Biological Effects in Cancer Cells of Mono- and Bidentate Conjugation of Cisplatin on PAMAM Dendrimers: A Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Characterization
2.2.1. Synthesis of Cisplatin-Metallodendrimers in a Monodentate Form
G0.5COONa PAMAM Dendrimer with Cisplatin–G0.5(COOPt(NH3)2Cl)8
G1.5COONa PAMAM Dendrimer with Cisplatin–G1.5(COOPt(NH3)2Cl)16
G2.5COONa PAMAM Dendrimer with Cisplatin–G2.5(COOPt(NH3)2Cl)32
2.2.2. Synthesis of Cisplatin-Metallodendrimers in a Bidentate Form
Aquation of Cisplatin
G0.5COONa PAMAM Dendrimer with Cisplatin–G0.5COO(Pt(NH3)2)4
G1.5COONa PAMAM Dendrimer with Cisplatin–G1.5COO(Pt(NH3)2)8
G2.5COONa PAMAM Dendrimer with Cisplatin–G2.5COO(Pt(NH3)2)16
G3.5COONa PAMAM Dendrimer with Cisplatin–G3.5COO(Pt(NH3)2)32
2.3. Cell Culture and Cytotoxicity Assays
2.4. Hemotoxicity Evaluation
2.5. DNA Binding Studies by UV-Vis Spectroscopy
3. Results and Discussion
3.1. Synthesis and Characterization of Cisplatin-Metallodendrimers
3.1.1. Preparation and Characterization of the Monodentate Form
3.1.2. Preparation and Characterization of the Bidentate Form
3.2. Biological Studies with the Cisplatin-Metallodendrimers
3.2.1. In Vitro Cytotoxicity Evaluation
3.2.2. Hemotoxicity Assay
3.2.3. DNA Binding Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rottenberg, S.; Disler, C.; Perego, P. The rediscovery of platinum-based cancer therapy. Nat. Rev. Cancer 2020, 21, 37–50. [Google Scholar] [CrossRef]
- Nishiyama, N.; Okazaki, S.; Cabral, H.; Miyamoto, M.; Kato, Y.; Sugiyama, Y.; Nishio, K.; Matsumura, Y.; Kataoka, K. Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res 2003, 63, 8977–8983. [Google Scholar]
- El Kazzouli, S.; El Brahmi, N.; Mignani, S.; Bousmina, M.; Zablocka, M.; Majoral, J.-P. From Metallodrugs to Metallodendrimers for Nanotherapy in Oncology: A Concise Overview. Curr. Med. Chem. 2012, 19, 4995–5010. [Google Scholar] [CrossRef]
- Ma, P.; Xiao, H.; Li, C.; Dai, Y.; Cheng, Z.; Hou, Z.; Lin, J. Inorganic nanocarriers for platinum drug delivery. Mater. Today 2015, 18, 554–564. [Google Scholar] [CrossRef]
- Brabec, V.; Hrabina, O.; Kasparkova, J. Cytotoxic platinum coordination compounds. DNA binding agents. Co-ord. Chem. Rev. 2017, 351, 2–31. [Google Scholar] [CrossRef]
- Raber, J.; Zhu, C.; Eriksson, L.A. Activation of anti-cancer drug cisplatin—Is the activated complex fully aquated? Mol. Phys. 2004, 102, 2537–2544. [Google Scholar] [CrossRef]
- Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. Third row transition metals for the treatment of cancer. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140185. [Google Scholar] [CrossRef] [Green Version]
- Oun, R.; Moussa, Y.E.; Wheate, N.J. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Trans. 2018, 47, 6645–6653. [Google Scholar] [CrossRef]
