An Enhanced Dissolving Cyclosporin-A Inhalable Powder Efficiently Reduces SARS-CoV-2 Infection In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of CsA Spray-Dried Powders
2.2. CsA Quantification by High-Performance Liquid Chromatography (HPLC)
2.3. Aerodynamic Performance Characterisation
2.4. Thermogravimetric Analysis (TGA)
2.5. Dissolution Profile of Respirable Particle Fraction
2.6. Morphological Analysis by SEM
2.7. Viability Study on A549 and THP-1
2.8. Co-Culture Assays and Cytokine Determination
2.9. Cell Treatment and Viral Replication Inhibition Assay
2.10. SARS-CoV-2 Nucleic Acid Quantification
2.11. Stability Studies
2.12. Statistical Analysis
3. Results and Discussion
3.1. CsA Dry Powder Development by DOE
3.2. Full Characterisation of the CsA_M20 Spray-Dried Powder
3.3. CsA_M20 Cytotoxicity and Anti-Inflammatory Efficiency
3.4. In Vitro Anti-Viral Efficacy against SARS-CoV-2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fahr, A. Cyclosporin Clinical Pharmacokinetics. Clin. Pharmacokinet. 1993, 24, 472–495. [Google Scholar] [CrossRef] [PubMed]
- Forsythe, P.; Paterson, S. Ciclosporin 10 Years on: Indications and Efficacy. Vet. Rec. 2014, 174, 13–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tissot, A.; Danger, R.; Claustre, J.; Magnan, A.; Brouard, S. Early Identification of Chronic Lung Allograft Dysfunction: The Need of Biomarkers. Front. Immunol. 2019, 10, 1681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barr, M.; Chaparro, C.; Corris, P.; Doyle, R.; Glanville, A.; Klepetko, W.; Mcneil, K.; Orens, J.; Singer, L.; Trulock, E.; et al. Bronchiolitis Obliterans Syndrome 2001: An Update of the Diagnostic. J. Heart Lung Transplant. 2001, 21, 297–310. [Google Scholar]
- Boehler, A.; Estenne, M. Post-Transplant Bronchiolitis Obliterans. Eur. Respir. J. 2003, 22, 1007–1018. [Google Scholar] [CrossRef] [Green Version]
- Chan, C. Side Effects of Systemic Cyclosporine in Patients Not Undergoing Transplantation. Am. J. Med. 1984, 77, 652–656. [Google Scholar]
- Parekh, K.; Trulock, E.; Patterson, G.A. Use of Cyclosporine in Lung Transplantation. Transplant. Proc. 2004, 36, S318–S322. [Google Scholar] [CrossRef]
- Kolars, J.C.; Awni, W.M.; Merion, R.M.; Watkins, P.B. First-Pass Metabolism of Cyclosporin by the Gut. Lancet 1991, 338, 1488–1490. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.Y.; Benet, L.Z.; Hebert, M.F.; Gupta, S.K.; Rowland, M.; Gomez, D.Y.; Wacher, V.J. Differentiation of Absorption and First-Pass Gut and Hepatic Metabolism in Humans: Studies with Cyclosporine. Clin. Pharmacol. Ther. 1995, 58, 492–497. [Google Scholar] [CrossRef]
- Bennani Rtel, M.; Ternant, D.; Büchler, M.; El Hassouni, M.; Khabbal, Y.; Achour, S.; Sqalli, T. Food and Lipid Intake Alters the Pharmacokinetics of Cyclosporine in Kidney Transplants. Fundam. Clin. Pharmacol. 2020, 35, 446–454. [Google Scholar] [CrossRef]
- Mendonza, A.E.; Gohh, R.Y.; Akhlaghi, F. Blood and Plasma Pharmacokinetics of Ciclosporin in Diabetic Kidney Transplant Recipients. Clin. Pharmacokinet. 2008, 47, 733–742. [Google Scholar] [CrossRef]
