Hybrid Magnetic Lipid-Based Nanoparticles for Cancer Therapy
Abstract
:1. Introduction
2. Magnetic Nanoparticles’ Properties and Applications
2.1. Magnetic Nanoparticles Classification
2.2. Magnetic Nanoparticles’ Application in Cancer Therapy
3. Techniques for Fabrication of Hybrid Lipid-Magnetic Nanoparticles
Technique | Method | Advantages | Limitations | Ref. |
---|---|---|---|---|
Coprecipitation | Chemical | Monodisperse nanoparticles; less harmful materials and processes; easy to execute; high yield, cost-effective. | Critical process factors (pH, metal ions, nature of salt, reaction temperature) influence particle characteristics; difficult to control the shape of nanoparticles. | [74] |
Thermal Decomposition | Chemical | Large-scale production of nanoparticles, monodisperse, size and shape controllable, synthesis of smaller nanoparticles, cost-effective. | Production of toxic soluble organic solvents, excessive purification can cause agglomeration of nanoparticles | [75] |
Sol-Gel | Chemical | Production in large quantities, controlled size and shape, low cost. | Prolonged reaction time, use of toxic organic solvents, likelihood of contamination of the reactions with by-products. | [76] |
Microemulsion | Chemical | Aqueous medium, easy preparation (one-step), monodisperse nanoparticles. | Low-yield synthesis, shape and size depend on the type of surfactant. | [77,78] |
Hydrothermal or Solvothermal | Chemical | Monodisperse nanoparticles, production in aqueous media. | Shape and size time-dependent on process pressure and temperature, high cost (high temperature and pressure demand special equipment). | [79] |
Mechanical Method | Physical | Fast, inexpensive methods. | Particles with wide size distribution, and product contamination. | [80] |
Laser ablation | Physical | Low cost-effective, no toxic residue, easy to apply, monodisperse nanoparticles. | Multiple steps, mechanisms involved in nucleation, phase transition and growth of nanocrystals after laser ablation in liquids are not well understood. | [81] |
Wire Explosion | Physical | Safe and clean process, one-step and highly productive process. | Polydisperse nanoparticles | [82] |
Biological Methods | Biological | Efficient, clean process, ecofriendly | Polydisperse nanoparticles | [83] |
4. Hybrid Lipid-Magnetic Nanoparticles
4.1. Magnetoliposomes
4.2. Magnetic Solid Lipid Nanoparticles and Magnetic Nanostructured Lipid Carrier
4.3. Magnetic Nanoemulsion and Microemulsion
5. Conclusions and Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vangijzegem, T.; Lecomte, V.; Ternad, I.; Van Leuven, L.; Muller, R.; Stanicki, D.; Laurent, S. Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy. Pharmaceutics 2023, 15, 236. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef]
- Luiz, M.; Dutra, J.; Tofani, L.; de Araújo, J.; Di Filippo, L.; Marchetti, J.; Chorilli, M. Targeted Liposomes: A Nonviral Gene Delivery System for Cancer Therapy. Pharmaceutics 2022, 14, 821. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Deng, Y.; Tin, M.; Lok, V.; Ngai, C.; Zhang, L.; Lucero-Prisno, D.; Xu, W.; Zheng, Z.; Elcarte, E.; et al. Distribution, risk factors, and Temporal Trends for Lung Cancer Incidence and Mortality: A Global Analysis. Chest 2022, 161, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Smolarz, B.; Nowak, A.Z.; Romanowicz, H. Breast Cancer—Epidemiology, Classification, Pathogenesis and Treatment (Review of Literature). Cancers 2022, 14, 2569. [Google Scholar] [CrossRef] [PubMed]
- Meijers, W.; De Boer, R. Common risk factors for heart failure and cancer. Cardiovasc. Res. 2019, 115, 844–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momenimovahed, Z.; Salehiniya, H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer Targets Ther. 2019, 11, 151–164. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Shi, P.; Zhao, G.; Xu, J.; Peng, W.; Zhang, J.; Zhang, G.; Wang, X.; Dong, Z.; Chen, F.; et al. Targeting Cancer Stem Cell Pathways for Cancer Therapy; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef] [Green Version]
