H. Positively Charged Polymeric Nanoparticle Reservoirs of Terbinafine Hydrochloride: Preclinical Implications for Controlled Drug Delivery in the Aqueous Humor of Rabbits. AAPS PharmSciTech 2013, 14, 782–793. [Google Scholar] [CrossRef]
- Doerdelmann, G.; Kozlova, D.; Epple, M. A PH-Sensitive Poly(Methyl Methacrylate) Copolymer for Efficient Drug and Gene Delivery across the Cell Membrane. J. Mater. Chem. B 2014, 2, 7123–7131. [Google Scholar] [CrossRef]
- Esposito, E.; Sebben, S.; Cortesi, R.; Menegatti, E.; Nastruzzi, C. Preparation and Characterization of Cationic Microspheres for Gene Delivery. Int. J. Pharm. 1999, 189, 29–41. [Google Scholar] [CrossRef]
- Voltan, R.; Castaldello, A.; Brocca-Cofano, E.; Altavilla, G.; Caputo, A.; Laus, M.; Sparnacci, K.; Ensoli, B.; Spaccasassi, S.; Ballestri, M.; et al. Preparation and Characterization of Innovative Protein-Coated Poly(Methylmethacrylate) Core-Shell Nanoparticles for Vaccine Purposes. Pharm. Res. 2007, 24, 1870–1882. [Google Scholar] [CrossRef]
- Basarkar, A.; Singh, J. Poly (Lactide-Co-Glycolide)-Polymethacrylate Nanoparticles for Intramuscular Delivery of Plasmid Encoding Interleukin-10 to Prevent Autoimmune Diabetes in Mice. Pharm. Res. 2009, 26, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Año, G.; Esquisabel, A.; Pastor, M.; Talavera, A.; Cedré, B.; Fernández, S.; Sifontes, S.; Aranguren, Y.; Falero, G.; García, L.; et al. A New Oral Vaccine Candidate Based on the Microencapsulation by Spray-Drying of Inactivated Vibrio Cholerae. Vaccine 2011, 29, 5758–5764. [Google Scholar] [CrossRef] [PubMed]
- Haining, W.N.; Anderson, D.G.; Little, S.R.; von Berwelt-Baildon, M.S.; Cardoso, A.A.; Alves, P.; Kosmatopoulos, K.; Nadler, L.M.; Langer, R.; Kohane, D.S. PH-Triggered Microparticles for Peptide Vaccination. J. Immunol. 2004, 173, 2578–2585. [Google Scholar] [CrossRef]
- Lale, S.V.; Gill, H.S. Pollen Grains as a Novel Microcarrier for Oral Delivery of Proteins. Int. J. Pharm. 2018, 552, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Quinteros, D.A.; Manzo, R.H.; Allemandi, D.A. Design of a Colonic Delivery System Based on Cationic Polymethacrylate (Eudragit E100)-Mesalamine Complexes. Drug Deliv. 2010, 17, 208–213. [Google Scholar] [CrossRef]
- Dong, K.; Zeng, A.; Wang, M.; Dong, Y.; Wang, K.; Guo, C.; Yan, Y.; Zhang, L.; Shi, X.; Xing, J. In Vitro and In Vivo Study of a Colon-Targeting Resin Microcapsule Loading a Novel Prodrug, 3,4,5-Tributyryl Shikimic Acid. RSC Adv. 2016, 6, 16882–16890. [Google Scholar] [CrossRef]
- Tsai, S.W.; Yu, D.S.; Tsao, S.W.; Hsu, F.Y. Hyaluronan—Cisplatin Conjugate Nanoparticles Embedded in Eudragit S100-Coated Pectin/Alginate Microbeads for Colon Drug Delivery. Int. J. Nanomed. 2013, 8, 2399–2407. [Google Scholar] [CrossRef]
- Shen, X.; Yu, D.; Zhu, L.; Branford-White, C.; White, K.; Chatterton, N.P. Electrospun Diclofenac Sodium Loaded Eudragit® L 100-55 Nanofibers for Colon-Targeted Drug Delivery. Int. J. Pharm. 2011, 408, 200–207. [Google Scholar] [CrossRef]
- Subudhi, M.B.; Jain, A.; Jain, A.; Hurkat, P.; Shilpi, S.; Gulbake, A.; Jain, S.K. Eudragit S100 Coated Citrus Pectin Nanoparticles for Colon Targeting of 5-Fluorouracil. Materials 2015, 8, 832–849. [Google Scholar] [CrossRef]
- Loveymi, B.D.; Jelvehgari, M.; Zakeri-Milani, P.; Valizadeh, H. Statistical Optimization of Oral Vancomycin-Eudragit RS Nanoparticles Using Response Surface Methodology. Iran. J. Pharm. Res. 2012, 11, 1001–1012. [Google Scholar]
- Tang, J.; Xu, N.; Ji, H.; Liu, H.; Wang, Z.; Wu, L. Eudragit Nanoparticles Containing Genistein: Formulation, Development, and Bioavailability Assessment. Int. J. Nanomed. 2011, 6, 2429–2435. [Google Scholar]
- Momoh, M.A.; Kenechukwu, F.C.; Adedokun, M.O.; Odo, C.E.; Attama, A.A. Pharmacodynamics of Diclofenac from Novel Eudragit Entrapped Microspheres. Drug Deliv. 2014, 21, 193–203. [Google Scholar] [CrossRef]