- Taylor, W.J.; Robinson, J.D.; Burckart, G.J.; Canafax, D.M.; Yee, G.C. Cyclosporine Monitoring. Ann. Pharmacother. 2007, 41, 1277–1280. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Suzuki, H.; Yakushiji, K.; Wong, J.; Seto, Y.; Prud’homme, R.K.; Chan, H.K.; Onoue, S. Biopharmaceutical Evaluation of Novel Cyclosporine A Nano-Matrix Particles for Inhalation. Pharm. Res. 2016, 33, 2107–2116. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, T.E.; Smaldone, G.C.; Dauber, J.H.; Smith, D.A.; McCurry, K.R.; Burckart, G.J.; Zeevi, A.; Griffith, B.P.; Iacono, A.T. Preservation of Post-Transplant Lung Function with Aerosol Cyclosporin. Eur. Respir. J. 2004, 23, 378–383. [Google Scholar] [CrossRef] [Green Version]
- Groves, S.; Galazka, M.; Johnson, B.; Corcoran, T.; Verceles, A.; Britt, E.; Todd, N.; Griffith, B.; Smaldone, G.C.; Iacono, A. Inhaled Cyclosporine and Pulmonary Function in Lung Transplant Recipients. J. Aerosol Med. Pulm. Drug Deliv. 2010, 23, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Iacono, A.; Wijesinha, M.; Rajagopal, K.; Murdock, N.; Timofte, I.; Griffith, B.; Terrin, M. A Randomised Single-Centre Trial of Inhaled Liposomal Cyclosporine for Bronchiolitis Obliterans Syndrome Post-Lung Transplantation. ERJ Open Res. 2019, 5, 1–11. [Google Scholar] [CrossRef]
- Nagy, P.D.; Wang, R.Y.; Pogany, J.; Hafren, A.; Makinen, K. Emerging Picture of Host Chaperone and Cyclophilin Roles in RNA Virus Replication. Virology 2011, 411, 374–382. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, Y.; Sato, Y.; Sasaki, T. Suppression of Coronavirus Replication by Cyclophilin Inhibitors. Viruses 2013, 5, 1250–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenizia, C.; Galbiati, S.; Vanetti, C.; Vago, R.; Clerici, M.; Tacchetti, C.; Daniele, T. Cyclosporine A Inhibits Viral Infection and Release as Well as Cytokine Production in Lung Cells by Three SARS-CoV-2 Variants. Microbiol. Spectr. 2021, 10, 1–16. [Google Scholar] [CrossRef]
- de Wilde, A.H.; Zevenhoven-Dobbe, J.C.; van der Meer, Y.; Thiel, V.; Narayanan, K.; Makino, S.; Snijder, E.J.; van Hemert, M.J. Cyclosporin A Inhibits the Replication of Diverse Coronaviruses. J. Gen. Virol. 2011, 92, 2542–2548. [Google Scholar] [CrossRef] [PubMed]
- Molyvdas, A.; Matalon, S. Cyclosporine: An Old Weapon in the Fight against Coronaviruses. Eur. Respir. J. 2020, 56, 2002484. [Google Scholar] [CrossRef] [PubMed]
- Jayk Bernal, A.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martín-Quirós, A.; Caraco, Y.; Williams-Diaz, A.; Brown, M.L.; et al. Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients. N. Engl. J. Med. 2022, 386, 509–520. [Google Scholar] [CrossRef]
- Shrestha, N.K.; Burke, P.C.; Nowacki, A.S.; Terpeluk, P.; Gordon, S.M. Molnupiravir and Nirmatrelvir-Ritonavir: Oral COVID Antiviral Drugs Louis. Clin. Infect. Dis. 2022, 76, 165–171. [Google Scholar] [CrossRef]
- Lamb, Y.N. Nirmatrelvir Plus Ritonavir: First Approval. Drugs 2022, 82, 585–591. [Google Scholar] [CrossRef]
- Lin, H.X.J.; Cho, S.; Meyyur Aravamudan, V.; Sanda, H.Y.; Palraj, R.; Molton, J.S.; Venkatachalam, I. Remdesivir in Coronavirus Disease 2019 (COVID-19) Treatment: A Review of Evidence. Infection 2021, 49, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Rosin, N.L.; Arora, R.; Labit, E.; Jaffer, A.; Cao, L.; Farias, R.; Nguyen, A.P.; de Almeida, L.G.N.; Dufour, A.; et al. Dexamethasone Modulates Immature Neutrophils and Interferon Programming in Severe COVID-19. Nat. Med. 2022, 28, 201–211. [Google Scholar] [CrossRef]