- Ansari, M.; Ahmad, M.; Shadab, G.; Siddique, H. Superparamagnetic iron oxide nanoparticles based cancer theranostics: A double edge sword to fight against cancer. J. Drug Deliv. Sci. Technol. 2018, 45, 177–183. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, M.; Dey, R.; Chen, Y. Nanomaterials for cancer therapy: Current progress and perspectives. J. Hematol. Oncol. 2021, 14, 85. [Google Scholar] [CrossRef]
- Van Der Meel, R.; Sulheim, E.; Shi, Y.; Kiessling, F.; Mulder, W. Smart cancer nanomedicine. Nat. Nanotechnol. 2019, 14, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
- Senapati, S.; Mahanta, A.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 2018, 3, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attia, M.; Anton, N.; Wallyn, J.; Omran, Z.; Vandamme, T. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol. 2019, 71, 1185–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, M.; Shapter, J.; Qi, W.; Yang, S.; Gao, G. Recent progress in magnetic nanoparticles: Synthesis. properties, and applications. Nanotechnology 2018, 29, 452001. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, V.; Francesko, A.; Ribeiro, C.; Bañobre-López, M.; Martins, P.; Lanceros-Mendez, S. Advances in Magnetic Nanoparticles for Biomedical Applications. Adv. Healthc. Mater. 2018, 7, 1700845. [Google Scholar] [CrossRef] [PubMed]
- Reddy, L.; Arias, J.; Nicolas, J.; Couvreur, P. Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chem. Rev. 2012, 112, 5818–5878. [Google Scholar] [CrossRef] [PubMed]
- Monnier, C.; Burnand, D.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A. Magnetoliposomes: Opportunities and challenges. Eur. J. Nanomed. 2014, 6, 201–215. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Zhang, Y.; Gao, F.; Li, G.; He, Y.; Peng, M.; Fan, H. Magnetic nanoparticles based cancer therapy: Current status and applications. Sci. China Life Sci. 2018, 61, 400–414. [Google Scholar] [CrossRef]
- Manescu, V.; Paltanea, G.; Antoniac, I.; Vasilescu, M. Magnetic nanoparticles used in oncology. Materials 2021, 14, 5948. [Google Scholar] [CrossRef]
- Mukherjee, S.; Liang, L.; Veiseh, O. Recent advancements of magnetic nanomaterials in cancer therapy. Pharmaceutics 2020, 12, 147. [Google Scholar] [CrossRef] [Green Version]
- Millart, E.; Lesieur, S.; Faivre, V. Superparamagnetic lipid-based hybrid nanosystems for drug delivery. Expert Opin. Drug Deliv. 2018, 15, 523–540. [Google Scholar] [CrossRef] [PubMed]
- Allam, A.; Potter, S.; Bud’ko, S.; Shi, D.; Mohamed, D.; Habib, F.; Pauletti, G. Lipid-coated superparamagnetic nanoparticles for thermoresponsive cancer treatment. Int. J. Pharm. 2018, 548, 297–304. [Google Scholar] [CrossRef]
- Delgado-Rosales, E.; Quintanar-Guerrero, D.; Piñón-Segundo, E.; Magaña-Vergara, N.; Leyva-Gómez, G.; Martínez-Martínez, F.; Mendoza-Muñoz, N. Novel drug delivery systems based on the encapsulation of superparamagnetic nanoparticles into lipid nanocomposites. J. Drug Deliv. Sci. Technol. 2018, 46, 259–267. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic nanoparticles: Preparation; physical properties, and applications in biomedicine. Nanoscale Res. Lett. 2012, 7, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, M.; Sousa, J.; Pais, A.; Vitorino, C. The role of magnetic nanoparticles in cancer nanotheranostics. Materials 2020, 13, 266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marghussian, V. Magnetic properties of nano-glass ceramics. In Nano-Glass Ceramics: Processing, Properties and Applications; William Andrew: Danbury, CT, USA, 2015. [Google Scholar] [CrossRef]
- Bonilla, A.; Gonzalez, P. Hybrid Polymeric-Magnetic Nanoparticles in Cancer Treatments. Curr. Pharm. Des. 2017, 23, 5392–5402. [Google Scholar] [CrossRef] [PubMed]
- Angelakeris, M. Magnetic nanoparticles: A multifunctional vehicle for modern theranostics. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 1642–1651. [Google Scholar] [CrossRef] [PubMed]
