Dendrimer-Mediated Delivery of Anticancer Drugs for Colon Cancer Treatment
Abstract
:1. Introduction
2. Anticancer Drugs for the Treatment of Colon Cancer
2.1. Natural Drugs
2.1.1. Curcumin
2.1.2. Piperlongumine
2.1.3. Resveratrol
2.1.4. Quercetin
2.1.5. Gallic Acid
2.2. Synthetic Drugs
2.2.1. 5-Fluorouracil
2.2.2. Capecitabine
2.2.3. Irinotecan
2.2.4. Oxaliplatin
3. Role of Dendrimers in the Delivery of Anticancer Drugs against Colon Cancer
- i.
- Solubility increment—Being highly water soluble itself, dendrimers solubilize anticancer drugs, which are commonly hydrophobic, hence, improving the bioavailability of the drug [71]. Morgan et al. improved the solubility of poorly water-soluble CPA (~20 μmol/L) by encapsulation in Poly (glycerol succinic acid) dendrimers. The amount of CPA was determined to be 240 μmol/L in the dendrimer formulation, which was ~10 times higher than the solubility of CPA in water [72].
- ii.
- Stability—By encapsulating less stable, heat-liable, pH-sensitive, or photosensitive anticancer compounds, dendrimers prevent degradation and increase the storage stability of such drugs. Moreover, surface-charged dendrimers may prevent drug molecules from being aggregated through steric repulsion. In a trial, The bow-tie dendrimer’s branches break slowly due to the steric impedance of ester bonds and as a result, took many months to breakdown entirely. The bow-tie dendrimers’ slow breakdown of bow tie dendrimer improves the stability of the encapsulated drugs in the systemic circulation [73].
- iii.
- Permeability—Dendrimers may be used to enhance membrane permeability and, therefore, cellular uptake of anticancer drugs [74]. Teow et al. designed a dendrimer nanosystem to bypass the biological barriers, thereby increasing the permeability of paclitaxel (PTX) and overcoming cellular barriers. Lauryl chains were conjugated on the G3-PAMAM surface by cross-linking with glutaric anhydride. In comparison to unencapsulated PTX, transepithelial electrical resistance assay of lauryl PAMAM conjugate showed a 12-times enhancement in the transport of conjugated PTX from basolateral to apical and apical to basolateral side of the cell [75].
- iv.
- Biocompatibility—Dendrimers are biopolymers and possess biodegradable backbones, and are considered biocompatible and safer for in vivo applications. Moreover, the cytotoxicity of amine-terminated dendrimers can be rendered by surface functionalization. For example, amine terminals of dendrimers were functionalized using PEG based on a polyester-polyamide hybrid for the delivery of DOX for the treatment of CC [76].
- v.
- Prolonged circulation—Due to the tiny size, dendrimers have delayed clearance through the reticuloendothelial system (RS); hence, the encapsulated anticancer drug exceeds the circulation half-life [77]. However, due to high cationic surface charge of certain dendrimers, they are eliminated from the body. The positively charged terminals must be neutralized to increase the circulation time. The dendrimer terminals can be altered using a variety of techniques, including PEGylation, vitamin conjugation, glycosylation, triazine and hydrazone linking, acetylation, and amino acid or peptide addition and nucleic acid complexation. PEGylation is the easiest and most efficient technique to modify the dendrimer’s surface [78]. As mentioned earlier, pegylated “bow-tie” polyester dendrimers synthesized possessing cleavable carbamate bonds also increased the circulation time of dendrimers [75]. Similar to PEGylation, dendrimers treated with hyaluronic acid (HA) polymer have consistently shown the potential to lengthen systemic retention periods with altered tissue distribution. Qi et al. grafted HA on PAMAM dendrimers for extended systemic circulation of encapsulated topotecan hydrochloride. HA being hydrophilic, forms a hydrophilic coating on the PAMAM surface that might hide the surface charge and prevent PAMAM molecules from opsonization, thereby prolonging the circulation time of TPT-loaded PAMAM [79].
- vi.
- Controlled release—Dendrimers usually range from 1 to 100 nm in size and thus provide controlled drug release and optimum pharmacokinetics [80]. Gillies et al. conjugated doxorubicin (DOX) to polyester G4 dendrimers via hydrazone (hyd) cross-link which hydrolyzes at acidic pH. Dendrimer-hyd-DOX conjugates were stable at normal physiological pH (pH 7.4) and only released 10 percent of encapsulated DOX from the dendrimer system. In contrast, the release was observed to be elevated up to 100% after 48 h incubation at a pH similar to the tumor microenvironment (pH 5.0). The hydrazone-linked dendrimers enabled the pH-mediated controlled release of DOX [81].
- vii.
- Cancer targeting—Dendrimers have terminal groups that can be functionalized with an ample range of molecules according to the specificity of the targeted cancer site for a particular anticancer drug [82]. Location-specific medication delivery to the colon boosts the amount of the medicine at the target site, requiring a lower dosage and reducing adverse effects. When coupled with certain antibodies, dendrimers are more sensitive and effectively identify circulating tumor cells. For example, sialyl Lewis X antibody-conjugated PAMAM dendrimers have recently been used for targeting to precisely bind and capture HT-29 CC cells [83]. In another example, telodendrimer modified with cholic acid and vitamin E were developed for targeted delivery of gambogic acid (GBA). The GBA-telodendrimer formulation was injected into animal models, and in vivo imaging was done. The fluorescent signal indicated that the modified telodendrimers could efficiently target the xenograft model of HT-29 colon cancers. The trial on animal models administered with plain telodendrimers showed more nonspecific uptake and on contrary less uptake at the cancer site [84].