- Ely, E.W.; Ramanathan, K.; Antognini, D.; Combes, A.; Paden, M.; Zakhary, B.; Ogino, M.; Maclaren, G.; Brodie, D. Efficacy and Safety of Baricitinib plus Standard of Care for the Treatment of Critically Ill Hospitalised Adults with COVID-19 on Invasive Mechanical Ventilation or Extracorporeal Membrane Oxygenation: An Exploratory, Randomised, Placebo-Controlled Trial. Lancet Respir. Med. 2020, 10, 327–336. [Google Scholar] [CrossRef]
- Gupta, A.; Gonzalez-Rojas, Y.; Juarez, E.; Crespo Casal, M.; Moya, J.; Falci, D.R.; Sarkis, E.; Solis, J.; Zheng, H.; Scott, N.; et al. Early Treatment for Covid-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab. N. Engl. J. Med. 2021, 385, 1941–1950. [Google Scholar] [CrossRef]
- Berton, P.; Mishra, M.K.; Choudhary, H.; Myerson, A.S.; Rogers, R.D. Solubility Studies of Cyclosporine Using Ionic Liquids. ACS Omega 2019, 4, 7938–7943. [Google Scholar] [CrossRef] [Green Version]
- Sonvico, F.; Chierici, V.; Varacca, G.; Quarta, E.; D’Angelo, D.; Forbes, B.; Buttini, F. Respicelltm: An Innovative Dissolution Apparatus for Inhaled Products. Pharmaceutics 2021, 13, 1541. [Google Scholar] [CrossRef]
- Langenbucher, F. Letters to the Editor: Linearization of Dissolution Rate Curves by the Weibull Distribution. J. Pharm. Pharmacol. 1972, 24, 979–981. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Su, R.; Chen, J.; Li, Y.; Su, R.; Chen, J. Co-Culture Systems of Drug-Treated Acute Myeloid Leukemia Cells and T Cells for In Vitro and In Vivo Study. STAR Protoc. 2020, 1, 100097. [Google Scholar] [CrossRef] [PubMed]
- Burnett, L.; McQueen, M.J.; Jonsson, J.J.; Torricelli, F. IFCC Position Paper: Report of the IFCC Taskforce on Ethics: Introduction and Framework. Clin. Chem. Lab. Med. 2007, 45, 1098–1104. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Kawabata, Y.; Yuminoki, K.; Hashimoto, N.; Yamauchi, Y. Comparative Studies on Physicochemical Stability of Cyclosporine A-Loaded Amorphous Solid Dispersions. Int. J. Pharm. 2012, 426, 302–306. [Google Scholar] [CrossRef]
- Yamasaki, K.; Kwok, P.C.L.; Fukushige, K.; Prud’Homme, R.K.; Chan, H.K. Enhanced Dissolution of Inhalable Cyclosporine Nano-Matrix Particles with Mannitol as Matrix Former. Int. J. Pharm. 2011, 420, 34–42. [Google Scholar] [CrossRef]
- Leung, S.S.Y.; Wong, J.; Guerra, H.V.; Samnick, K.; Prud’homme, R.K.; Chan, H.K. Porous Mannitol Carrier for Pulmonary Delivery of Cyclosporine A Nanoparticles. AAPS J. 2017, 19, 578–586. [Google Scholar] [CrossRef]
- Iacono, A.T.; Johnson, B.A.; Grgurich, W.F.; Youssef, J.G.; Corcoran, T.E.; Seiler, D.A.; Dauber, J.H.; Smaldone, G.C.; Zeevi, A.; Yousem, S.A.; et al. A Randomized Trial of Inhaled Cyclosporine in Lung-Transplant Recipients. N. Engl. J. Med. 2006, 354, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Iacono, A. Capitalizing on the Concept of Local Immune Suppression by Inhalation for Lung Transplant Recipients. Am. J. Transplant. 2021, 22, 9–11. [Google Scholar] [CrossRef]