- Kötitz, R.; Weitschies, W.; Trahms, L.; Semmler, W. Investigation of Brownian and Néel relaxation in magnetic fluids. J. Magn. Magn. Mater. 1999, 201, 102–104. [Google Scholar] [CrossRef]
- Ilg, P.; Kröger, M. Dynamics of interacting magnetic nanoparticles: Effective behavior from competition between Brownian and Néel relaxation. Phys. Chem. Chem. Phys. 2020, 22, 22244–22259. [Google Scholar] [CrossRef]
- Fatima, H.; Charinpanitkul, T.; Kim, K. Fundamentals to apply magnetic nanoparticles for hyperthermia therapy. Nanomaterials 2021, 11, 1203. [Google Scholar] [CrossRef]
- Schleich, N.; Po, C.; Jacobs, D.; Ucakar, B.; Gallez, B.; Danhier, F.; Préat, V. Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J. Control. Release 2014, 194, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction Nanoparticle-based. Nanomedicine 2016, 11, 673–692. [Google Scholar] [CrossRef] [Green Version]
- Hedayatnasab, Z.; Abnisa, F.; Daud, W. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater. Des. 2017, 123, 174–196. [Google Scholar] [CrossRef]
- Soetaert, F.; Kandala, S.; Bakuzis, A.; Ivkov, R. Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles. Sci. Rep. 2017, 7, 6661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veloso, S.; Andrade, R.; Castanheira, E. Magnetoliposomes: Recent advances in the field of controlled drug delivery. Expert Opin. Drug Deliv. 2021, 18, 1323–1334. [Google Scholar] [CrossRef]
- Brezovich, I.; Meredith, R. Practical aspects of ferromagnetic thermoseed hyperthermia. Radiol. Clin. N. Am. 1989, 27, 589–602. [Google Scholar] [CrossRef]
- Muela, A.; Muñoz, D.; Martín-Rodríguez, R.; Orue, I.; Garaio, E.; De Cerio, A.A.D.; Alonso, J.; García, J.; Fdez-Gubieda, M. Optimal Parameters for Hyperthermia Treatment Using Biomineralized Magnetite Nanoparticles: Theoretical and Experimental Approach. J. Phys. Chem. C 2016, 120, 24437–24448. [Google Scholar] [CrossRef] [Green Version]
- Hergt, R.; Dutz, S. Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy. J. Magn. Magn. Mater. 2007, 311, 187–192. [Google Scholar] [CrossRef]
- Hu, S.; Liao, B.; Chiang, C.; Chen, P.; Chen, I.; Chen, S. Core-shell nanocapsules stabilized by single-component polymer and nanoparticles for magneto-chemotherapy/hyperthermia with multiple drugs. Adv. Mater. 2012, 24, 3627–3632. [Google Scholar] [CrossRef]
- Nitica, S.; Fizesan, I.; Dudric, R.; Loghin, F.; Lucaciu, C.; Iacovita, C. Doxorubicin Loaded Thermosensitive Magneto-Liposomes Obtained by a Gel Hydration Technique: Characterization and In Vitro Magneto-Chemotherapeutic Effect Assessment. Pharmaceutics 2022, 14, 2501. [Google Scholar] [CrossRef]
- Mohapatra, A.; Uthaman, S.; Park, I. External and Internal Stimuli-Responsive Metallic Nanotherapeutics for Enhanced Anticancer Therapy. Front. Mol. Biosci. 2021, 7, 597634. [Google Scholar] [CrossRef] [PubMed]
- Khiabani, S.S.; Farshbaf, M.; Akbarzadeh, A.; Davaran, S. Magnetic nanoparticles: Preparation methods, applications in cancer diagnosis and cancer therapy. Artif. Cells Nanomed. Biotechnol. 2017, 45, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Khizar, S.; Ahmad, N.; Zine, N.; Ja, N.; Errachid-el-salhi, A.; Elaissari, A. Magnetic Nanoparticles: From Synthesis to Theranostic Applications. ACS Appl. Nano Mater. 2021, 4, 4284–4306. [Google Scholar] [CrossRef]
- Zhu, L.; Zhou, Z.; Mao, H.; Yang, L. Magnetic nanoparticles for precision oncology: Theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine 2017, 12, 73–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satpathy, M.; Wang, L.; Zielinski, R.; Qian, W.; Wang, Y.; Mohs, A.; Kairdolf, B.; Ji, X.; Capala, J.; Lipowska, M.; et al. Targeted drug delivery and image-guided therapy of heterogeneous ovarian cancer using HER2-targeted theranostic nanoparticles. Theranostics 2019, 9, 778–795. [Google Scholar] [CrossRef]
