Application of Minimal Physiologically-Based Pharmacokinetic Model to Simulate Lung and Trachea Exposure of Pyronaridine and Artesunate in Hamsters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Pharmacokinetic Study
2.2.1. Animals
2.2.2. Study Design
2.2.3. LC-MS/MS Conditions
- Pyronaridine
- Artesunate and dihydroartemisinin
2.2.4. Sample Preparation
- Pyronaridine
- Artesunate and dihydroartemisinin
2.3. Development of Minimal Physiologically-Based Pharmacokinetic Models
- Minimal PBPK model for pyronaridine
- Parent-metabolite PBPK model for artesunate
- Parent-metabolite PBPK model for dihydroartemisinin
2.4. Parameters Estimation
3. Results
3.1. Pharmacokinetics, Lung, and Tissue Distribution of Pyronaridine and Artesunate
3.2. Development of Minimal Physiologically-Based Pharmacokinetic Models
3.3. Application of Minimal Physiologically-Based Pharmacokinetic Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chakraborty, C.; Sharma, A.R.; Bhattacharya, M.; Agoramoorthy, G.; Lee, S.-S. The drug repurposing for COVID-19 clinical trials provide very effective therapeutic combinations: Lessons learned from major clinical studies. Front. Pharmacol. 2021, 12, 2942. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.; Bento Cunha, R.; Vassilevskaia, T.; Viveiros, M.; Cunha, C. Drug Repurposing for COVID-19: A Review and a Novel Strategy to Identify New Targets and Potential Drug Candidates. Molecules 2022, 27, 2723. [Google Scholar] [CrossRef] [PubMed]
- Niranjan, V.; Setlur, A.S.; Karunakaran, C.; Uttarkar, A.; Kumar, K.M.; Skariyachan, S. Scope of repurposed drugs against the potential targets of the latest variants of SARS-CoV-2. Struct. Chem. 2022, 33, 1585–1608. [Google Scholar] [CrossRef]
- Eastman, R.T.; Fidock, D.A. Artemisinin-based combination therapies: A vital tool in efforts to eliminate malaria. Nat. Rev. Microbiol. 2009, 7, 864–874. [Google Scholar] [CrossRef] [Green Version]
- Puhl, A.C.; Fritch, E.J.; Lane, T.R.; Tse, L.V.; Yount, B.L.; Sacramento, C.Q.; Fintelman-Rodrigues, N.; Tavella, T.A.; Maranhão Costa, F.T.; Weston, S. Repurposing the ebola and marburg virus inhibitors tilorone, quinacrine, and pyronaridine: In vitro activity against SARS-CoV-2 and potential mechanisms. ACS Omega 2021, 6, 7454–7468. [Google Scholar] [CrossRef]
- Gendrot, M.; Andreani, J.; Boxberger, M.; Jardot, P.; Fonta, I.; Le Bideau, M.; Duflot, I.; Mosnier, J.; Rolland, C.; Bogreau, H. Antimalarial drugs inhibit the replication of SARS-CoV-2: An in vitro evaluation. Travel Med. Infect. Dis. 2020, 37, 101873. [Google Scholar] [CrossRef] [PubMed]
- Puhl, A.C.; Gomes, G.F.; Damasceno, S.; de Godoy, A.S.; Noske, G.D.; Nakamura, A.M.; Gawrijuk, V.O.; Fernandes, R.S.; Monakhova, N.; Riabova, O. Pyronaridine Protects Against SARS-CoV-2 in Mouse. ACS Infect. Dis. 2022, 8, 1147–1160. [Google Scholar] [CrossRef]
- Cao, R.; Hu, H.; Li, Y.; Wang, X.; Xu, M.; Liu, J.; Zhang, H.; Yan, Y.; Zhao, L.; Li, W. Anti-SARS-CoV-2 potential of artemisinins in vitro. ACS Infect. Dis. 2020, 6, 2524–2531. [Google Scholar] [CrossRef]
- Bae, J.-Y.; Lee, G.E.; Park, H.; Cho, J.; Kim, Y.-E.; Lee, J.-Y.; Ju, C.; Kim, W.-K.; Kim, J.I.; Park, M.-S. Pyronaridine and artesunate are potential antiviral drugs against COVID-19 and influenza. bioRxiv 2020. bioRxiv: 2028.225102. [Google Scholar]