- Neurohr, C.; Kneidinger, N.; Ghiani, A.; Monforte, V.; Knoop, C.; Jaksch, P.; Parmar, J.; Ussetti, P.; Sole, A.; Quernheim, J.M.-; et al. A Randomized Controlled Trial of Liposomal Cyclosporine A for Inhalation in the Prevention of Bronchiolitis Obliterans Syndrome Following Lung Transplantation. Am. J. Transplant. 2022, 22, 222–229. [Google Scholar] [CrossRef]
- Behr, J.; Zimmermann, G.; Baumgartner, R.; Leuchte, H.; Neurohr, C.; Brand, P.; Herpich, C.; Sommerer, K.; Seitz, J.; Menges, G.; et al. Lung Deposition of a Liposomal Cyclosporine a Inhalation Solution in Patients after Lung Transplantation. J. Aerosol Med. Pulm. Drug Deliv. 2009, 22, 121–129. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, W.; Hayes, D.; Mansour, H.M. Physicochemical Characterization and Aerosol Dispersion Performance of Organic Solution Advanced Spray-Dried Cyclosporine A Multifunctional Particles for Dry Powder Inhalation Aerosol Delivery. Int. J. Nanomed. 2013, 8, 1269–1283. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H.; Ueno, K.; Mizumoto, T.; Seto, Y.; Sato, H.; Onoue, S. Self-Micellizing Solid Dispersion of Cyclosporine A for Pulmonary Delivery: Physicochemical, Pharmacokinetic and Safety Assessments. Eur. J. Pharm. Sci. 2017, 96, 107–114. [Google Scholar] [CrossRef]
- Yang, T.T.; Wen, B.F.; Liu, K.; Qin, M.; Gao, Y.Y.; Ding, D.J.; Li, W.T.; Zhang, Y.X.; Zhang, W.F. Cyclosporine A/Porous Quaternized Chitosan Microspheres as a Novel Pulmonary Drug Delivery System. Artif. Cells Nanomed. Biotechnol. 2018, 46, 552–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, S.; Atkins, P.; Bäckman, P.; Cipolla, D.; Clark, A.; Daviskas, E.; Disse, B.; Entcheva-Dimitrov, P.; Fuller, R.; Gonda, I.; et al. Inhaled Medicines: Past, Present, and Future. Pharmacol. Rev. 2022, 74, 50–118. [Google Scholar] [CrossRef]
- Belotti, S.; Rossi, A.; Colombo, P.; Ruggero, B.; Rekkas, D.; Politis, S.; Colombo, G.; Balducci, A.G.; Buttini, F. Spray-dried amikacin sulphate powder for inhalation in cystic fibrosis patients: The role of ethanol in particle formation. Eur. J. Pharm. Biopharm. 2015, 93, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Guisado-Vascoa, P.; Valderas-Ortegab, S.; Carralòn-Gonzalez, M.M.; Roda-Santacruzc, A.; Lucia Gonzalez-CortijoGabriel, G.S.-F.; Roda-santacruz, A.; Gonz, L.; Martí-ballesteros, E.M.; Luque-pinilla, J.M.; Almagro-casado, E.; et al. Clinical Characteristics and Outcomes among Hospitalized Adults with Severe COVID-19 Admitted to a Tertiary Medical Center and Receiving Antiviral, Antimalarials, Glucocorticoids, or Immunomodulation with Tocilizumab or Cyclosporine: A Retrospective O. EClinicalMedicine 2020, 28, 100591. [Google Scholar] [CrossRef] [PubMed]
- Buttini, F.; Quarta, E.; Allegrini, C.; Lavorini, F. Understanding the Importance of Capsules in Dry Powder Inhalers. Pharmaceutics 2021, 13, 1936. [Google Scholar] [CrossRef]
- Wheeler, D.S.; Misumi, K.; Walker, N.M.; Vittal, R.; Combs, M.P.; Aoki, Y.; Braeuer, R.R.; Lama, V.N. Interleukin 6 Trans-Signaling Is a Critical Driver of Lung Allograft Fibrosis. Am. J. Transplant. 2021, 21, 2360–2371. [Google Scholar] [CrossRef]