- Medici, S.; Peana, M.; Nurchi, V.M.; Lachowicz, J.I.; Crisponi, G.; Zoroddu, M.A. Noble metals in medicine: Latest advances. Co-ord. Chem. Rev. 2015, 284, 329–350. [Google Scholar] [CrossRef]
- Mjos, K.D.; Orvig, C. Metallodrugs in Medicinal Inorganic Chemistry. Chem. Rev. 2014, 114, 4540–4563. [Google Scholar] [CrossRef]
- Mekonnen, T.W.; Darge, H.F.; Tsai, H.-C.; Birhan, Y.S.; Hanurry, E.Y.; Gebrie, H.T.; Chou, H.-Y.; Lai, J.-Y.; Lin, S.-Z.; Harn, H.-J.; et al. Combination of ovalbumin-coated iron oxide nanoparticles and poly(amidoamine) dendrimer-cisplatin nanocomplex for enhanced anticancer efficacy. Colloids Surf. B Biointerfaces 2022, 213, 112391. [Google Scholar] [CrossRef]
- Duan, X.; He, C.; Kron, S.J.; Lin, W. Nanoparticle formulations of cisplatin for cancer therapy. WIREs Nanomed. Nanobiotechnol. 2016, 8, 776–791. [Google Scholar] [CrossRef] [Green Version]
- Casagrande, N.; Celegato, M.; Borghese, C.; Mongiat, M.; Colombatti, A.; Aldinucci, D. Preclinical Activity of the Liposomal Cisplatin Lipoplatin in Ovarian Cancer. Clin. Cancer Res. 2014, 20, 5496–5506. [Google Scholar] [CrossRef] [Green Version]
- Farhat, F.S.; Temraz, S.; Kattan, J.; Ibrahim, K.; Bitar, N.; Haddad, N.; Jalloul, R.; Hatoum, H.A.; Nsouli, G.; Shamseddine, A.I. A Phase II Study of Lipoplatin (Liposomal Cisplatin)/Vinorelbine Combination in HER-2/neu–Negative Metastatic Breast Cancer. Clin. Breast Cancer 2011, 11, 384–389. [Google Scholar] [CrossRef]
- Burger, K.N.; Staffhorst, R.W.; de Vijlder, H.C.; Velinova, M.J.; Bomans, P.H.; Frederik, P.M.; de Kruijff, B. Nanocapsules: Lipid-coated aggregates of cisplatin with high cytotoxicity. Nat. Med. 2002, 8, 81–84. [Google Scholar] [CrossRef] [Green Version]
- Zahednezhad, F.; Zakeri-Milani, P.; Mojarrad, J.S.; Valizadeh, H. The latest advances of cisplatin liposomal formulations: Essentials for preparation and analysis. Expert Opin. Drug Deliv. 2020, 17, 523–541. [Google Scholar] [CrossRef]
- Medina, S.H.; El-Sayed, M.E.H. Dendrimers as Carriers for Delivery of Chemotherapeutic Agents. Chem. Rev. 2009, 109, 3141–3157. [Google Scholar] [CrossRef]
- Tomás, H.; Rodrigues, J. Dendrimers and Dendrimer-Based Nano-Objects for Oncology Applications (Chap.2). In New Trends in Smart Nanostructured Biomaterials in Health Sciences; Materials Today Series; Gonçalves, G., Marques, P., Mano, J., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2022; pp. 41–78. [Google Scholar]
- Nikzamir, M.; Hanifehpour, Y.; Akbarzadeh, A.; Panahi, Y. Applications of Dendrimers in Nanomedicine and Drug Delivery: A Review. J. Inorg. Organomet. Polym. Mater. 2021, 31, 2246–2261. [Google Scholar] [CrossRef]
- Abedi-Gaballu, F.; Dehghan, G.; Ghaffari, M.; Yekta, R.; Abbaspour-Ravasjani, S.; Baradaran, B.; Ezzati Nazhad Dolatabadi, J.; Hamblin, M.R. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl. Mater. Today 2018, 12, 177–190. [Google Scholar] [CrossRef]