- Calvo-Alvarez, E.; Dolci, M.; Perego, F.; Signorini, L.; Parapini, S.; D’Alessandro, S.; Denti, L.; Basilico, N.; Taramelli, D.; Ferrante, P. Antiparasitic Drugs against SARS-CoV-2: A Comprehensive Literature Survey. Microorganisms 2022, 10, 1284. [Google Scholar] [CrossRef]
- Jermain, B.; Hanafin, P.O.; Cao, Y.; Lifschitz, A.; Lanusse, C.; Rao, G.G. Development of a minimal physiologically-based pharmacokinetic model to simulate lung exposure in humans following oral administration of ivermectin for COVID-19 drug repurposing. J. Pharm. Sci. 2020, 109, 3574–3578. [Google Scholar] [CrossRef]
- Djokovic, N.; Ruzic, D.; Djikic, T.; Cvijic, S.; Ignjatovic, J.; Ibric, S.; Baralic, K.; Buha Djordjevic, A.; Curcic, M.; Djukic-Cosic, D. An Integrative in silico drug repurposing approach for identification of potential inhibitors of SARS-CoV-2 main protease. Mol. Inform. 2021, 40, 2000187. [Google Scholar] [CrossRef]
- Dodds, M.; Xiong, Y.; Mouksassi, S.; Kirkpatrick, C.M.; Hui, K.; Doyle, E.; Patel, K.; Cox, E.; Wesche, D.; Brown, F. Model-informed drug repurposing: A pharmacometric approach to novel pathogen preparedness, response and retrospection. Br. J. Clin. Pharmacol. 2021, 87, 3388–3397. [Google Scholar] [CrossRef] [PubMed]
- Pilla Reddy, V.; El-Khateeb, E.; Jo, H.; Giovino, N.; Lythgoe, E.; Sharma, S.; Tang, W.; Jamei, M.; Rastomi-Hodjegan, A. Pharmacokinetics under the COVID-19 storm. Br. J. Clin. Pharmacol. 2023, 89, 158–186. [Google Scholar] [CrossRef] [PubMed]
- Idkaidek, N.; Hawari, F.; Dodin, Y.; Obeidat, N. Development of a physiologically-based pharmacokinetic (PBPK) model of nebulized hydroxychloroquine for pulmonary delivery to COVID-19 patients. Drug Res. 2021, 71, 250–256. [Google Scholar] [CrossRef] [PubMed]
- EPA, U. Approaches for the application of physiologically based pharmacokinetic (PBPK) models and supporting data in risk assessment. J. Toxicol. Environ. Health Part B 2008, 11, 519–547. [Google Scholar]
- Committee for Medicinal Products for Human Use. Guideline on the Reporting of Physiologically Based Pharmacokinetic (PBPK) Modelling and Simulation; European Medicines Agency: London, UK, 2018. [Google Scholar]
- Reitz, R.; McDougal, J.; Himmelstein, M.; Nolan, R.; Schumann, A. Physiologically based pharmacokinetic modeling with methylchloroform: Implications for interspecies, high dose/low dose, and dose route extrapolations. Toxicol. Appl. Pharmacol. 1988, 95, 185–199. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; McNeill, J.H. To scale or not to scale: The principles of dose extrapolation. Br. J. Pharmacol. 2009, 157, 907–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.; Jusko, W.J. Applications of minimal physiologically-based pharmacokinetic models. J. Pharmacokinet. Pharmacodyn. 2012, 39, 711–723. [Google Scholar] [CrossRef]
- Lindegardh, N.; Hanpithakpong, W.; Kamanikom, B.; Pattayaso, J.; Singhasivanon, P.; White, N.J.; Day, N.P. Quantification of dihydroartemisinin, artesunate and artemisinin in human blood: Overcoming the technical challenge of protecting the peroxide bridge. Bioanalysis 2011, 3, 1613–1624. [Google Scholar] [CrossRef]
- House, E.; Pansky, B.; Raphaely, R.; Palmer, J.; Jacobs, M. Blood volume, total protein and total cholesterol in normal and diabetic hamsters. Anat. Rec. 1962, 144, 25–30. [Google Scholar] [CrossRef]