- Shiji, R.; Joseph, M.M.; Sen, A.; Unnikrishnan, B.S.; Sreelekha, T.T. Galactomannan armed superparamagnetic iron oxide nanoparticles as a folate receptor targeted multi-functional theranostic agent in the management of cancer. Int. J. Biol. Macromol. 2022, 219, 740–753. [Google Scholar] [CrossRef]
- Salehipour, M.; Rezaei, S.; Mosafer, J.; Pakdin-Parizi, Z.; Motaharian, A.; Mogharabi-Manzari, M. Recent advances in polymer-coated iron oxide nanoparticles as magnetic resonance imaging contrast agents. J. Nanopart. Res. 2021, 23, 48. [Google Scholar] [CrossRef]
- Materón, E.; Miyazaki, C.; Carr, O.; Joshi, N.; Picciani, P.; Dalmaschio, C.; Davis, F.; Shimizu, F. Magnetic nanoparticles in biomedical applications: A review. Appl. Surf. Sci. Adv. 2021, 6, 100163. [Google Scholar] [CrossRef]
- Ribeiro, R.F.; Ferreira, R.V.; Pedersoli, D.C.; Paiva, P.R.; Cunha, P.D.; Goes, A.M.; Domingues, R.Z. Cytotoxic effect of thermosensitive magnetoliposomes loaded with gemcitabine and paclitaxel on human primary breast cancer cells (MGSO-3 line). J. Nanopart. Res. 2020, 22, 172. [Google Scholar] [CrossRef]
- Natesan, S.; Sugumaran, A.; Ponnusamy, C.; Jeevanesan, V.; Girija, G.; Palanichamy, R. Development and evaluation of magnetic microemulsion: Tool for targeted delivery of camptothecin to BALB/c mice-bearing breast cancer. J. Drug Target. 2014, 22, 913–926. [Google Scholar] [CrossRef]
- Pellosi, D.; Macaroff, P.; Morais, P.; Tedesco, A. Magneto low-density nanoemulsion (MLDE): A potential vehicle for combined hyperthermia and photodynamic therapy to treat cancer selectively. Mater. Sci. Eng. C. 2018, 92, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Abdolrahimi, M.; Vasilakaki, M.; Slimani, S.; Ntallis, N.; Varvaro, G.; Laureti, S.; Meneghini, C.; Trohidou, K.; Fiorani, D.; Peddis, D. Magnetism of nanoparticles: Effect of the organic coating. Nanomaterials 2021, 11, 1787. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Suita, Y.; Miriyala, S.; Dean, J.; Tapinos, N.; Shen, J. Advances in lipid-based nanoparticles for cancer chemoimmunotherapy. Pharmaceutics 2021, 13, 520. [Google Scholar] [CrossRef] [PubMed]
- Sheoran, S.; Arora, S.; Pilli, G. Lipid-based nanoparticles for treatment of cancer. Heliyon 2022, 8, e09403. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.I.; Sahu, A.; Wurm, F.; Jo, S. Magnetoliposomes with size controllable insertion of magnetic nanoparticles for efficient targeting of cancer cells. RSC Adv. 2019, 9, 15053–15060. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yang, R.; Yuan, C.; An, Y.; Tang, Q.; Chen, D. Preparation of Folic Acid-Targeted Temperature-Sensitive Magnetoliposomes and their Antitumor Effects In Vitro and In Vivo. Target. Oncol. 2018, 13, 481–494. [Google Scholar] [CrossRef]
- Shen, S.; Huang, D.; Cao, J.; Chen, Y.; Zhang, X.; Guo, S.; Ma, W.; Qi, X.; Ge, Y.; Wu, L. Magnetic liposomes for light-sensitive drug delivery and combined photothermal-chemotherapy of tumors. J. Mater. Chem. B 2019, 7, 1096–1106. [Google Scholar] [CrossRef]
- Guo, H.; Chen, W.; Sun, X.; Liu, Y.; Li, J.; Wang, J. Theranostic magnetoliposomes coated by carboxymethyl dextran with controlled release by low-frequency alternating magnetic field. Carbohydr. Polym. 2015, 118, 209–217. [Google Scholar] [CrossRef]
- Iacobazzi, R.; Vischio, F.; Arduino, I.; Canepa, F.; Laquintana, V.; Notarnicola, M.; Scavo, M.; Bianco, G.; Fanizza, E.; Lopedota, A.; et al. Magnetic implants in vivo guiding sorafenib liver delivery by superparamagnetic solid lipid nanoparticles. J. Colloid Interface Sci. 2022, 608, 239–254. [Google Scholar] [CrossRef]
- Grillone, A.; Riva, E.; Mondini, A.; Forte, C.; Calucci, L.; Innocenti, C.; de Julian Fernandez, C.; Cappello, V.; Gemmi, M.; Moscato, S.; et al. Active Targeting of Sorafenib: Preparation. Characterization, and In Vitro Testing of Drug-Loaded Magnetic Solid Lipid Nanoparticles. Adv. Healthc. Mater. 2015, 4, 1681–1690. [Google Scholar] [CrossRef]
- Ahmadifard, Z.; Ahmeda, A.; Rasekhian, M.; Moradi, S.; Arkan, E. Chitosan-coated magnetic solid lipid nanoparticles for controlled release of letrozole. J. Drug Deliv. Sci. Technol. 2020, 57, 101621. [Google Scholar] [CrossRef]