- Cetin, M.; Atila, A.; Kadioglu, Y. Formulation and in Vitro Characterization of Eudragit® L100 and Eudragit® L100-PLGA Nanoparticles Containing Diclofenac Sodium. AAPS PharmSciTech 2010, 11, 1250–1256. [Google Scholar] [CrossRef]
- Jain, D.; Panda, A.K.; Majumdar, D.K. Eudragit S100 Entrapped Insulin Microspheres for Oral Delivery. AAPS PharmSciTech 2005, 6, 100–107. [Google Scholar] [CrossRef]
- Bahadir, E.B.; Sezgintürk, M.K. A Review on Impedimetric Biosensors. Artif. Cells Nanomed. Biotechnol. 2016, 44, 248–262. [Google Scholar] [CrossRef]
- Xiuyun, W.; Shunichi, U. Polymers for Biosensors Construction. State Art Biosens. Gen. Asp. 2013, 3, 67–85. [Google Scholar]
- Giannetti, A.; Berneschi, S.; Baldini, F.; Cosi, F.; Conti, G.N.; Soria, S. Performance of Eudragit Coated Whispering Gallery Mode Resonator-Based Immunosensors. Sensors 2012, 12, 14604–14611. [Google Scholar] [CrossRef]
- Tzianni, E.I.; Hrbac, J.; Christodoulou, D.K.; Prodromidis, M.I. A Portable Medical Diagnostic Device Utilizing Free-Standing Responsive Polymer Film-Based Biosensors and Low-Cost Transducer for Point-of-Care Applications. Sens. Actuators B Chem. 2020, 304, 127356. [Google Scholar] [CrossRef]
- Ruiz-Valdepeñas Montiel, V.; Sempionatto, J.R.; Campuzano, S.; Pingarrón, J.M.; Esteban Fernández de Ávila, B.; Wang, J. Direct Electrochemical Biosensing in Gastrointestinal Fluids. Anal. Bioanal. Chem. 2019, 411, 4597–4604. [Google Scholar] [CrossRef]
Eudragit Grade | Applications | Chemical Composition | Solubility |
---|---|---|---|
Cationic (Aminoalkylmethacrylate copolymers) Eudragit E 12.5 Eudragit E 100 | Increased geriatric and pediatric patient compliance. Increased bioavailability and dissolution profile. Increased anti-inflammatory action. High oral bioavailability | Poly(butyl methacrylate, (2-dimethyl aminoethyl) methacrylate, methyl methacrylate) 1:2:1 Poly(butyl methacrylate, (2-dimethyl aminoethyl) methacrylate, methyl methacrylate) 1:2:1 | Both are soluble in gastric fluid to pH 5 |
Anionic (Methacrylic acid copolymers) Eudragit L 100 Eudragit L 100-55 Eudragit L 12.5 Eudragit L 12.5 P Eudragit S 12.5 Eudragit S 12.5 P Eudragit L 30 D-55 Eudragit S 100 Eudragit FS 30 D | pH-dependent and high release. Increased oral absorption. Increased taste masking. Controlled release. Colonic-specific drug delivery. Targeting drug delivery. Delay release profile. High oral bioavailability | Poly(methacrylic acid, methyl methacrylate) 1:1 Poly(methacrylic acid, ethyl acrylate) 1:1 Poly(methacrylic acid, methyl methacrylate) 1:1 Poly(methacrylic acid, methyl methacrylate) 1:1 Poly(methacrylic acid, methyl methacrylate) 1:2 Poly(methacrylic acid, methyl methacrylate) 1:2 Poly(methacrylic acid, ethyl acrylate) 1:1 Poly(methacrylic acid, methyl methacrylate) 1:2 Methyl acrylate, methyl methacrylate, and methacrylic acid | Soluble in intestinal fluid around pH 6 Soluble in intestinal fluid around pH 5.5 Soluble in intestinal fluid around pH 6 Soluble in intestinal fluid around pH 6 Soluble in intestinal fluid around pH 7 Soluble in intestinal fluid around pH 7 Soluble in intestinal fluid from pH 5.5 Soluble in intestinal fluid around pH 7 Soluble above pH 6.8 |