- Camacho, C.; Tomás, H.; Rodrigues, J. Use of Half-Generation PAMAM Dendrimers (G0.5–G3.5) with Carboxylate End-Groups to Improve the DACHPtCl2 and 5-FU Efficacy as Anticancer Drugs. Molecules 2021, 26, 2924. [Google Scholar] [CrossRef]
- Pisani, M.J.; Wheate, N.J.; Keene, F.R.; Aldrich-Wright, J.R.; Collins, J.G. Anionic PAMAM dendrimers as drug delivery vehicles for transition metal-based anticancer drugs. J. Inorg. Biochem. 2009, 103, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chem. Rev. 2016, 116, 3436–3486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, J.; Lippard, S.J. Synthetic Methods for the Preparation of Platinum Anticancer Complexes. Chem. Rev. 2013, 114, 4470–4495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavan, S.R.; Prabhu, A. Advanced cisplatin nanoformulations as targeted drug delivery platforms for lung carcinoma treatment: A review. J. Mater. Sci. 2022, 57, 16192–16227. [Google Scholar] [CrossRef]
- Camacho, C.S.; Urgellés, M.; Tomás, H.; Lahoz, F.; Rodrigues, J. New insights into the blue intrinsic fluorescence of oxidized PAMAM dendrimers considering their use as bionanomaterials. J. Mater. Chem. B 2020, 8, 10314–10326. [Google Scholar] [CrossRef]
- Maciel, D.; Guerrero-Beltrán, C.; Ceña-Diez, R.; Tomás, H.; Muñoz-Fernández, M.Á.; Rodrigues, J. New anionic poly(alkylideneamine) dendrimers as microbicide agents against HIV-1 infection. Nanoscale 2019, 11, 9679–9690. [Google Scholar] [CrossRef]
- Jardim, M.G.; Rissanen, K.; Rodrigues, J. Preparation and Characterization of Novel Poly(alkylidenamine) Nitrile Ruthenium Metallodendrimers. Eur. J. Inorg. Chem. 2010, 2010, 1729–1735. [Google Scholar] [CrossRef]
- Ornelas, C.; Vertlib, V.; Rodrigues, J.; Rissanen, K. Ruthenium Metallodendrimers Based on Nitrile-Functionalized Poly(alkylidene imine)s. Eur. J. Inorg. Chem. 2005, 2006, 47–50. [Google Scholar] [CrossRef]
- Goncalves, M.; Castro, R.; Rodrigues, J.; Tomas, H. The effect of PAMAM dendrimers on mesenchymal stem cell viability and differentiation. Curr. Med. Chem. 2012, 19, 4969–4975. [Google Scholar] [CrossRef]
- Rodrigues, J.; Maciel, D.; Nunes, N.; Santos, F.A.; Fan, Y.; Li, G.; Shen, M.; Tomás, H.; Shi, X. New insights on ruthenium(II) metallodendrimers as anticancer drug nanocarriers: From synthesis to preclinic behaviour. J. Mater. Chem. B 2022, 10, 8945–8959. [Google Scholar] [CrossRef]