- viii.
- Multipurpose dendrimers—Numerous end groups on the surface of a dendrimer molecule provide multiple conjugation sites for different functionalization moieties to introduce multiple advancements in a single dendrimer-based nanocarrier [85] [86]. Such dendrimers serve more than one application, such as drug delivery, gene delivery, bioimaging, and cancer targeting simultaneously [87,88]. Pishavar et al. have used PAMAM for simultaneous drug delivery and gene therapy. CC cells were co-delivered in vitro and in vivo with DOX and plasmid expressing TRAIL, using G5 PAMAM functionalized with cholesteryl chloroformate and alkyl-PEG. The results demonstrated that customized PAMAM complexed with TRAIL plasmid and loaded with DOX had a higher anticancer impact than modified PAMAM carrying DOX and TRAIL plasmid separately [89]. In another experiment, the dendrimer was hybridized with gold nanorod for combined cancer photothermal chemotherapy. PEGylated-G4 PAMAM was covalently linked to mercaptohexadecanoic acid-functionalized gold nanorod and loaded with DOX. The combined treatment of cancer cells using a dendrimer-gold hybrid demonstrated higher efficacy than a single therapy module [90].
4. Dendrimer-Based Passive Targeting to Colon Cancer Cells
5. Dendrimer-Based Active Targeting of Colon Cancer Cells
Dendrimer | Drug | Delivery Mode | Targeting Ligand | Remarks | Ref. |
---|---|---|---|---|---|
G4 PAMAM | Capcitabine | Passive | - |
| [95] |
G4 PAMAM | Piperlongumine | Passive | PEG |
| [98] |
Pegylated gold-coated G5 PAMAM | Curcumin | Active | MUC-1 aptamer |
| [100] |
PAMAM | Camptothecin | Active | Anti-nucleolin AS1411-aptamer |
| [101] |
G5 PLL | Irinotecan | Active | Polyoxazoline |
| [102] |
G4 PAMAM | Oxaliplatin | Active | Folic acid |
| [103] |
6. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CC | Colon cancer |
NP | Nanoparticle |
FDA | Food and Drug Administration |
5-FU | 5-fluorouracil |
CPB | Capecitabine |
IR | Irinotecan |
OX | Oxaliplatin |
CUR | Curcumin |
PPL | Piperlongumine |
RES | Resveratrol |
QCT | Quercetin |
GA | Gallic acid |
WHO | World Health Organization |
ROS | Reactive oxygen species |
COX-2 | Cycloxygenase-2 |
pAKT | Phosphorylated Ak strain transforming |
pAMPK | p-AMP protein kinase |
DR5 | Death receptor 5 |
DISC | Death-inducing signaling complex |
Bid | BH3 Interacting Domain Death Agonist |
STAT | Signal transducer and activator of transcription |
EGFR | epidermal growth factor receptor |
NF-κB | Nuclear factor kappa B |
TNF | Tumor necrosis factor |
IF- κB | Inhibitor of nuclear factor kappa B |
miRNA | Micro RNA |
MMP | Matrix metalloproteinase |
SMAD4 | Suppressor of Mothers against Decapentaplegic family member 4 |
BCL-2 | B-cell lymphoma 2 |
JNK | Jun N-terminal kinase |
ERK | Extracellular signal-regulated kinase |
FN-1 | Fibronectin-1 |
CDH-2 | Cadherin-2 |
CTNNB-1 | Catenin beta-1 |
TWIST-1 | Twist-related protein 1 |
AKT | Serine-threonine kinase |
BAD | BCL2-associated agonist of cell death |
FLICE | FADD-like IL-1β-converting enzyme)-inhibitory protein |
cFLIP | cellular FLICE inhibitory protein |
cIAP | cellular inhibitor of apoptosis proteins |
Bax | BCL2 associated X |
SOD | Superoxide dismutase |
CAT | Catalase |
GPX | Glutathione peroxidase |
Sirt1 | Sirtuin (silent mating type information regulation 2 homolog) 1 |
Nrf2 | Nuclear factor erythroid 2–related factor 2 |
MAPK | Mitogen-activated protein kinase |
iNOS | Isozyme of nitric oxide synthase |
JAK | Janus kinase |
P13K | Phosphatidylinositol-3 kinase |
Wnt | Wingless-related integration site |
PKB | Protein kinase B |
ncRNA | Non-coding RNAs |
PARP | Poly (ADP-ribose) polymerase |
p-SRC | Proto-oncogene tyrosine-protein kinase |
TS | Thymidylate synthase |
d-UMP | Deoxyuridine monophosphate |
d-TMP | Deoxythymidine monophosphate |
CH2THF | 5,10-methylenetetrahydrofolate |
Fd-UMP | Fluorodeoxyuridine monophosphate |
DFU | Dihydrofluorouracil |
DPD | Dihydropyrimidine dehydrogenase |
dTTP | Deoxythymidine triphosphate |
dATP | Deoxyadenosine triphosphate |
dGTP | Deoxyguanosine triphosphate |
dCTP | Deoxycytidine triphosphate |
dUTP | Deoxyuridine triphosphate |
FUTP | 5-fluorouridine triphosphate |
UDG | Uracil-DNA-glycosy-lase |
rrp6 | Ribosomal RNA processing |
rRNA | ribosomal RNA |
U2 snRNA | U2 spliceosomal RNA |