- Rodenak-Kladniew, B.; Noacco, N.; de Berti, I.P.; Stewart, S.; Cabrera, A.; Alvarez, V.; de Bravo, M.G.; Durán, N.; Castro, G.; Islan, G. Design of magnetic hybrid nanostructured lipid carriers containing 1,8-cineole as delivery systems for anticancer drugs: Physicochemical and cytotoxic studies. Colloids Surf. B Biointerfaces 2021, 202, 111710. [Google Scholar] [CrossRef]
- De Paula, L.; Primo, F.; Pinto, M.; Morais, P.; Tedesco, A. Combination of hyperthermia and photodynamic therapy on mesenchymal stem cell line treated with chloroaluminum phthalocyanine magnetic-nanoemulsion. J. Magn. Magn. Mater. 2015, 380, 372–376. [Google Scholar] [CrossRef]
- Wu, H.; Song, L.; Chen, L.; Huang, Y.; Wu, Y.; Zang, F.; An, Y.; Lyu, H.; Ma, M.; Chen, J.; et al. Injectable thermosensitive magnetic nanoemulsion hydrogel for multimodal-imaging-guided accurate thermoablative cancer therapy. Nanoscale 2017, 9, 16175–16182. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, S.; Dave, P.; Shah, N. Applications of nano-catalyst in new era. J. Saudi Chem. Soc. 2012, 16, 307–325. [Google Scholar] [CrossRef] [Green Version]
- Aziz, O.A.; Arafa, K.; Dena, A.A.; El-sherbiny, I. Superparamagnetic Iron Oxide Nanoparticles (SPIONs): Preparation and Recent Applications. J. Nanotechnol. Adv. Mater. 2020, 8, 21–29. [Google Scholar]
- Cerqueira, M.; Belmonte-Reche, E.; Gallo, J.; Baltazar, F.; Bañobre-López, M. Magnetic Solid Nanoparticles and Their Counterparts: Recent Advances towards Cancer Theranostics. Pharmaceutics 2022, 14, 506. [Google Scholar] [CrossRef] [PubMed]
- Komeili, A. Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria. FEMS Microbiol. Rev. 2012, 36, 232–255. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Shah, T.; Ullah, R.; Zhou, P.; Guo, M.; Ovais, M.; Tan, Z.; Rui, Y. Review on Recent Progress in Magnetic Nanoparticles: Synthesis. Characterization, and Diverse Applications. Front. Chem. 2021, 9, 629054. [Google Scholar] [CrossRef]
- De Leo, V.; Maurelli, A.; Giotta, L.; Catucci, L. Liposomes containing nanoparticles: Preparation; applications. Colloids Surf. B Biointerfaces 2022, 218, 112737. [Google Scholar] [CrossRef]
- Luiz, M.; Santos, V.; Abriata, A.; Viegas, F.; Vicentini, F.; Bentley, M.; Chorilli, M.; Marchetti, J.; Tapia-blácido, D. Design of experiments (DoE) to develop and to optimize nanoparticles as Drug Delivery Systems. Eur. J. Pharm. Biopharm. 2021, 165, 127–148. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, M.; Sutriyo; Rahmasari, R. Synthesis processing condition optimization of citrate stabilized superparamagnetic iron oxide nanoparticles using direct co-precipitation method. Biomed. Pharmacol. J. 2021, 14, 1533–1542. [Google Scholar] [CrossRef]
- Odularu, A. Metal Nanoparticles: Thermal Decomposition, Biomedicinal Applications to Cancer Treatment, and Future Perspectives. Bioinorg. Chem. Appl. 2018, 2018, 9354708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dippong, T.; Levei, E.; Deac, I.; Petean, I.; Borodi, G.; Cadar, O.; Synthesis, S.-G. Structure, Morphology and Magnetic Properties of Ni0.6Mn0.4Fe2O4 Nanoparticles Embedded in SiO2 Matrix. Nanomaterials 2021, 11, 3455. [Google Scholar] [CrossRef]
- Zhang, D.; Tong, Z.; Li, S.; Zhang, X.; Ying, A. Fabrication and characterization of hollow Fe3O4 nanospheres in a microemulsion. Mater. Lett. 2008, 62, 4053–4055. [Google Scholar] [CrossRef]
- Malik, M.; Wani, M.; Hashim, M. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials. 1st Nano Update. Arab. J. Chem. 2012, 5, 397–417. [Google Scholar] [CrossRef] [Green Version]
- Zahid, M.; Nadeem, N.; Hanif, M.; Bhatti, I.; Bhatti, H.; Mustafa, G. Metal Ferrites and Their Graphene-Based Nanocomposites: Synthesis, Characterization, and Applications in Wastewater Treatment. In Nanotechnology in the Life Sciences; Springer: Berlin/Heidelberg, Germany, 2019; pp. 181–212. [Google Scholar] [CrossRef]