- Kirkpatrick, G.J.; Plumb, J.A.; Sutcliffe, O.; Flint, D.J.; Wheate, N.J. Evaluation of anionic half generation 3.5–6.5 poly(amidoamine) dendrimers as delivery vehicles for the active component of the anticancer drug cisplatin. J. Inorg. Biochem. 2011, 105, 1115–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H.; Nguyen, N.H.; Tran, N.Q.; Nguyen, C.K. Improved Method for Preparing Cisplatin-Dendrimer Nanocomplex and Its Behavior Against NCI-H460 Lung Cancer Cell. J. Nanosci. Nanotechnol. 2015, 15, 4106–4110. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.Q.; Nguyen, C.K.; Nguyen, T.P. Dendrimer-based nanocarriers demonstrating a high efficiency for loading and releasing anticancer drugs against cancer cells in vitro and in vivo. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013, 4, 045013. [Google Scholar] [CrossRef]
- Gilbert, R.G.; Hess, M.; Jenkins, A.D.; Jones, R.G.; Kratochvíl, P.; Stepto, R.F.T. Dispersity in polymer science. Pure Appl. Chem. 2009, 81, 351–353. [Google Scholar] [CrossRef] [Green Version]
- International Committee for Standardization in Haematology. Recommendations for reference method for haemoglobinometry in human blood (ICSH standard EP 6/2: 1977) and specifications for international haemiglobincyanide reference preparation (ICSH standard EP 6/3: 1977). J. Clin. Pathol. 1978, 31, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Sirajuddin, M.; Ali, S.; Badshah, A. Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry. J. Photochem. Photobiol. B Biol. 2013, 124, 1–19. [Google Scholar] [CrossRef]
- Howell, B.A.; Fan, D. Poly(amidoamine) dendrimer-supported organoplatinum antitumour agents. Proc. R. Soc. A 2010, 466, 1515–1526. [Google Scholar] [CrossRef] [Green Version]
- Berners-Price, S.J.; Ronconi, L.; Sadler, P.J. Insights into the mechanism of action of platinum anticancer drugs from multinuclear NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 2006, 49, 65–98. [Google Scholar] [CrossRef]
- Priqueler, J.R.L.; Butler, I.S.; Rochon, F.D. An Overview of195Pt Nuclear Magnetic Resonance Spectroscopy. Appl. Spectrosc. Rev. 2006, 41, 185–226. [Google Scholar] [CrossRef]
- Samide, A.; Grecu, R.; Tutunaru, B.; Tigae, C.; Spînu, C. Cisplatin-chemotherapeutic Drug Interactions with the Surface of Some Metal Bioimplants in Physiological Serum. Int. J. Electrochem. Sci. 2017, 12, 11316–11329. [Google Scholar] [CrossRef]
- Li, X.; Naeem, A.; Xiao, S.; Hu, L.; Zhang, J.; Zheng, Q. Safety Challenges and Application Strategies for the Use of Dendrimers in Medicine. Pharmaceutics 2022, 14, 1292. [Google Scholar] [CrossRef] [PubMed]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caputo, F.; Clogston, J.; Calzolai, L.; Rösslein, M.; Prina-Mello, A. Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. J. Control. Release 2019, 299, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Othayoth, R.; Mathi, P.; Bheemanapally, K.; Kakarla, L.; Botlagunta, M. Characterization of vitamin–cisplatin-loaded chitosan nano-particles for chemoprevention and cancer fatigue. J. Microencapsul. 2015, 32, 578–588. [Google Scholar] [CrossRef]