- Gulati, O.; Ponard, G. Cardiac output and regional blood flow studies in golden hamsters. Experientia 1980, 36, 984–985. [Google Scholar] [CrossRef]
- Boger, E.; Evans, N.; Chappell, M.; Lundqvist, A.; Ewing, P.; Wigenborg, A.; Fridén, M. Systems pharmacology approach for prediction of pulmonary and systemic pharmacokinetics and receptor occupancy of inhaled drugs. CPT Pharmacomet. Syst. Pharmacol. 2016, 5, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.; Van Landingham, C.; Crowell, S.; Gentry, R.; Kaden, D.; Fiebelkorn, S.; Loccisano, A.; Clewell, H. A preliminary regional PBPK model of lung metabolism for improving species dependent descriptions of 1,3-butadiene and its metabolites. Chem.-Biol. Interact. 2015, 238, 102–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, R.P.; Delp, M.D.; Lindstedt, S.L.; Rhomberg, L.R.; Beliles, R.P. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol. Ind. Health 1997, 13, 407–484. [Google Scholar] [CrossRef]
- Kim, S.-J.; Choi, E.-J.; Choi, G.-W.; Lee, Y.-B.; Cho, H.-Y. Exploring sex differences in human health risk assessment for PFNA and PFDA using a PBPK model. Arch. Toxicol. 2019, 93, 311–330. [Google Scholar] [CrossRef] [PubMed]
- Loccisano, A.E.; Longnecker, M.P.; Campbell, J.L., Jr.; Andersen, M.E.; Clewell, H.J., III. Development of PBPK models for PFOA and PFOS for human pregnancy and lactation life stages. J. Toxicol. Environ. Health Part A 2013, 76, 25–57. [Google Scholar] [CrossRef] [PubMed]
- Allen, B.C.; Covington, T.R.; Clewell, H.J. Investigation of the impact of pharmacokinetic variability and uncertainty on risks predicted with a pharmacokinetic model for chloroform. Toxicology 1996, 111, 289–303. [Google Scholar] [CrossRef] [PubMed]
- Grandoni, S.; Cesari, N.; Brogin, G.; Puccini, P.; Magni, P. Building in-house PBPK modelling tools for oral drug administration from literature information. Admet Dmpk 2019, 7, 4–21. [Google Scholar] [CrossRef]
- Mayumi, K.; Ohnishi, S.; Hasegawa, H. Successful prediction of human pharmacokinetics by improving calculation processes of physiologically based pharmacokinetic approach. J. Pharm. Sci. 2019, 108, 2718–2727. [Google Scholar] [CrossRef]
- Maharaj, A.R.; Wu, H.; Hornik, C.P.; Arrieta, A.; James, L.; Bhatt-Mehta, V.; Bradley, J.; Muller, W.J.; Al-Uzri, A.; Downes, K.J. Use of normalized prediction distribution errors for assessing population physiologically-based pharmacokinetic model adequacy. J. Pharmacokinet. Pharmacodyn. 2020, 47, 199–218. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.A. Evaluation of a generic physiologically based pharmacokinetic model for lineshape analysis. Clin. Pharmacokinet. 2008, 47, 261–275. [Google Scholar] [CrossRef]
- Morris, C.A.; Lopez-Lazaro, L.; Jung, D.; Methaneethorn, J.; Duparc, S.; Borghini-Fuhrer, I.; Pokorny, R.; Shin, C.-S.; Fleckenstein, L. Drug-drug interaction analysis of pyronaridine/artesunate and ritonavir in healthy volunteers. Am. J. Trop. Med. Hyg. 2012, 86, 489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahakijpijarn, S.; Moon, C.; Warnken, Z.N.; Maier, E.Y.; DeVore, J.E.; Christensen, D.J.; Koleng, J.J.; Williams, R.O., III. In vivo pharmacokinetic study of remdesivir dry powder for inhalation in hamsters. Int. J. Pharm. X 2021, 3, 100073. [Google Scholar] [CrossRef]