tRNA | Transfer RNA |
cbf5p | Putative pseudouridine synthase |
TRAMP | Trf4/Air2/Mtr4p polyadenylation |
DHFU | Dihydrofluorouracil |
UTP | Fluorouridine triphosphate |
Topo I | Topoisomerase I |
CPA | Camptothecin |
mCRC | Metastatic colorectal cancer |
FOLFOX | Fluorouracil/leucovorin calcium/oxaliplatin folinic acid |
DACH | Diaminocyclohexane |
NER | Nucleotide excision repair |
TME | Total mesorectal excision |
TGF-1 | Transforming growth factor-1 |
EMT | Epithelial-to-mesenchymal transition |
PAMAM | Polyamidoamine |
PPI | Poly(propyleneimine) |
PLL | Poly(L-lysine) |
CNDP | Critical Nanoscale Design Parameters |
PPO | Polypropylene |
RS | Reticuloendothelial system |
HA | Hyaluronic acid |
TPT | Topotecan Hydrochloride |
PTX | Paclitaxel |
hyd | Hydrazone |
GBA | Gambogic acid |
EPR | Enhanced Permeability and Retention |
TAA | Tumor-associated antigen |
mAB | Monoclonal antibody |
VEGF | Vascular endothelial growth factor |
PD1 | Programmed cell death protein 1 |
MMR | Mismatch repair |
MUC | Mucin |
References
- Jain, P.; Patel, K.; Jangid, A.K.; Guleria, A.; Patel, S.; Pooja, D.; Kulhari, H. Modulating the Delivery of 5-Fluorouracil to Human Colon Cancer Cells Using Multifunctional Arginine-Coated Manganese Oxide Nanocuboids with MRI Properties. ACS Appl. Bio Mater. 2020, 3, 6852–6864. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Chourasia, M.K.; Jain, S.K. Pharmaceutical approaches to colon targeted drug delivery systems. J. Pharm. Pharm. Sci. 2003, 6, 33–66. [Google Scholar] [PubMed]
- Kimura, A.; Arai, T.; Ueno, M.; Oyama, K.; Yu, H.; Yamashita, S.; Otome, Y.; Taguchi, M. Synthesis of Small Peptide Nanogels Using Radiation Crosslinking as a Platform for Nano-Imaging Agents for Pancreatic Cancer Diagnosis. Pharmaceutics 2022, 14, 2400. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, T.; Haidar, Z.S.; Tran, T.H.; Choi, J.Y.; Jeong, J.H.; Shin, B.S.; Choi, H.G.; Yong, C.S.; Kim, J.O. Layer-by-layer assembly of liposomal nanoparticles with PEGylated polyelectrolytes enhances systemic delivery of multiple anticancer drugs. Acta Biomater. 2014, 10, 5116–5127. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Ma, G.; Kampf, N.; Yuan, Z.; Chen, S. Development of Long-Circulating Zwitterionic Cross-Linked Micelles for Active-Targeted Drug Delivery. Biomacromolecules 2016, 17, 2010–2018. [Google Scholar] [CrossRef]
- Gupta, N.; Rai, D.; Jangid, A.; Kulhari, D.; Kulhari, H. Nanomaterials-Based SiRNA Delivery: Routes of Administration, Hurdles and Role of Nanocarriers. In Nanotechnology in Modern Animal Biotechnology; Springer: Singapore, 2019; pp. 67–114. ISBN 978-981-13-6003-9. [Google Scholar]
- Pavitra, E.; Dariya, B.; Srivani, G.; Kang, S.M.; Alam, A.; Sudhir, P.R.; Kamal, M.A.; Raju, G.S.R.; Han, Y.K.; Lakkakula, B.V.K.S.; et al. Engineered nanoparticles for imaging and drug delivery in colorectal cancer. Semin. Cancer Biol. 2021, 69, 293–306. [Google Scholar] [CrossRef]
- Zeng, F.; Zimmerman, S.C. Dendrimers in Supramolecular Chemistry: From Molecular Recognition to Self-Assembly. Chem. Rev. 1997, 97, 1681–1712. [Google Scholar] [CrossRef]
- Svenson, S.; Tomalia, D.A. Dendrimers in Biomedical Applications—Reflections on the Field. Adv. Drug Deliv. Rev. 2005, 57, 2106–2129. [Google Scholar] [CrossRef]
- Jang, W.-D.; Kamruzzaman, M.; Selim, K.; Lee, C.-H.; Kang, I.-K. Bioinspired Application of Dendrimers: From Bio-Mimicry to Biomedical Applications. Prog. Polym. Sci. 2009, 34, 1–23. [Google Scholar] [CrossRef]
- Wiener, E.C.; Auteri, F.P.; Chen, J.W.; Brechbiel, M.W.; Gansow, O.A.; Schneider, D.S.; Belford, R.L.; Clarkson, R.B.; Lauterbur, P.C. Molecular Dynamics of Ion−Chelate Complexes Attached to Dendrimers. J. Am. Chem. Soc. 1996, 118, 7774–7782. [Google Scholar] [CrossRef]
- Kobayashi, H.; Kawamoto, S.; Jo, S.-K.; Bryant, H.L.; Brechbiel, M.W.; Star, R.A. Macromolecular MRI Contrast Agents with Small Dendrimers: Pharmacokinetic Differences between Sizes and Cores. Bioconjug. Chem. 2003, 14, 388–394. [Google Scholar] [CrossRef]
- Purohit, G.; Sakthivel, T.; Florence, A.T. Interaction of Cationic Partial Dendrimers with Charged and Neutral Liposomes. Int. J. Pharm. 2001, 214, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Xu, T. Dendrimers as Potential Drug Carriers. Part I. Solubilization of Non-Steroidal Anti-Inflammatory Drugs in the Presence of Polyamidoamine Dendrimers. Eur. J. Med. Chem. 2005, 40, 1188–1192. [Google Scholar] [CrossRef]