- Kéri, M.; Nagy, Z.; Novák, L.; Szarvas, E.; Balogh, L.P.; Bányai, I. Beware of Phosphate: Evidences of Specific Dendrimer—Phosphate Interactions. Phys. Chem. Chem. Phys. 2017, 19, 1540–11548. [Google Scholar] [CrossRef]
- Michlewska, S.; Ionov, M.; Shcharbin, D.; Maroto-Díaz, M.; Ramirez, R.G.; de la Mata, F.J.; Bryszewska, M. Ruthenium metallodendrimers with anticancer potential in an acute promyelocytic leukemia cell line (HL60). Eur. Polym. J. 2017, 87, 39–47. [Google Scholar] [CrossRef]
- Haririan, I.; Alavidjeh, M.S.; Khorramizadeh, M.R.; Ardestani, M.S.; Ghane, Z.Z.; Namazi, H. Anionic linear-globular dendrimer-cis-platinum (II) conjugates promote cytotoxicity in vitro against different cancer cell lines. Int. J. Nanomed. 2010, 5, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Kulhari, H.; Pooja, D.; Singh, M.K.; Chauhan, A.S. Optimization of carboxylate-terminated poly(amidoamine) dendrimer-mediated cisplatin formulation. Drug Dev. Ind. Pharm. 2013, 41, 232–238. [Google Scholar] [CrossRef]
- Yellepeddi, V.; Vangara, K.K.; Palakurthi, S. Poly(amido)amine (PAMAM) dendrimer–cisplatin complexes for chemotherapy of cisplatin-resistant ovarian cancer cells. J. Nanoparticle Res. 2013, 15, 1897–1911. [Google Scholar] [CrossRef]
- Allison, M.; Caramés-Méndez, P.; Christopher, M.P.; Phillips, R.M.; Lord, R.M.; Patrick, C.M. Bis(bipyridine)ruthenium(II) ferrocenyl beta-diketonate complexes: Exhibiting nanomolar potency against human cancer cell lines. Chem. A Eur. J. 2020, 27, 3737–3744. [Google Scholar] [CrossRef]
- Badisa, R.B.; Darling-Reed, S.F.; Joseph, P.; Cooperwood, J.S.; Latinwo, L.M.; Goodman, C.B. Selective cytotoxic activities of two novel synthetic drugs on human breast carcinoma MCF-7 cells. Anticancer Res. 2009, 29, 2993–2996. [Google Scholar] [PubMed]
- De Oliveira, P.F.; Alves, J.M.; Damasceno, J.L.; Oliveira, R.A.M.; Dias, H.J.; Crotti, A.E.M.; Tavares, D.C. Cytotoxicity screening of essential oils in cancer cell lines. Rev. Bras. Farmacogn. 2015, 25, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Rashidi, M.; Seghatoleslam, A.; Namavari, M.; Amiri, A.; Fahmidehkar, M.A.; Ramezani, A.; Eftekhar, E.; Hosseini, A.; Erfani, N.; Fakher, S. Selective Cytotoxicity and Apoptosis-Induction of Cyrtopodion scabrum Extract Against Digestive Cancer Cell Lines. Int. J. Cancer Manag. 2017, 10, e8633. [Google Scholar] [CrossRef]
- Taghour, M.S.; Elkady, H.; Eldehna, W.M.; El-Deeb, N.M.; Kenawy, A.M.; Elkaeed, E.B.; Alsfouk, A.A.; Alesawy, M.S.; Metwaly, A.M.; Eissa, I.H. Design and synthesis of thiazolidine-2,4-diones hybrids with 1,2-dihydroquinolones and 2-oxindoles as potential VEGFR-2 inhibitors: In-vitro anticancer evaluation and in-silico studies. J. Enzym. Inhib. Med. Chem. 2022, 37, 1903–1917. [Google Scholar] [CrossRef]
- Singh, K.; Gangrade, A.; Jana, A.; Mandal, B.B.; Das, N. Design, Synthesis, Characterization, and Antiproliferative Activity of Organoplatinum Compounds Bearing a 1,2,3-Triazole Ring. ACS Omega 2019, 4, 835–841. [Google Scholar] [CrossRef]