- EMA. Artesunate Amivas: Assessment Report; European Medicines Agency: London, UK, 2021. [Google Scholar]
- Khalil, F.; Läer, S. Physiologically based pharmacokinetic modeling: Methodology, applications, and limitations with a focus on its role in pediatric drug development. J. Biomed. Biotechnol. 2011, 2011, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.; Rowland-Yeo, K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacomet. Syst. Pharmacol. 2013, 2, 1–12. [Google Scholar] [CrossRef]
- EMA. Pyramax: Public Assessment Report; European Medicines Agency: London, UK, 2021. [Google Scholar]
- Ayyoub, A.; Methaneethorn, J.; Ramharter, M.; Djimde, A.A.; Tekete, M.; Duparc, S.; Borghini-Fuhrer, I.; Shin, J.-S.; Fleckenstein, L. Population pharmacokinetics of pyronaridine in pediatric malaria patients. Antimicrob. Agents Chemother. 2016, 60, 1450–1458. [Google Scholar] [CrossRef] [Green Version]
- Newton, P.N.; van Vugt, M.; Teja-Isavadharm, P.; Siriyanonda, D.; Rasameesoroj, M.; Teerapong, P.; Ruangveerayuth, R.; Slight, T.; Nosten, F.; Suputtamongkol, Y. Comparison of oral artesunate and dihydroartemisinin antimalarial bioavailabilities in acute falciparum malaria. Antimicrob. Agents Chemother. 2002, 46, 1125–1127. [Google Scholar] [CrossRef] [Green Version]
- Greenblatt, D.J. Elimination half-life of drugs: Value and limitations. Annu. Rev. Med. 1985, 36, 421–427. [Google Scholar] [CrossRef]
- Dhillon, S.; Gill, K. Basic Pharmacokinetics; CRC Press: Boca Raton, FL, USA, 2006; pp. 1–44. Available online: https://globex.coe.pku.edu.cn/file/upload/201807/05/124636651065.pdf (accessed on 1 March 2023).
- Holford, N. Absorption and half-life. Transl. Clin. Pharmacol. 2016, 24, 157–160. [Google Scholar] [CrossRef] [Green Version]
- Toutain, P.-L.; Bousquet-mélou, A. Plasma terminal half-life. J. Vet. Pharmacol. Ther. 2004, 27, 427–439. [Google Scholar] [CrossRef]
- Wadhwa, R.R.; Cascella, M. Steady State Concentration; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Xie, L.H.; Li, Q.; Zhang, J.; Weina, P.J. Pharmacokinetics, tissue distribution and mass balance of radiolabeled dihydroartemisinin in male rats. Malar. J. 2009, 8, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gendrot, M.; Andreani, J.; Duflot, I.; Boxberger, M.; Le Bideau, M.; Mosnier, J.; Jardot, P.; Fonta, I.; Rolland, C.; Bogreau, H. Methylene blue inhibits replication of SARS-CoV-2 in vitro. Int. J. Antimicrob. Agents 2020, 56, 106202. [Google Scholar] [CrossRef] [PubMed]
- Aherfi, S.; Pradines, B.; Devaux, C.; Honore, S.; Colson, P.; Scola, B.L.; Raoult, D. Drug repurposing against SARS-CoV-1, SARS-CoV-2 and MERS-CoV. Future Microbiol. 2021, 16, 1341–1370. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Gilmore, K.; Ramirez, S.; Settels, E.; Gammeltoft, K.A.; Pham, L.V.; Fahnøe, U.; Feng, S.; Offersgaard, A.; Trimpert, J. In vitro efficacy of artemisinin-based treatments against SARS-CoV-2. Sci. Rep. 2021, 11, 14571. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | Description | Value | Reference |
---|---|---|---|---|
Vtotal | mL | Total body volume | 102.01 | Experimental data |
Vblood | mL | Blood volume | 7.20 | [22] |
Vlung | mL | Lung volume | 0.48 | Experimental data |