- Rai, D.; Kulhari, D.; Kulhari, H. Dendrimers in Gene Delivery. In Pharmaceutical Applications of Dendrimers; Elsevier: Amsterdam, The Netherlands, 2020; pp. 211–231. ISBN 9780128145272. [Google Scholar]
- Rai, D.; Kulhari, D.; Kulhari, H. Functionalisation of Dendrimers. In Dendrimers in Nanomedicine, 1st ed.; CRC Press: Boca Raton, FL, USA, 2021; pp. 123–145. ISBN 9781003029915. [Google Scholar] [CrossRef]
- Huang, X.; Yang, Z.; Xie, Q.; Zhang, Z.; Zhang, H.; Ma, J. Natural products for treating colorectal cancer: A mechanistic review. Biomed. Pharmacother. 2019, 117, 109142. [Google Scholar] [CrossRef]
- Edwards, M.S.; Chadda, S.D.; Zhao, Z.; Barber, B.L.; Sykes, D.P. A systematic review of treatment guidelines for metastatic colorectal cancer. Color. Dis. 2012, 14, e31–e47. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.S.; Kader, M.A.; Goh, K.W.; Islam, M.; Khan, M.S.; Harun-Ar Rashid, M.; Ooi, D.J.; Melo Coutinho, H.D.; Al-Worafi, Y.M.; Moshawih, S.; et al. Herb and Spices in Colorectal Cancer Prevention and Treatment: A Narrative Review. Front. Pharmacol. 2022, 13, 865801. [Google Scholar] [CrossRef] [PubMed]
- Aiello, P.; Sharghi, M.; Mansourkhani, S.M.; Ardekan, A.P.; Jouybari, L.; Daraei, N.; Peiro, K.; Mohamadian, S.; Rezaei, M.; Heidari, M.; et al. Medicinal Plants in the Prevention and Treatment of Colon Cancer. Oxid. Med. Cell. Longev. 2019, 4, 2075614. [Google Scholar] [CrossRef] [Green Version]
- Jakubczyk, K.; Drużga, A.; Katarzyna, J.; Skonieczna-Żydecka, K. Antioxidant Potential of Curcumin—A Meta-Analysis of Randomized Clinical Trials. Antioxidants 2020, 9, 1092. [Google Scholar] [CrossRef]
- Pricci, M.; Girardi, B.; Giorgio, F.; Losurdo, G.; Ierardi, E.; Di Leo, A. Curcumin and Colorectal Cancer: From Basic to Clinical Evidences. Int. J. Mol. Sci. 2020, 21, 2364. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lu, J.; Jiang, B.; Guo, J. The roles of curcumin in regulating the tumor immunosuppressive microenvironment. Oncol. Lett. 2020, 19, 3059–3070. [Google Scholar] [CrossRef] [Green Version]
- Bachmeier, B.E.; Killian, P.H.; Melchart, D. The Role of Curcumin in Prevention and Management of Metastatic Disease. Int. J. Mol. Sci. 2018, 19, 1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Agnihotri, N. Piperlongumine, a Piper Alkaloid Targets Ras/PI3K/Akt/MTOR Signaling Axis to Inhibit Tumor Cell Growth and Proliferation in DMH/DSS Induced Experimental Colon Cancer. Biomed. Pharmacother. 2019, 109, 1462–1477. [Google Scholar] [CrossRef] [PubMed]
- Rawat, L.; Hegde, H.; Hoti, S.L.; Nayak, V. Piperlongumine Induces ROS Mediated Cell Death and Synergizes Paclitaxel in Human Intestinal Cancer Cells. Biomed. Pharmacother. 2020, 128, 110243. [Google Scholar] [CrossRef] [PubMed]
- Kung, F.P.; Lim, Y.P.; Chao, W.Y.; Zhang, Y.S.; Yu, H.I.; Tai, T.S.; Lu, C.H.; Chen, S.H.; Li, Y.Z.; Zhao, P.W.; et al. Piperlongumine, a Potent Anticancer Phytotherapeutic, Induces Cell Cycle Arrest and Apoptosis In Vitro and In Vivo through the ROS/Akt Pathway in Human Thyroid Cancer Cells. Cancers 2021, 13, 4266. [Google Scholar] [CrossRef] [PubMed]
- Parama, D.; Rana, V.; Girisa, S.; Verma, E.; Daimary, U.D.; Thakur, K.K.; Kumar, A.; Kunnumakkara, A.B. The Promising Potential of Piperlongumine as an Emerging Therapeutics for Cancer. Explor. Target Antitumor. Ther. 2021, 2, 323–354. [Google Scholar] [CrossRef]
- Ahmadi, R.; Ebrahimzadeh, M.A. Resveratrol—A comprehensive review of recent advances in anticancer drug design and development. Eur. J. Med. Chem. 2020, 200, 112356. [Google Scholar] [CrossRef] [PubMed]
- Elshaer, M.; Chen, Y.; Wang, X.J.; Tang, X. Resveratrol: An Overview of Its Anti-Cancer Mechanisms. Life Sci. 2018, 207, 340–349. [Google Scholar] [CrossRef]
- Varoni, E.M.; Lo Faro, A.F.; Sharifi-Rad, J.; Iriti, M. Anticancer Molecular Mechanisms of Resveratrol. Front. Nutr. 2016, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Lastra, C.A.; Villegas, I. Resveratrol as an antioxidant and pro-oxidant agent: Mechanisms and clinical implications. Biochem Soc Trans. 2007, 35, 1156–1160. [Google Scholar] [CrossRef] [Green Version]