- Kesharwani, P.; Iyer, A.K. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov. Today 2015, 20, 536–547. [Google Scholar] [CrossRef] [Green Version]
- Han, M.-H.; Chen, J.; Wang, J.; Chen, S.-L.; Wang, X.-T. Blood compatibility of polyamidoamine dendrimers and erythrocyte protection. J. Biomed. Nanotechnol. 2010, 6, 82–92. [Google Scholar] [CrossRef]
- Johnstone, T.C.; Wilson, J.J.; Lippard, S.J. Monofunctional and Higher-Valent Platinum Anticancer Agents. Inorg. Chem. 2013, 52, 12234–12249. [Google Scholar] [CrossRef] [Green Version]
- Alotaibi, S.H.; Momen, A.A. Anti-cancer Drugs’ Deoxyribonucleic Acid (DNA) Interactions. In Biophysical Chemistry—Advance Applications; Khalid, M., Ed.; IntechOpen: London, UK, 2019; pp. 1–23. [Google Scholar]
- Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem. 2019, 88, 102925. [Google Scholar] [CrossRef]
- Shahabadi, N.; Kashanian, S.; Fatahi, A. Identification of Binding Mode of a Platinum (II) Complex, PtCl(2)(DIP), and Calf Thymus DNA. Bioinorg. Chem. Appl. 2011, 2011, 687571. [Google Scholar] [CrossRef]
Compounds | ζ-Potential (mV) (in UPW) | Size (nm) (in PBS) | Dispersity (in PBS) * |
---|---|---|---|
G0.5(COONa)8 | −19 ± 1 | 131.0 ± 22.2 | 0.357 ± 0.1 |
G0.5(COOPt(NH3)2Cl)8 | −20.7 ± 2.1 | 173.7 ± 45.1 | 0.335 ± 0.03 |
G1.5(COONa)16 | −40.8 ± 0.7 | 85.6 ± 29.5 | 1.000 ± 0.0 |
G1.5(COOPt(NH3)2Cl)16 | −4.5 ± 1.9 | 135.0 ± 25.4 | 0.307 ± 0.1 |
G2.5(COONa)32 | −48 ± 2 | 89.7 ± 23.3 | 0.923 ± 0.1 |
G2.5(COOPt(NH3)2Cl)32 | −0.6 ± 0.9 | 152.1 ± 13.9 | 0.301 ± 0.04 |
Compounds | ζ-Potential (mV) (in UPW) | Size (nm) (in PBS) | Dispersity (in PBS) * |
---|---|---|---|
G0.5(COONa)8 | −19 ± 1 | 131.0 ± 22.2 | 0.357 ± 0.1 |
G0.5COO(Pt(NH3)2)4 | −3.2 ± 1.8 | 69.7 ± 20.1 | 0.343 ± 0.1 |
G1.5(COONa)16 | −40.8 ± 0.7 | 85.6 ± 29.5 | 1.000 ± 0.0 |
G1.5COO(Pt(NH3)2)8 | −3.1 ± 0.9 | 128.6 ± 19.9 | 0.253 ± 0.03 |
G2.5(COONa)32 | −48 ± 2 | 89.7 ± 23.3 | 0.923 ± 0.1 |
G2.5COO(Pt(NH3)2)16 | 12.4 ± 1.0 | 132.4 ± 10.5 | 0.438 ± 0.05 |
G3.5(COONa)64 | - 51 ± 1 | 88.5 ± 25.1 | 0.940 ± 0.1 |
G3.5COO(Pt(NH3)2)32 | 2.2 ± 2.7 | 128.6 ± 17.3 | 0.330 ± 0.04 |
A2780 IC50 ± SD (µM) | A2780cisR IC50 ± SD (µM) | MCF-7 IC50 ± SD (µM) | CACO-2 IC50 ± SD (µM) | BJ IC50 ± SD (µM) | |
---|---|---|---|---|---|
Cisplatin | 0.11 ± 0.03 | 4 ± 1 | 1.2 ± 0.5 | >10 | 0.6 ± 0.2 |
Monodentate form | |||||
G0.5(COOPt(NH3)2Cl)8 | 0.02 ± 0.01 | <0.01 | 0.08 ± 0.01 | 3 ± 2 | 0.06 ± 0.01 |
G1.5(COOPt((NH3)2Cl)16 | 0.20 ± 0.08 | 6.6 ± 0.2 | 0.5 ± 0.2 | >10 | 0.5 ± 0.2 |
G2.5(COOPt((NH3)2Cl)32 | 0.07 ± 0.03 | 0.04 ± 0.03 | 0.6 ± 0.3 | 6 ± 3 | 0.4 ± 0.2 |
Bidentate form | |||||
G0.5(COOPt(NH3)2)4 | 0.3 ± 0.1 | 5 ± 2 | 2.0 ± 0.2 | 8 ± 2 | 3 ± 1 |