- Rose-John, S.; Winthrop, K.; Calabrese, L. The Role of IL-6 in Host Defence against Infections: Immunobiology and Clinical Implications. Nat. Rev. Rheumatol. 2017, 13, 399–409. [Google Scholar] [CrossRef]
- Zhou, J.; He, W.; Liang, J.; Wang, L.; Yu, X.; Bao, M.; Liu, H. Association of Interleukin-6 Levels with Morbidity and Mortality in Patients with Coronavirus Disease 2019 (COVID-19). Jpn. J. Infect. Dis. 2021, 74, 293–298. [Google Scholar] [CrossRef]
- Reisi Nassab, P.; Blazsó, G.; Nyári, T.; Falkay, G.; Szabó-Révész, P. In Vitro and In Vivo Investigations on the Binary Meloxicam-Mannitol System. Pharmazie 2008, 63, 319–320. [Google Scholar] [CrossRef]
- Blumberg, E.A.; Noll, J.H.; Tebas, P.; Fraietta, J.A.; Frank, I.; Marshall, A.; Chew, A.; Veloso, E.A.; Carulli, A.; Rogal, W.; et al. A Phase I Trial of Cyclosporine for Hospitalized Patients with COVID-19. JCI Insight 2022, 7, 155682. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.; Ahamad, S.; Kanipakam, H.; Gupta, D.; Kumar, V. Simultaneous Inhibition of SARS-CoV-2 Entry Pathways by Cyclosporine. ACS Chem. Neurosci. 2021, 12, 930–944. [Google Scholar] [CrossRef] [PubMed]
- Czogalla, A. Oral Cyclosporine A—The Current Picture of Its Liposomal and Other Delivery Systems. Cell. Mol. Biol. Lett. 2009, 14, 139–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ammerman, N.; Beier-Sexton, M.; Azad, A. Growth and Maintenance of Vero Cell Lines. Curr. Protoc. Microbiol. 2009, 11, A-4E. [Google Scholar] [CrossRef] [Green Version]
- Lei, C.; Yang, J.; Hu, J.; Sun, X. On the Calculation of TCID50 for Quantitation of Virus Infectivity. Virol. Sin. 2021, 36, 141–144. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A Simple Method of Estimating Fifty per Cent Endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Jiang, X.; Zhao, Y.; Guan, Q.; Xiao, S.; Dong, W.; Lian, S.; Zhang, H.; Liu, M.; Wang, Z.; Han, J. Amorphous Solid Dispersions of Cyclosporine A with Improved Bioavailability Prepared via Hot Melt Extrusion: Formulation, Physicochemical Characterization, and in Vivo Evaluation. Eur. J. Pharm. Sci. 2022, 168, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Benetti, A.A.; Bianchera, A.; Buttini, F.; Bertocchi, L.; Bettini, R. Mannitol Polymorphs as Carrier in Dpis Formulations: Isolation Characterization and Performance. Pharmaceutics 2021, 13, 1113. [Google Scholar] [CrossRef]
- Adi, H.; Young, P.M.; Chan, H.K.; Agus, H.; Traini, D. Co-Spray-Dried Mannitol-Ciprofloxacin Dry Powder Inhaler Formulation for Cystic Fibrosis and Chronic Obstructive Pulmonary Disease. Eur. J. Pharm. Sci. 2010, 40, 239–247. [Google Scholar] [CrossRef]
Powder (#, Code) | Factor A: Mannitol (% w/w) | Factor B: Glycine (% w/w) | Factor C: Ethanol (% v/v) |
---|---|---|---|
1 (CsA_M15) * | 15 | 2.5 | 52.5 |
2 (CsA_M10G) | 10 | 5 | 45 |
3 (CsA_M20G) | 20 | 5 | 60 |
4 (CsA_M10) | 10 | 0 | 60 |
5 (CsA_M20) | 20 | 0 | 45 |
6 (CsA_M20G) | 20 | 5 | 60 |
7 (CsA_M15) * | 15 | 2.5 | 52.5 |
8 (CsA_M15) * | 15 | 2.5 | 52.5 |
9 (CsA_M20) | 20 | 0 | 45 |
10 (CsA_M10G) | 10 | 5 | 45 |
11 (CsA_M10) | 10 | 0 | 60 |
Batch | Yield | RF (%) | LOD (%) | WDT (min) |
---|---|---|---|---|