Neutral (Methacrylic acid copolymers) 1. Eudragit RL PO 2. Eudragit RL 30 D 3. Eudragit RL 100 (Type A) 4. Eudragit RS PO 5. Eudragit RS 30 D 6. Eudragit RS 100 (Type B) | Increased release time and ocular bioavailability. Increased shelf life for ophthalmic dosage form. Sustainable drug release for more than 6 h. Sustained release with significance for vaginal drug delivery. Improved permeation and increased bioavailability as well as shelf life. | Poly(ethyl acrylate, methyl methacrylate, 2-trimethylammonioethyl methacrylate chloride” or “2-(methacryloyloxy)-N,N,N-trimethylethanaminium chloride) 1:2:0.2 Poly(ethyl acrylate, methyl methacrylate, 2-trimethylammonioethyl methacrylate chloride” or “2-(methacryloyloxy)-N,N,N-trimethylethanaminium chloride) 1:2:0.2 Poly(ethyl acrylate, methyl methacrylate, 2-trimethylammonioethyl methacrylate chloride” or “2-(methacryloyloxy)-N,N,N-trimethylethanaminium chloride) 1:2:0.2 Poly(ethyl acrylate, methyl methacrylate, 2-trimethylammonioethyl methacrylate chloride” or “2-(methacryloyloxy)-N,N,N-trimethylethanaminium chloride) 1:2:0.1 Poly(ethyl acrylate, methyl methacrylate, 2-trimethylammonioethyl methacrylate chloride” or “2-(methacryloyloxy)-N,N,N-trimethylethanaminium chloride) 1:2:0.1 Poly(ethyl acrylate, methyl methacrylate, 2-trimethylammonioethyl methacrylate chloride” or “2-(methacryloyloxy)-N,N,N-trimethylethanaminium chloride) 1:2:0.1 | Permeability is High Permeability is High Permeability is High Permeability is Low Permeability is Low Permeability is Low |
Neutral (Methacrylic acid copolymers) 1. Eudragit NM 30 D 2. Eudragit NE 30 D 3. Eudragit NE 40 D | Poly(ethyl acrylate, methyl methacrylate) with 0.7% (PEG stearyl ether) 2:1 Poly(ethyl acrylate, methyl methacrylate) with 1.5% (nonoxynol) 2:1 Poly(ethyl acrylate, methyl methacrylate) with 1.5% (nonoxynol) 2:1 | Permeable, swellable Permeable, swellable Permeable, swellable |
Grades of Eudragit Polymer | Glass Transition Temperature (°C) |
---|---|
Eudragit E 100/E PO | 48 |
Eudragit FS 30 D | 48 |
Eudragit NE 30 D | 9 |
Eudragit ME 30 D | 11 |
Eudragit L 100-55 | 110 |
Eudragit RL 100 | 70 |
Eudragit RS 100 | 65 |
Eudragit Grade | Drug Name | Dosage form/Delivery System | Method of Preparation | Application | References |
---|---|---|---|---|---|
Eudragit S100 | 5-fluourouacil (5-FU) and leucovorin | Nanoparticles microencapsulated with enteric polymers | Ionic gelation followed by a solvent evaporation method | Chemotherapy for colon cancer that targets specific drugs for delivery to the colon. | [51] |
Eudragit RL100 | Atazanavir | Nanoparticles | Nanoprecipitation method | To improve bioavailability in prolonged drug release | [52] |
Eudragit L100 | Insulin | Thiolated Eudragit-based nanoparticles with reduced glutathione | Nanotechnology | Facilitate insulin permeation through the intestinal epithelium | [54] |
Eudragit L100-55 | Omeprazole | Nanoparticles | Ultrasonic dispersion and diffusion solidification | Nanoparticles showed a strong pH-sensitive release in vitro | [55] |
Eudragit L100-55 | Insulin | Enteric nanoparticles | Complex coacervation method | Complex coacervation process using chitosan and Eudragit L100-55 polymers may provide a useful approach for entrapment of hydrophilic polypeptides without affecting their conformation | [56] |
Eudragit S100 | Peptide Val-LeuPro-Val-Pro-Arg (VLPVPR) | Enteric-coated nanoparticles | Double emulsion method followed by freeze-drying | Nanoparticles almost completely released at pH 7.4 after 8 h reduced blood pressure for more than 30 h | [57] |
Eudragit RS100 and RL100 | Cloricromene | Nanoparticle suspensions | Quasi-emulsion solvent diffusion technique | Improves the shelf life and bioavailability of this drug after ophthalmic application | [58] |
Eudragit RS100 | Terbinafine hydrochloride | Positively charged controlled-release polymeric Nanoparticles as an eye drop | Nanoprecipitation method | Increased drug means residence time and improved ocular bioavailability four-fold | [59] |
Sr. No | Title of the Patent | Essence of the Invention | Patent Number | Inventors | Date |
---|---|---|---|---|---|
1 | Sustained release pharmaceutical composition | Controlled dissolution of the active principle independently of the pH, which consists of microparticles containing the active principle, coated with a mixture of ethyl cellulose and Eudragit RS | EP0322277 | H. Stevens, M. Chariot, F. Arnold, G. Lewis | 22 January 1992 |