- Mohamed, A.; Mohamed, M. Nanoparticles: Magnetism and Applications. In Nanotechnology in the Life Sciences; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–12. [Google Scholar] [CrossRef]
- Yang, G. Laser ablation in liquids: Applications in the synthesis of nanocrystals. Prog. Mater. Sci. 2007, 52, 648–698. [Google Scholar] [CrossRef]
- Kawamura, G.; Alvarez, S.; Stewart, I.; Catenacci, M.; Chen, Z.; Ha, Y. Production of Oxidation-Resistant Cu-Based Nanoparticles by Wire Explosion. Sci. Rep. 2015, 5, 18333. [Google Scholar] [CrossRef] [Green Version]
- Lenders, J.; Altan, C.; Bomans, P.; Arakaki, A.; Bucak, S.; De With, G.; Sommerdijk, N. A bioinspired coprecipitation method for the controlled synthesis of magnetite nanoparticles. Cryst. Growth Des. 2014, 14, 5561–5568. [Google Scholar] [CrossRef]
- Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017, 9, 12. [Google Scholar] [CrossRef]
- Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomed. 2015, 10, 975–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filipczak, N.; Pan, J.; Yalamarty, S.; Torchilin, V. Recent advancements in liposome technology. Adv. Drug Deliv. Rev. 2020, 156, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Tomitaka, A.; Takemura, Y.; Huang, Z.; Roy, U.; Nair, M. Magnetoliposomes in controlled-release drug delivery systems. Crit. Rev. Biomed. Eng. 2019, 47, 495–505. [Google Scholar] [CrossRef] [PubMed]
- De Cuyper, M.; Joniau, M. Magnetoliposomes. Eur. Biophys. J. 1988, 15, 311–319. [Google Scholar] [CrossRef]
- Viroonchatapan, E.; Sato, H.; Ueno, M.; Adachi, I.; Tazawa, K.; Horikoshi, I. Magnetic targeting of thermosensitive magnetoliposomes to mouse livers in an in situ on-line perfusion system. Life Sci. 1996, 58, 2251–2261. [Google Scholar] [CrossRef]
- Kim, D.; Im, B.; Hwang, H.; Na, K. Gemcitabine-loaded DSPE-PEG-PheoA liposome as a photomediated immune modulator for cholangiocarcinoma treatment. Biomaterials 2018, 183, 139–150. [Google Scholar] [CrossRef]
- May, J.; Ernsting, M.; Undzys, E.; Li, S. Thermosensitive liposomes for the delivery of gemcitabine and oxaliplatin to tumors. Mol. Pharm. 2013, 10, 4499–4508. [Google Scholar] [CrossRef]
- Bayón-Cordero, L.; Alkorta, I.; Arana, L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials 2019, 9, 474. [Google Scholar] [CrossRef] [Green Version]
- Makoni, P.; Kasongo, K.; Walker, R. Short term stability testing of efavirenz-loaded solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) dispersions. Pharmaceutics 2019, 11, 397. [Google Scholar] [CrossRef] [Green Version]
- Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure preparation and application. Adv. Pharm. Bull. 2015, 5, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Jose, J.; Kumar, R.; Harilal, S.; Mathew, G.; Parambi, D.; Prabhu, A.; Uddin, M.; Aleya, L.; Kim, H.; Mathew, B. Magnetic nanoparticles for hyperthermia in cancer treatment: An emerging tool. Environ. Sci. Pollut. Res. 2020, 27, 19214–19225. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Pinel, B.; Porras-Alcalá, C.; Ortega-Rodriguez, A.; Sarabia, F.; Prados, J.; Melguizo, C.; López-Romero, J. Lipid-Based Nanoparticles: Application and Recent Advances in Cancer Treatment. Nanomaterials 2019, 9, 638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Li, W.; Wang, M.; Liao, Z. Magnetic nanoparticles for cancer theranostics: Advances and prospects. J. Control. Release 2021, 335, 437–448. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Yang, W.; Yu, M.; Sun, S.; Xie, B. Improved Oral Bioavailability and Liver Targeting of Sorafenib Solid Lipid Nanoparticles in Rats. AAPS PharmSciTech 2018, 19, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Grillone, A.; Battaglini, M.; Moscato, S.; Mattii, L.; De Julián Fernández, C.; Scarpellini, A.; Giorgi, M.; Sinibaldi, E.; Ciofani, G. Nutlin-loaded magnetic solid lipid nanoparticles for targeted glioblastoma treatment. Nanomedicine 2019, 14, 727–752. [Google Scholar] [CrossRef] [Green Version]