- Honari, M.; Shafabakhsh, R.; Reiter, R.J.; Mirzaei, H.; Asemi, Z. Resveratrol Is a Promising Agent for Colorectal Cancer Prevention and Treatment: Focus on Molecular Mechanisms. Cancer Cell Int. 2019, 19, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madencioğlu, S.; Becer, E.; Kabadayı, H.; Vatansever, H.S.; Yücecan, S. Resveratrol Triggers Apoptosis In Colon Cancer Cells Rather Than Senescence. Prog. Nutr. 2021, 23, e2021018. [Google Scholar] [CrossRef]
- Zhang, X.A.; Zhang, S.; Yin, Q.; Zhang, J. Quercetin induces human colon cancer cells apoptosis by inhibiting the nuclear factor-kappa B Pathway. Pharmacogn. Mag. 2015, 11, 404–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asgharian, P.; Tazekand, A.P.; Hosseini, K.; Forouhandeh, H.; Ghasemnejad, T.; Ranjbar, M.; Hasan, M.; Kumar, M.; Beirami, S.M.; Tarhriz, V.; et al. Potential Mechanisms of Quercetin in Cancer Prevention: Focus on Cellular and Molecular Targets. Cancer Cell Int. 2022, 22, 257. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kim, S.-K.; Kim, B.-S.; Lee, S.-H.; Park, Y.-S.; Park, B.-K.; Kim, S.-J.; Kim, J.; Choi, C.; Kim, J.-S.; et al. Apoptotic Effect of Quercetin on HT-29 Colon Cancer Cells via the AMPK Signaling Pathway. J. Agric. Food Chem. 2010, 58, 8643–8650. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.P.; Jaganathan, S.K.; Mandal, M.; Supriyanto, E.; Muhamad, I.I. Gallic acid induced apoptotic events in HCT-15 colon cancer cells. World J. Gastroenterol. 2016, 22, 3952–3961. [Google Scholar] [CrossRef]
- Lin, X.; Wang, G.; Liu, P.; Han, L.; Wang, T.; Chen, K.; Gao, Y. Gallic acid suppresses colon cancer proliferation by inhibiting SRC and EGFR phosphorylation. Exp. Ther. Med. 2021, 21, 638. [Google Scholar] [CrossRef]
- Darroudi, M.; Gholami, M.; Rezayi, M.; Khazaei, M. An Overview and Bibliometric Analysis on the Colorectal Cancer Therapy by Magnetic Functionalized Nanoparticles for the Responsive and Targeted Drug Delivery. J. Nanobiotechnol. 2021, 19, 399. [Google Scholar] [CrossRef]
- Zhang, N.; Yin, Y.; Xu, S.J.; Chen, W.S. 5-Fluorouracil: Mechanisms of resistance and reversal strategies. Molecules 2008, 13, 1551–1569. [Google Scholar] [CrossRef] [Green Version]
- Noordhuis, P.; Holwerda, U.; Van der Wilt, C.L.; Van Groeningen, C.J.; Smid, K.; Meijer, S.; Pinedo, H.M.; Peters, G.J. 5-Fluorouracil incorporation into RNA and DNA in relation to thymidylate synthase inhibition of human colorectal cancers. Ann. Oncol. 2004, 7, 1025–1032. [Google Scholar] [CrossRef]
- He, Y.F.; Wei, W.; Zhang, X.; Li, Y.H.; Li, S.; Wang, F.H.; Lin, X.B.; Li, Z.M.; Zhang, D.S.; Huang, H.Q.; et al. Analysis of the DPYD gene implicated in 5-fluorouracil catabolism in Chinese cancer patients. J. Clin. Pharm. Ther. 2008, 33, 307–314. [Google Scholar] [CrossRef]
- Houghton, J.A.; Tillman, D.M.; Harwood, F.G. Ratio of 2′-deoxyadenosine-5′-triphosphate/thymidine-5′-triphosphate influences the commitment of human colon carcinoma cells to thymineless death. Clin. Cancer Res. 1995, 1, 723–730. [Google Scholar]
- Miura, K.; Kinouchi, M.; Ishida, K.; Fujibuchi, W.; Naitoh, T.; Ogawa, H.; Ando, T.; Yazaki, N.; Watanabe, K.; Haneda, S.; et al. 5-fu metabolism in cancer and orally-administrable 5-fu drugs. Cancers 2010, 2, 1717–1730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuelsson, T. Interactions of transfer RNA pseudouridine synthases with RNAs substituted with fluorouracil. Nucleic Acids Res. 1991, 19, 6139–6144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirsch, B.R.; Zafar, S.Y. Capecitabine in the management of colorectal cancer. Cancer Manag. Res. 2011, 3, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Escalante, P.I.; Quiñones, L.A.; Contreras, H.R. Epithelial-Mesenchymal Transition and MicroRNAs in Colorectal Cancer Chemoresistance to FOLFOX. Pharmaceutics 2021, 13, 75. [Google Scholar] [CrossRef]
- Van der Jeught, K.; Xu, H.-C.; Li, Y.-J.; Lu, X.-B.; Ji, G. Drug Resistance and New Therapies in Colorectal Cancer. World J. Gastroenterol. 2018, 24, 3834–3848. [Google Scholar] [CrossRef] [PubMed]
- Tunki, L.; Kulhari, H.; Bhargava, S.K.; Pooja, D. 4—Pharmacokinetic Considerations in Design of Dendrimer-Based Nanomedicines. In Pharmaceutical Applications of Dendrimers; Chauhan, A., Kulhari, H., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 93–106. ISBN 978-0-12-814527-2. [Google Scholar]