2 | Ketoprofen micro granules, the method for preparing same and pharmaceutical compositions | Ketoprofen micro granules of Eudragit RL and RS exhibited prolonged release | WO/2000/064432 | L. C. Marechal, D.S. Pascal | 2 November 2000 |
3 | Improved stabilization of misoprostol | Misoprostol was complexed with various grades of Eudragit RS series, Eudragit RL series, Eudragit S, and Eudragit L. The solid dispersions were stable and showed sustain release | EP0896823 | C. David Tsay, R. Jen Lin Hue In Lu Shu-bin | 25 September 2002 |
4 | Formulation stabilizer for proton pump inhibitors | The polymeric base is cholestyramine-OH, Eudragit EPO, chitosan, or a mixture thereof. The composition stabilizes the benzimidazole derivative proton pump inhibitor in a humid environment | US 20060013880 | F. Robert, R. Narayan, Z. Joseph H. Ping | 19 January 2006 |
5 | Modified release tablet formulations with enhanced mechanical properties | Eudragit L100-55 for a said pharmaceutical formulation achieves the desired hardness for tablets made from the formulation | US 20070104782 | S. H. Amir C.E. Melissa | 8 February 2007 |
6 | Colonic delivery using zn/pectin beads with a Eudragit coating | The systems include pectin beads cross-linked with zinc or any divalent cation of interest, which beads are then coated with Eudragit®-type polymers | US 20080124279 | A. Andremont H. Huguet | 29 May 2008 |
7 | Colonic delivery of metal-dependent enzymes | Pectin beads are crosslinked with zinc ions, and the pectin beads are coated with a Eudragit® polymer. | US 20080199528 | A. Andremont, H. Huguet | 21 August 2008 |
8 | Coated senna extract granules | Senna extract with 20% sennosides is granulated with Eudragit L 100 and then coated with Eudragit L 30 D 55 | WO/2011/014976 | P. H. Jorge | 2 October 2011 |
9 | Ursodeoxycholic acid-synthetic hydrotalcite-Eudragit hybrid, a pharmaceutical composition containing the same method for preparing the same | The ursodeoxycholic acid synthetic hydrotalcite-Eudragit hybrid was used for bitter taste-blocking effect and improved body absorption rate with high solubility | US 20120156263 | J.H. Choy, G.E. Choi, M. C. Park, H. C. Chang | 21 June 2012 |
10 | Curcuminoid complexes with enhanced stability, solubility, and/or bioavailability | Curcuminoid–Eudragit complex, which enhances the bioavailability of the curcumin component | US20140271530 | H. Tummala, S. Kumar | 18 September 2014 |
11 | Oral drug delivery formulations | One active substance and at least one coat comprising Eudragit E. The formulation may be used for releasing up to about 55% of a total dose as a loading dose to manage pain | US 20150250733 | O. Isa | 10 September 2015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikam, A.; Sahoo, P.R.; Musale, S.; Pagar, R.R.; Paiva-Santos, A.C.; Giram, P.S. A Systematic Overview of Eudragit® Based Copolymer for Smart Healthcare. Pharmaceutics 2023, 15, 587. https://doi.org/10.3390/pharmaceutics15020587
Nikam A, Sahoo PR, Musale S, Pagar RR, Paiva-Santos AC, Giram PS. A Systematic Overview of Eudragit® Based Copolymer for Smart Healthcare. Pharmaceutics. 2023; 15(2):587. https://doi.org/10.3390/pharmaceutics15020587
Chicago/Turabian StyleNikam, Aniket, Priya Ranjan Sahoo, Shubham Musale, Roshani R. Pagar, Ana Cláudia Paiva-Santos, and Prabhanjan Shridhar Giram. 2023. "A Systematic Overview of Eudragit® Based Copolymer for Smart Healthcare" Pharmaceutics 15, no. 2: 587. https://doi.org/10.3390/pharmaceutics15020587
APA StyleNikam, A., Sahoo, P. R., Musale, S., Pagar, R. R., Paiva-Santos, A. C., & Giram, P. S. (2023). A Systematic Overview of Eudragit® Based Copolymer for Smart Healthcare. Pharmaceutics, 15(2), 587. https://doi.org/10.3390/pharmaceutics15020587