- de Escalona, M.M.; Sáez-Fernández, E.; Prados, J.; Melguizo, C.; Arias, J. Magnetic solid lipid nanoparticles in hyperthermia against colon cancer. Int. J. Pharm. 2016, 504, 11–19. [Google Scholar] [CrossRef]
- Świętek, M.; Panchuk, R.; Skorokhyd, N.; Černoch, P.; Finiuk, N.; Klyuchivska, O.; Hrubý, M.; Molčan, M.; Berger, W.; Trousil, J.; et al. Magnetic Temperature-Sensitive Solid-Lipid Particles for Targeting and Killing Tumor Cells. Front. Chem. 2020, 8, 205. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.; Carrião, M.; Pacheco, M.; Branquinho, L.; de Souza, A.; Bakuzis, A.; Lima, E. Triggered release of paclitaxel from magnetic solid lipid nanoparticles by magnetic hyperthermia. Mater. Sci. Eng. C 2018, 92, 547–553. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Y.; Han, Y.; Wang, J.; Yang, J. Preparation and characterization of cisplatin magnetic solid lipid nanoparticles (MSLNs): Effects of loading procedures of Fe3O4 nanoparticles. Pharm. Res. 2015, 32, 482–491. [Google Scholar] [CrossRef]
- Pang, X.; Zhou, J.; Chen, J.; Yu, M.; Cui, F.; Zhou, W. Synthesis of ibuprofen loaded magnetic solid lipid nanoparticles. IEEE Trans. Magn. 2007, 43, 2415–2417. [Google Scholar] [CrossRef]
- Ghiani, S.; Capozza, M.; Cabella, C.; Coppo, A.; Miragoli, L.; Brioschi, C.; Bonafè, R.; Maiocchi, A. In vivo tumor targeting and biodistribution evaluation of paramagnetic solid lipid nanoparticles for magnetic resonance imaging. Nanomedicine Nanotechnology. Biol. Med. 2017, 13, 693–700. [Google Scholar] [CrossRef]
- Yoozbashi, M.; Rashidzadeh, H.; Kermanian, M.; Sadighian, S.; Hosseini, M.; Kaboli, Z.; Rostamizadeh, K. Magnetic nanostructured lipid carrier for dual triggered curcumin delivery: Preparation, characterization and toxicity evaluation on isolated rat liver mitochondria. J. Biomater. Appl. 2022, 36, 1055–1063. [Google Scholar] [CrossRef] [PubMed]
- Ong, Y.; Bañobre-López, M.; Lima, S.C.; Reis, S. A multifunctional nanomedicine platform for co-delivery of methotrexate and mild hyperthermia towards breast cancer therapy. Mater. Sci. Eng. C 2020, 116, 111255. [Google Scholar] [CrossRef]
- Lu, C.; Ji, J.; Zhu, X.; Tang, P.; Zhang, Q.; Zhang, N.; Wang, Z.; Wang, X.; Chen, W.; Hu, J.; et al. T2-Weighted Magnetic Resonance Imaging of Hepatic Tumor Guided by SPIO-Loaded Nanostructured Lipid Carriers and Ferritin Reporter Genes. ACS Appl. Mater. Interfaces 2017, 9, 35548–35561. [Google Scholar] [CrossRef]
- McClements, D. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter 2012, 8, 1719–1729. [Google Scholar] [CrossRef]
- Rahdar, A.; Hajinezhad, M.; Barani, M.; Sargazi, S.; Zaboli, M.; Ghazy, E.; Baino, F.; Cucchiarini, M.; Bilal, M.; Pandey, S. Pluronic F127/Doxorubicin microemulsions: Preparation; characterization; toxicity evaluations. J. Mol. Liq. 2022, 345, 117028. [Google Scholar] [CrossRef]
- Sánchez-López, E.; Guerra, M.; Dias-Ferreira, J.; Lopez-Machado, A.; Ettcheto, M.; Cano, A.; Espina, M.; Camins, A.; Garcia, M.; Souto, E. Current applications of nanoemulsions in cancer therapeutics. Nanomaterials 2019, 9, 821. [Google Scholar] [CrossRef] [Green Version]
- De Paula, L.; Primo, F.; Pinto, M.; Morais, P.; Tedesco, A. Evaluation of a chloroaluminium phthalocyanine-loaded magnetic nanoemulsion as a drug delivery device to treat glioblastoma using hyperthermia and photodynamic therapy. RSC Adv. 2017, 7, 9115–9122. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Chen, W.; Wu, G.; Kong, J.; Yuan, S.; Chen, L. A Magnetic T7 Peptide&AS1411 Aptamer-Modified Microemulsion for Triple Glioma-Targeted Delivery of Shikonin and Docetaxel. J. Pharm. Sci. 2021, 110, 2946–2954. [Google Scholar] [CrossRef]
Nanosystem | Drug | Preparation Method | MNPs Encapsulation Efficiency | Treatment Method | Effect | Ref |
---|---|---|---|---|---|---|
Magnetoliposomes | Paclitaxel and gemcitabine | Coprecipitation (MNPs) and thin-film hydration (ML) | 84% | Chemotherapy and hyperthermia | Increased gemcitabine encapsulation, 10-fold increase in drug release under AMF, 2.1-fold increase in cytotoxicity on MGSO-3 cells | [51] |