1 (CsA_M15) * | 55.7 ± 2.6 | 64.5 ± 6.3 | 2.85 ± 0.20 | 89.7 ± 7.4 |
2 (CsA_M10G) | 55.4 ± 4.1 | 71.6 ± 1.6 | 3.41 ± 0.31 | 99.9 ± 4.8 |
3 (CsA_M20G) | 59.1 ± 7.9 | 72.0 ± 4.1 | 1.96 ± 0.12 | 116.2 ± 8.3 |
4 (CsA_M10) | 61.1 ± 3.8 | 64.5 ± 1.6 | 1.75 ± 0.33 | 109.6 ± 5.7 |
5 (CsA_M20) | 59.5 ± 6.5 | 70.9 ± 0.4 | 2.04 ± 0.24 | 61.7 ± 0.2 |
6 (CsA_M20G) | 56.9 ± 3.2 | 61.7 ± 0.3 | 1.98 ± 0.14 | 138.5 ± 6.7 |
7 (CsA_M15) * | 62.6 ± 6.0 | 65.4 ± 2.4 | 2.52 ± 0.55 | 90.8 ± 14.1 |
8 (CsA_M15) * | 65.0 ± 3.2 | 70.5 ± 8.7 | 2.45 ± 0.14 | 89.7 ± 13.7 |
9 (CsA_M20) | 61.6 ± 4.1 | 59.9 ± 3.1 | 2.12 ± 0.31 | 57.7 ± 0.2 |
10 (CsA_M10G) | 61.1 ± 5.1 | 61.3 ± 4.4 | 3.06 ± 0.42 | 110.6 ± 1.5 |
11 (CsA_M10) | 65.3 ± 2.9 | 56.6 ± 2.9 | 1.75 ± 0.25 | 119.3 ± 10.1 |
Term | Yield | RF | LOD | WDT |
---|---|---|---|---|
Model | 0.425 | 0.748 | 0.033 | 0.006 |
R2 | 0.312 | 0.187 | 0.944 | 0.934 |
Mannitol | 0.643 | 0.580 | 0.006 | 0.107 |
Glycine | 0.152 | 0.443 | 0.006 | 0.015 |
Ethanol | 0.568 | 0.636 | 0.0004 | 0.004 |
Metered Dose (mg) | Emitted Dose (mg) | MMAD (µm) | FPD (mg) | FPF (%) | EFPD (mg) | EFPF (%) | |
---|---|---|---|---|---|---|---|
CsA_M20 0 time | 14.8 ± 0.1 | 13.2 ± 0.3 | 2.97 ± 0.12 | 8.80 ± 0.18 | 66.5 ± 2.6 | 3.61 ± 0.08 | 27.3 ± 1.2 |
CsA_M20 1 month 25 °C | 14.7 ± 0.3 | 13.0 ± 0.5 | 2.58 ± 0.03 | 9.35 ± 0.46 | 71.4 ± 0.9 | 4.24 ± 0.13 | 32.4 ± 0.2 |
CsA_M20 1 month 40 °C | 15.3 ± 0.3 | 12.6 ± 0.2 | 2.38 ± 0.12 | 8.82 ± 0.41 | 69.7 ± 4.4 | 4.38 ± 0.29 | 34.6 ± 2.8 |
CsA_M20 3 months 25 °C | 14.6 ± 0.3 | 12.6 ± 0.3 | 2.61 ± 0.10 | 9.47 ± 0.22 | 74.7 ± 0.1 | 4.11 ± 0.09 | 32.4 ± 1.5 |
CsA_M20 3 months 40 °C | 15.0 ± 0.3 | 12.5 ± 0.9 | 2.58 ± 0.15 | 8.55 ± 0.85 | 68.3 ± 2.0 | 3.75 ± 0.04 | 30.1 ± 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Angelo, D.; Quarta, E.; Glieca, S.; Varacca, G.; Flammini, L.; Bertoni, S.; Brandolini, M.; Sambri, V.; Grumiro, L.; Gatti, G.; et al. An Enhanced Dissolving Cyclosporin-A Inhalable Powder Efficiently Reduces SARS-CoV-2 Infection In Vitro. Pharmaceutics 2023, 15, 1023. https://doi.org/10.3390/pharmaceutics15031023
D’Angelo D, Quarta E, Glieca S, Varacca G, Flammini L, Bertoni S, Brandolini M, Sambri V, Grumiro L, Gatti G, et al. An Enhanced Dissolving Cyclosporin-A Inhalable Powder Efficiently Reduces SARS-CoV-2 Infection In Vitro. Pharmaceutics. 2023; 15(3):1023. https://doi.org/10.3390/pharmaceutics15031023
Chicago/Turabian StyleD’Angelo, Davide, Eride Quarta, Stefania Glieca, Giada Varacca, Lisa Flammini, Simona Bertoni, Martina Brandolini, Vittorio Sambri, Laura Grumiro, Giulia Gatti, and et al. 2023. "An Enhanced Dissolving Cyclosporin-A Inhalable Powder Efficiently Reduces SARS-CoV-2 Infection In Vitro" Pharmaceutics 15, no. 3: 1023. https://doi.org/10.3390/pharmaceutics15031023
APA StyleD’Angelo, D., Quarta, E., Glieca, S., Varacca, G., Flammini, L., Bertoni, S., Brandolini, M., Sambri, V., Grumiro, L., Gatti, G., Dirani, G., Taddei, F., Bianchera, A., Sonvico, F., Bettini, R., & Buttini, F. (2023). An Enhanced Dissolving Cyclosporin-A Inhalable Powder Efficiently Reduces SARS-CoV-2 Infection In Vitro. Pharmaceutics, 15(3), 1023. https://doi.org/10.3390/pharmaceutics15031023