- Xu, Y.; Villalona-Calero, M.A. Irinotecan: Mechanisms of Tumor Resistance and Novel Strategies for Modulating Its Activity. Ann. Oncol. 2002, 13, 1841–1851. [Google Scholar] [CrossRef]
- Fujita, K.; Kubota, Y.; Ishida, H.; Sasaki, Y. Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer. World J. Gastroenterol. 2015, 21, 12234–12248. [Google Scholar] [CrossRef]
- Scheetz, L.M.; Yu, M.; Li, D.; Castro, M.G.; Moon, J.J.; Schwendeman, A. Synthetic HDL Nanoparticles Delivering Docetaxel and CpG for Chemoimmunotherapy of Colon Adenocarcinoma. Int. J. Mol. Sci. 2020, 21, 1777. [Google Scholar] [CrossRef] [Green Version]
- Buhleier, E.; Wehner, W.D.; Voegtle, F. ‘Cascade’-and ‘nonskid-chain-like’ syntheses of molecular cavity topologies. Synthesis 1978, 1978, 155–158. [Google Scholar] [CrossRef]
- Kesharwani, P.; Jain, K.; Jain, N.K. Dendrimer as Nanocarrier for Drug Delivery. Prog. Polym. Sci. 2014, 39, 268–307. [Google Scholar] [CrossRef]
- Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett. 2014, 9, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majoros, I.J.; Myc, A.; Thomas, T.; Mehta, C.B.; Baker, J.R. PAMAM Dendrimer-Based Multifunctional Conjugate for Cancer Therapy: Synthesis, Characterization, and Functionality. Biomacromolecules 2006, 7, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Pooja, D.; Sistla, R.; Kulhari, H. Chapter 7—Dendrimer-Drug Conjugates: Synthesis Strategies, Stability and Application in Anticancer Drug Delivery. In Design of Nanostructures for Theranostics Applications; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2018; pp. 277–303. ISBN 978-0-12-813669-0. [Google Scholar]
- Morgenroth, F.; Reuther, E.; Müllen, K. Polyphenylene Dendrimers: From Three-Dimensional to Two-Dimensional Structures. Angew. Chem. Int. Ed. 1997, 36, 631–634. [Google Scholar] [CrossRef]
- Kulhari, H.; Pooja, D.; Singh, M.K.; Chauhan, A.S. Optimization of carboxylate-terminated poly(amidoamine) dendrimer-mediated cisplatin formulation. Drug Dev. Ind. Pharm. 2015, 41, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Saovapakhiran, A.; D’Emanuele, A.; Attwood, D.; Penny, J. Surface Modification of PAMAM Dendrimers Modulates the Mechanism of Cellular Internalization. Bioconjug. Chem. 2009, 20, 693–701. [Google Scholar] [CrossRef]
- Devarakonda, B.; Hill, R.A.; de Villiers, M.M. The Effect of PAMAM Dendrimer Generation Size and Surface Functional Group on the Aqueous Solubility of Nifedipine. Int. J. Pharm. 2004, 284, 133–140. [Google Scholar] [CrossRef]
- Fischer, M.; Vögtle, F. Dendrimers: From Design to Application—A Progress Report. Angew. Chem. Int. Ed. 1999, 38, 884–905. [Google Scholar] [CrossRef]
- Parrott, M.C.; Benhabbour, S.R.; Saab, C.; Lemon, J.A.; Parker, S.; Valliant, J.F.; Adronov, A. Synthesis, Radiolabeling, and Bio-Imaging of High-Generation Polyester Dendrimers. J. Am. Chem. Soc. 2009, 131, 2906–2916. [Google Scholar] [CrossRef]
- Kulhari, H.; Pooja, D.; Prajapati, S.K.; Chauhan, A.S. Performance evaluation of PAMAM dendrimer based simvastatin formulations. Int. J. Pharm. 2011, 405, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Gupta, U.; Agashe, H.B.; Asthana, A.; Jain, N.K. Dendrimers: Novel Polymeric Nanoarchitectures for Solubility Enhancement. Biomacromolecules 2006, 7, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.S.; Jain, N.K.; Diwan, P.V.; Khopade, A.J. Solubility Enhancement of Indomethacin with Poly(Amidoamine) Dendrimers and Targeting to Inflammatory Regions of Arthritic Rats. J. Drug Target 2004, 12, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Bhadra, D.; Bhadra, S.; Jain, N. PEGylated Peptide-Based Dendritic Nanoparticulate Systems for Delivery of Artemether. J. Drug Deliv. Sci. Technol. 2005, 15, 65–73. [Google Scholar] [CrossRef]
- Kolhe, P.; Khandare, J.; Pillai, O.; Kannan, S.; Lieh-Lai, M.; Kannan, R.M. Preparation, Cellular Transport, and Activity of Polyamidoamine-Based Dendritic Nanodevices with a High Drug Payload. Biomaterials 2006, 27, 660–669. [Google Scholar] [CrossRef]
- Kulhari, H.; Kulhari, D.P.; Prajapati, S.K.; Chauhan, A.S. Pharmacokinetic and pharmacodynamic studies of poly(amidoamine) dendrimer based simvastatin oral formulations for the treatment of hypercholesterolemia. Mol. Pharm. 2013, 10, 2528–2533. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.T.; Nakanishi, Y.; Kroll, D.J.; Griset, A.P.; Carnahan, M.A.; Wathier, M.; Oberlies, N.H.; Manikumar, G.; Wani, M.C.; Grinstaff, M.W. Dendrimer-encapsulated camptothecins: Increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Res. 2006, 66, 11913–11921. [Google Scholar] [CrossRef] [Green Version]