Magnetoliposomes | ATTO590 oligonucleotide | Thermal decomposition (MNP) and solvent-guided method (ML) | n.r | Chemotherapy | Size-independent MNP loading increases using the solvent-guided method than the film hydration method. Increased separation efficiency of cancer cells from functionalized systems. | [57] |
Magnetoliposomes | 17-AAG | Coprecipitation (MNP) and thin-film hydration (ML) | n.r. | Chemotherapy and hyperthermia | Higher inhibition efficiency on SKOV-3 (FRα-positive), increased apoptosis rate and apoptosis-promoting genes, increased survival and tumor inhibition rate in xenograft models. | [58] |
Magnetoliposomes | Doxorubicin | Thermal decomposition (MNP) and reverse evaporation (ML) | n.r | Photothermal and chemotherapy | Increased release rate on irradiation, increased accumulation in brain tissue in a mice model, therapeutic and diagnostic MRI synergism. | [59] |
Magnetoliposomes | Doxorubicin | Coprecipitation (MNP)and thin-film hydration (ML) | 83% | Chemotherapy | Increased release rate on LF-AMF and at acidic pH, decreased cytotoxicity of NPMs, improved efficacy of doxorubicin. | [60] |
Superparamagnetic solid lipid nanoparticles | Sorafenib | Microemulsion (MNP) and Oil-in-water homogenization process (SLN) | - | Chemotherapy | Increase in vitro and in vitro accumulation into liver cancer cells. | [61] |
Magnetic soli-lipid nanoparticles | Sorafenib | Oil-in-water homogenization | - | Chemotherapy | The developed formulation accumulated into liver tumor cells and inhibited their growth | [62] |
Magnetic solid lipid nanoparticles | Letrozole | Coprecipitation (MNPs) and solvent evaporation-ultrasonic (SLN) | - | Chemotherapy | Increased the antitumoral efficiency of letrozole. | [63] |
Magnetic Nanostructured lipid carrier | 1,8-cineole | Ultra-sonication (NLC) | - | Chemotherapy and hyperthermia | Higher antitumoral effect in tumoral cells than normal ones. | [64] |
Nanoemulsion | Chloroaluminum phthalocyanine | Spontaneous emulsification | - | Hyperthermia and photodynamic therapy | Synergism between hyperthermia and PDT techniques in cell death | [65] |
Nanoemulsion hydrogel | - | Thermal decomposition (MNP) and emulsification by sonication (nanoemulsion) | - | Hyperthermia | Active targeting and 4T1 tumor reduction in vivo in the presence of an alternating current magnetic field | [66] |
Nanoemulsion | Chlorin E6 | Emulsification by ultrasonic irradiation | - | Hyperthermia and photodynamic therapy | Increased cytotoxicity with combination of hyperthermia and PDT against MCF-7 cells | [53] |
Microemulsion | Camptothecin | Coprecipitation (MNP) and emulsification by ultrasonication (microemulsion) | - | Chemotherapy | Active targeting and greater accumulation of camptothecin to the tumor after magnetic field application | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luiz, M.T.; Dutra, J.A.P.; Viegas, J.S.R.; de Araújo, J.T.C.; Tavares Junior, A.G.; Chorilli, M. Hybrid Magnetic Lipid-Based Nanoparticles for Cancer Therapy. Pharmaceutics 2023, 15, 751. https://doi.org/10.3390/pharmaceutics15030751
Luiz MT, Dutra JAP, Viegas JSR, de Araújo JTC, Tavares Junior AG, Chorilli M. Hybrid Magnetic Lipid-Based Nanoparticles for Cancer Therapy. Pharmaceutics. 2023; 15(3):751. https://doi.org/10.3390/pharmaceutics15030751
Chicago/Turabian StyleLuiz, Marcela Tavares, Jessyca Aparecida Paes Dutra, Juliana Santos Rosa Viegas, Jennifer Thayanne Cavalcante de Araújo, Alberto Gomes Tavares Junior, and Marlus Chorilli. 2023. "Hybrid Magnetic Lipid-Based Nanoparticles for Cancer Therapy" Pharmaceutics 15, no. 3: 751. https://doi.org/10.3390/pharmaceutics15030751
APA StyleLuiz, M. T., Dutra, J. A. P., Viegas, J. S. R., de Araújo, J. T. C., Tavares Junior, A. G., & Chorilli, M. (2023). Hybrid Magnetic Lipid-Based Nanoparticles for Cancer Therapy. Pharmaceutics, 15(3), 751. https://doi.org/10.3390/pharmaceutics15030751