Vtrachea | mL | Trachea volume | 0.06 | Experimental data |
Vrest of body | mL | Volume of the rest of the body | 94.27 | Calculated 1 |
Qco | mL/hr | Cardiac output | 1181.28 | [23] |
Qtrachea | mL/hr | Blood flow rate for the trachea | 24.81 | [24,25,26] |
Qrest | mL/hr | Blood flow rate for the rest of the body | 1156.47 | Calculated 2 |
Kb:p | - | Blood-to-plasma partition coefficient (artesunate) | 0.75 | [21] |
Kb:p,m | - | Blood-to-plasma partition coefficient (dihydroartemisinin) | 0.75 | [21] |
Parameter | Unit | Value |
---|---|---|
Pyronaridine | ||
ka | 1/h | 0.03 |
CL/F | L/h | 0.21 |
Klung | - | 26.06 |
Ktrachea | - | 8.67 |
Krest | - | 5.25 × 10−7 |
ktl | 1/h | 1.01 |
klt | 1/h | 0.92 |
Artesunate and dihydroartemisinin | ||
ka | 1/h | 1.74 |
CL/F | L/h | 2517.70 |
Klung | - | 10.33 |
Ktrachea | - | 1.48 |
Krest | - | 1.32 |
ktl | 1/h | 1.50 |
klt | 1/h | 0.34 |
CLm/F | L/h | 10.33 |
Klung,m | - | 0.34 |
Ktrachea,m | - | 1.08 |
Krest,m | - | 1.21 |
ktl,m | 1/h | 6.98 |
klt,m | 1/h | 0.35 |
Parameters | Pyronaridine | Artesunate | Dihydroartemisinin | |||
---|---|---|---|---|---|---|
Day 1 | Steady-State | Day 1 | Steady-State | Day 1 | Steady-State | |
Low-dose group | ||||||
Cavg,blood 1 | 1354.5 | 2382.9 | 0.1 | 0.1 | 38.8 | 38.8 |
Cavg,lung 1 | 34,978.8 | 61,547.4 | 0.4 | 0.4 | 13.4 | 13.4 |
Cavg,trachea 1 | 16,806.7 | 29,579.9 | 0.2 | 0.2 | 5.9 | 5.9 |
AUCblood 2 | 32,508.2 | 57,189.7 | 3.0 | 3.0 | 931.4 | 931.4 |
AUClung 2 | 839,491.5 | 1,477,137.6 | 10.1 | 10.1 | 320.5 | 320.5 |
AUCtrachea 2 | 403,360.1 | 709,917.6 | 4.6 | 4.6 | 140.5 | 140.5 |
t1/2 (h) | 19.7 | 0.4 | 0.4 | |||
Accumulation ratio | 1.8 | 1 | 1 | |||
High-dose group | ||||||
Cavg,blood 1 | 2111.3 | 3735.0 | 0.8 | 0.8 | 160.4 | 160.4 |
Cavg,lung 1 | 54,525.7 | 96,472.7 | 2.5 | 2.5 | 55.2 | 55.2 |
Cavg,trachea 1 | 26,199.6 | 46,366.1 | 1.2 | 1.2 | 23.8 | 23.8 |
AUCblood 2 | 50,672.1 | 89,639.9 | 18.3 | 18.3 | 3849.7 | 3849.7 |
AUClung 2 | 1,308,615.7 | 2,315,344.4 | 61.2 | 61.2 | 1324.9 | 1324.9 |
AUCtrachea 2 | 628,789.5 | 1,112,786.7 | 27.6 | 27.6 | 570.5 | 570.5 |
t1/2 (h) | 19.9 | 0.4 | 0.4 | |||
Accumulation ratio | 1.8 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, D.W.; Kim, K.M.; Kim, J.H.; Cho, H.-Y. Application of Minimal Physiologically-Based Pharmacokinetic Model to Simulate Lung and Trachea Exposure of Pyronaridine and Artesunate in Hamsters. Pharmaceutics 2023, 15, 838. https://doi.org/10.3390/pharmaceutics15030838
Kang DW, Kim KM, Kim JH, Cho H-Y. Application of Minimal Physiologically-Based Pharmacokinetic Model to Simulate Lung and Trachea Exposure of Pyronaridine and Artesunate in Hamsters. Pharmaceutics. 2023; 15(3):838. https://doi.org/10.3390/pharmaceutics15030838
Chicago/Turabian StyleKang, Dong Wook, Kyung Min Kim, Ju Hee Kim, and Hea-Young Cho. 2023. "Application of Minimal Physiologically-Based Pharmacokinetic Model to Simulate Lung and Trachea Exposure of Pyronaridine and Artesunate in Hamsters" Pharmaceutics 15, no. 3: 838. https://doi.org/10.3390/pharmaceutics15030838
APA StyleKang, D. W., Kim, K. M., Kim, J. H., & Cho, H. -Y. (2023). Application of Minimal Physiologically-Based Pharmacokinetic Model to Simulate Lung and Trachea Exposure of Pyronaridine and Artesunate in Hamsters. Pharmaceutics, 15(3), 838. https://doi.org/10.3390/pharmaceutics15030838