- Teow, H.M.; Zhou, Z.; Najlah, M.; Yusof, S.R.; Abbott, N.J.; D’Emanuele, A. Delivery of Paclitaxel across Cellular Barriers Using a Dendrimer-Based Nanocarrier. Int. J. Pharm. 2013, 441, 701–711. [Google Scholar] [CrossRef]
- Kitchens, K.M.; El-Sayed, M.E.H.; Ghandehari, H. Transepithelial and Endothelial Transport of Poly(Amidoamine) Dendrimers. Adv. Drug Deliv. Rev. 2005, 57, 2163–2176. [Google Scholar] [CrossRef]
- Gillies, E.R.; Dy, E.; Fréchet, J.M.J.; Szoka, F.C. Biological Evaluation of Polyester Dendrimer: Poly(Ethylene Oxide) “Bow-Tie” Hybrids with Tunable Molecular Weight and Architecture. Mol. Pharm. 2005, 2, 129–138. [Google Scholar] [CrossRef]
- Van der Poll, D.G.; Kieler-Ferguson, H.M.; Floyd, W.C.; Guillaudeu, S.J.; Jerger, K.; Szoka, F.C.; Fréchet, J.M. Design, Synthesis, and Biological Evaluation of a Robust, Biodegradable Dendrimer. Bioconjug. Chem. 2010, 21, 764–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parekh, H.S. The advance of dendrimers—A versatile targeting platform for gene/drug delivery. Curr. Pharm. Des. 2007, 13, 2837–2850. [Google Scholar] [CrossRef]
- Luong, D.; Kesharwani, P.; Deshmukh, R.; Mohd Amin, M.C.I.; Gupta, U.; Greish, K.; Iyer, A.K. PEGylated PAMAM Dendrimers: Enhancing Efficacy and Mitigating Toxicity for Effective Anticancer Drug and Gene Delivery. Acta Biomater. 2016, 43, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Fan, Y.; He, H.; Wu, Z. Hyaluronic Acid-Grafted Polyamidoamine Dendrimers Enable Long Circulation and Active Tumor Targeting Simultaneously. Carbohydr. Polym. 2015, 126, 231–239. [Google Scholar] [CrossRef]
- Chaudhari, H.S.; Popat, R.R.; Adhao, V.S.; Shrikhande, V.N. Dendrimers: Novel Carriers for Drug Delivery. J. Appl. Pharm. Res. 2016, 4, 1–19. [Google Scholar]
- Liu, J.; Huang, Y.; Kumar, A.; Tan, A.; Jin, S.; Mozhi, A.; Liang, X.-J. PH-Sensitive Nano-Systems for Drug Delivery in Cancer Therapy. Biotechnol. Adv. 2013, 32, 693–710. [Google Scholar] [CrossRef] [PubMed]
- Kulhari, H.; Pooja, D.; Shrivastava, S.; Kuncha, M.; Naidu, V.G.M.; Bansal, V.; Sistla, R.; Adams, D.J. Trastuzumab-Grafted PAMAM Dendrimers for the Selective Delivery of Anticancer Drugs to HER2-Positive Breast Cancer. Sci. Rep. 2016, 6, 23179. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Wang, J.; Chen, H.; Shen, W.; Sinko, P.J.; Dong, H.; Zhao, R.; Lu, Y.; Zhu, Y.; Jia, L. Multivalent Conjugation of Antibody to Dendrimers for the Enhanced Capture and Regulation on Colon Cancer Cells. Sci. Rep. 2015, 5, 9445. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Wang, X.; Shi, C.; Guo, D.; Xu, G.; Wang, L.; Bodman, A.; Luo, J. Fine-Tuning Vitamin E-Containing Telodendrimers for Efficient Delivery of Gambogic Acid in Colon Cancer Treatment. Mol. Pharm. 2015, 12, 1216–1229. [Google Scholar] [CrossRef] [PubMed]
- Pooja, D.; Srinivasa Reddy, T.; Kulhari, H.; Kadari, A.; Adams, D.J.; Bansal, V.; Sistla, R. N-Acetyl-d-Glucosamine-Conjugated PAMAM Dendrimers as Dual Receptor-Targeting Nanocarriers for Anticancer Drug Delivery. Eur. J. Pharm. Biopharm. 2020, 154, 377–386. [Google Scholar] [CrossRef]
- Singh, M.K.; Pooja, D.; Kulhari, H.; Jain, S.K.; Sistla, R.; Chauhan, A.S. Poly(amidoamine) dendrimer-mediated hybrid formulation for combination therapy of ramipril and hydrochlorothiazide. Eur. J. Pharm. Sci. 2017, 96, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Pooja, D.; Kulhari, H.; Singh, M.K.; Mukherjee, S.; Rachamalla, S.S.; Sistla, R. Dendrimer-TPGS mixed micelles for enhanced solubility and cellular toxicity of taxanes. Colloids Surf. B Biointerfaces 2014, 121, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Tomalia, D.; Baker, H.; Dewald, J.R.; MJ, H.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A New Class of Polymers: Starburst-Dendritic Macromolecules. Polym. J. 1985, 17, 117–132. [Google Scholar] [CrossRef] [Green Version]