G1.5(COOPt(NH3)2)8 | 0.07 ± 0.04 | 6.4 ± 0.2 | 1.7 ± 0.6 | >10 | 0.5 ± 0.3 |
G2.5(COOPt((NH3)2)16 | 0.18 ± 0.03 | 0.17 ± 0.05 | 2.4 ± 0.6 | >10 | 0.5 ± 0.3 |
G3.5(COOPt((NH3)2)32 | 0.04 ± 0.02 | 0.06 ± 0.04 | 3.3 ± 0.7 | >10 | 1.2 ± 0.5 |
Relative Potency (RP) | A2780 | A2780cisR | MCF-7 | CACO-2 | BJ |
---|---|---|---|---|---|
Monodentate form | |||||
G0.5(COOPt(NH3)2Cl)8 | 5.5 | >400 | 15 | >3.3 | 10 |
G1.5(COOPt((NH3)2Cl)16 | 0.6 | 0.6 | 2.4 | ** | 1.2 |
G2.5(COOPt((NH3)2Cl)32 | 1.6 | 100 | 2.0 | >1.7 | 1.5 |
Bidentate form | |||||
G0.5(COOPt(NH3)2)4 | 0.4 | 0.8 | 0.6 | >1.3 | 0.2 |
G1.5(COOPt(NH3)2)8 | 1.6 | 0.6 | 0.7 | ** | 1.2 |
G2.5(COOPt((NH3)2)16 | 0.6 | 24 | 0.5 | ** | 1.2 |
G3.5(COOPt((NH3)2)32 | 2.8 | 67 | 0.4 | ** | 0.5 |
Selectivity Index (SI) | A2780 | A2780cisR | MCF-7 | CACO-2 |
---|---|---|---|---|
Cisplatin | 5 | 0.2 | 0.5 | <0.06 |
Monodentate form | ||||
G0.5(COOPt(NH3)2Cl)8 | 3 | >6 | 0.8 | 0.02 |
G1.5(COOPt((NH3)2Cl)16 | 2.5 | 0.08 | 1.0 | <0.05 |
G2.5(COOPt((NH3)2Cl)32 | 5.7 | 10 | 0.7 | 0.07 |
Bidentate form | ||||
G0.5(COOPt(NH3)2)4 | 10 | 0.6 | 1.5 | 0.4 |
G1.5(COOPt(NH3)2)8 | 7.1 | 0.08 | 0.3 | <0.05 |
G2.5(COOPt((NH3)2)16 | 2.8 | 2.9 | 0.2 | <0.05 |
G3.5(COOPt((NH3)2)32 | 30 | 20 | 0.4 | <0.1 |
Resistance Factor (RF) | ||
---|---|---|
Cisplatin | 36 | |
Monodentate form | G0.5(COOPt(NH3)2Cl)8 | <0.5 |
G1.5(COOPt((NH3)2Cl)16 | 33 | |
G2.5(COOPt((NH3)2Cl)32 | 0.6 | |
Bidentate form | G0.5(COOPt(NH3)2)4 | 17 |
G1.5(COOPt(NH3)2)8 | 91 | |
G2.5(COOPt((NH3)2)16 | 0.9 | |
G3.5(COOPt((NH3)2)32 | 1.5 |
Kb × 103 | −ΔG/ KJ mol−1 | |
---|---|---|
Cisplatin | 1.3 ± 0.3 | 17 ± 1 |
G0.5COO(Pt(NH3)2Cl)8 | 26.6 ± 0.7 | 25 ± 1 |
G2.5COO(Pt(NH3)2Cl)32 | 20 ± 6 | 24 ± 1 |
G2.5COO(Pt(NH3)2)16 | 14 ± 3 | 23 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camacho, C.; Maciel, D.; Tomás, H.; Rodrigues, J. Biological Effects in Cancer Cells of Mono- and Bidentate Conjugation of Cisplatin on PAMAM Dendrimers: A Comparative Study. Pharmaceutics 2023, 15, 689. https://doi.org/10.3390/pharmaceutics15020689
Camacho C, Maciel D, Tomás H, Rodrigues J. Biological Effects in Cancer Cells of Mono- and Bidentate Conjugation of Cisplatin on PAMAM Dendrimers: A Comparative Study. Pharmaceutics. 2023; 15(2):689. https://doi.org/10.3390/pharmaceutics15020689
Chicago/Turabian StyleCamacho, Cláudia, Dina Maciel, Helena Tomás, and João Rodrigues. 2023. "Biological Effects in Cancer Cells of Mono- and Bidentate Conjugation of Cisplatin on PAMAM Dendrimers: A Comparative Study" Pharmaceutics 15, no. 2: 689. https://doi.org/10.3390/pharmaceutics15020689
APA StyleCamacho, C., Maciel, D., Tomás, H., & Rodrigues, J. (2023). Biological Effects in Cancer Cells of Mono- and Bidentate Conjugation of Cisplatin on PAMAM Dendrimers: A Comparative Study. Pharmaceutics, 15(2), 689. https://doi.org/10.3390/pharmaceutics15020689