- Pishavar, E.; Ramezani, M.; Hashemi, M. Co-Delivery of Doxorubicin and TRAIL Plasmid by Modified PAMAM Dendrimer in Colon Cancer Cells, in Vitro and in Vivo Evaluation. Drug Dev. Ind. Pharm. 2019, 45, 1931–1939. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Takashima, M.; Yuba, E.; Harada, A.; Kono, K. PEGylated PAMAM Dendrimer–Doxorubicin Conjugate-Hybridized Gold Nanorod for Combined Photothermal-Chemotherapy. Biomaterials 2014, 35, 6576–6584. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H.; Nakamura, H.; Fang, J. The EPR Effect for Macromolecular Drug Delivery to Solid Tumors: Improvement of Tumor Uptake, Lowering of Systemic Toxicity, and Distinct Tumor Imaging in Vivo. Adv. Drug Deliv. Rev. 2013, 65, 71–79. [Google Scholar] [CrossRef]
- Iyer, A.K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 2006, 11, 812–818. [Google Scholar] [CrossRef]
- Bazak, R.; Houri, M.; Achy, S.E.; Hussein, W.; Refaat, T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol. Clin. Oncol. 2014, 2, 904–908. [Google Scholar] [CrossRef] [Green Version]
- Kesharwani, P.; Iyer, A.K. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov. Today 2015, 20, 536–547. [Google Scholar] [CrossRef] [Green Version]
- Nabavizadeh, F.; Fanaei, H.; Imani, A.; Vahedian, J.; Asadi Amoli, F.; Ghorbi, J.; Sohanaki, H.; Mohammadi, S.M.; Golchoobian, R. Evaluation of Nanocarrier Targeted Drug Delivery of Capecitabine-PAMAM Dendrimer Complex in a Mice Colorectal Cancer Model. Acta Med. Iran. 2016, 54, 485–493. [Google Scholar]
- Sharma, A.K.; Gothwal, A.; Kesharwani, P.; Alsaab, H.; Iyer, A.K.; Gupta, U. Dendrimer Nanoarchitectures for Cancer Diagnosis and Anticancer Drug Delivery. Drug Discov. Today 2017, 22, 314–326. [Google Scholar] [CrossRef] [PubMed]
- Sanz, L.; Ibáñez-Pérez, R.; Guerrero-Ochoa, P.; Lacadena, J.; Anel, A. Antibody-Based Immunotoxins for Colorectal Cancer Therapy. Biomedicines 2021, 9, 1729. [Google Scholar] [CrossRef] [PubMed]
- Jangid, A.; Patel, K.; Joshi, U.; Patel, S.; Kulhari, D.; Saharan, V.; Kulhari, H. PEGylated G4 Dendrimers as a Promising Nanocarrier for Piperlongumine Delivery: Synthesis, Characterization, and Anticancer Activity. Eur. Polym. J. 2022, 179, 111547. [Google Scholar] [CrossRef]
- Wong, K.E.; Ngai, S.C.; Chan, K.G.; Lee, L.H.; Goh, B.H.; Chuah, L.H. Curcumin Nanoformulations for Colorectal Cancer: A Review. Front. Pharmacol. 2019, 10, 152. [Google Scholar] [CrossRef] [PubMed]
- Alibolandi, M.; Hoseini, F.; Mohammadi, M.; Ramezani, P.; Einafshar, E.; Taghdisi, S.M.; Ramezani, M.; Abnous, K. Curcumin-Entrapped MUC-1 Aptamer Targeted Dendrimer-Gold Hybrid Nanostructure as a Theranostic System for Colon Adenocarcinoma. Int. J. Pharm. 2018, 549, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Alibolandi, M.; Taghdisi, S.M.; Ramezani, P.; Hosseini Shamili, F.; Farzad, S.A.; Abnous, K.; Ramezani, M. Smart AS1411-Aptamer Conjugated Pegylated PAMAM Dendrimer for the Superior Delivery of Camptothecin to Colon Adenocarcinoma in Vitro and in Vivo. Int. J. Pharm. 2017, 519, 352–364. [Google Scholar] [CrossRef] [PubMed]
- England, R.M.; Hare, J.I.; Barnes, J.; Wilson, J.; Smith, A.; Strittmatter, N.; Kemmitt, P.D.; Waring, M.J.; Barry, S.T.; Alexander, C.; et al. Tumour Regression and Improved Gastrointestinal Tolerability from Controlled Release of SN-38 from Novel Polyoxazoline-Modified Dendrimers. J. Control Release 2017, 247, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Castro, R.I.; Forero-Doria, O.; Guzmán, L. Perspectives of Dendrimer-Based Nanoparticles in Cancer Therapy. Acad. Bras. Cienc. 2018, 90, 2331–2346. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rai, D.B.; Medicherla, K.; Pooja, D.; Kulhari, H. Dendrimer-Mediated Delivery of Anticancer Drugs for Colon Cancer Treatment. Pharmaceutics 2023, 15, 801. https://doi.org/10.3390/pharmaceutics15030801
Rai DB, Medicherla K, Pooja D, Kulhari H. Dendrimer-Mediated Delivery of Anticancer Drugs for Colon Cancer Treatment. Pharmaceutics. 2023; 15(3):801. https://doi.org/10.3390/pharmaceutics15030801
Chicago/Turabian StyleRai, Divya Bharti, Kanakaraju Medicherla, Deep Pooja, and Hitesh Kulhari. 2023. "Dendrimer-Mediated Delivery of Anticancer Drugs for Colon Cancer Treatment" Pharmaceutics 15, no. 3: 801. https://doi.org/10.3390/pharmaceutics15030801
APA StyleRai, D. B., Medicherla, K., Pooja, D., & Kulhari, H. (2023). Dendrimer-Mediated Delivery of Anticancer Drugs for Colon Cancer Treatment. Pharmaceutics, 15(3), 801. https://doi.org/10.3390/pharmaceutics15030801