Prospects of Using Gum Arabic Silver Nanoparticles in Toothpaste to Prevent Dental Caries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antimicrobial Activity of the Commercial TPs
2.1.1. Preparation of the Commercial TPs
2.1.2. Microorganisms and Culture Conditions
Agar Disc Diffusion Assay
Microdilution Assay
2.2. Synthesis of GA-AgNPs and Preparation of the GA-AgNPs_TP
2.2.1. Synthesis and Characterization of GA-AgNPs
2.2.2. Preparation of the GA-AgNPs_TP-1
2.3. Antimicrobial Activity of the GA-AgNPs-TP
2.3.1. Agar Disc Diffusion Method
2.3.2. Microdilution Assay
2.4. Cytotoxicity Assay
2.5. Time Dependent Growth Inhibition of the Microbes and the BMF Cells
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Wang, X.; Li, H.; Ni, C.; Du, Z.; Yan, F. Human oral microbiota and its modulation for oral health. Biomed. Pharmacother. 2018, 99, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Rosier, B.T.; Marsh, P.D.; Mira, A. Resilience of the oral microbiota in health: Mechanisms that prevent dysbiosis. J. Dent. Res. 2018, 97, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, O.; Sibuyi, N.R.S.; Fadaka, A.O.; Madiehe, M.A.; Maboza, E.; Meyer, M.; Geerts, G. Plant extract-synthesized silver nanoparticles for application in dental therapy. Pharmaceutics 2022, 14, 380. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.; Prashanth, S.; Sindhu, K.; Nayak, A.; Chaturvedi, S. Antimicrobial efficacy of nanosilver and chitosan against Streptococcus mutans, as an ingredient of toothpaste formulation: An in vitro study. J. Indian Soc. Pedod. Prev. Dent. 2019, 37, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Resende, A.H.M.; Farias, J.M.; Silva, D.D.B.; Rufino, R.D.; Luna, J.M.; Stamford, T.C.M.; Sarubbo, L.A. Application of biosurfactants and chitosan in toothpaste formulation. Colloids Surf. B Biointerfaces 2019, 181, 77–84. [Google Scholar] [CrossRef]
- Goldfaden, J. Antibacterial efficacy of novel eastern medicine-inspired toothpastes compared to commercial formulations. Pac. J. Health 2020, 3, 3. [Google Scholar] [CrossRef]
- Petrovska, L.S.; Baranova, I.I.; Bezpala, Y. The explanaton of the selection of basic detergents and secondary detergents for the development of foam means with minimum irritant action: A review. Ann. Mechnikov’s Inst. 2019, 2, 17–20. [Google Scholar] [CrossRef]
- Khan, S.T.; Al-Khedhairy, A.A.; Musarrat, J. ZnO and TiO2 nanoparticles as novel antimicrobial agents for oral hygiene: A review. J. Nanoparticle Res. 2015, 17, 276. [Google Scholar] [CrossRef]
- Verkaik, M.J.; Busscher, H.J.; Jager, D.; Slomp, A.M.; Abbas, F.; Van Der Mei, H.C. Efficacy of natural antimicrobials in toothpaste formulations against oral biofilms in vitro. J. Dent. 2011, 39, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Majoumouo, M.S.; Sibuyi, N.R.S.; Tincho, M.B.; Mbekou, M.; Boyom, F.F.; Meyer, M. Enhanced anti-bacterial activity of biogenic silver nanoparticles synthesized from Terminalia mantaly extracts. Int. J. Nanomed. 2019, 14, 9031–9046. [Google Scholar] [CrossRef] [Green Version]
- Lövestam, G.; Rauscher, H.; Roebben, G.; Klüttgen, B.S.; Gibson, N.; Putaud, J.-P.; Stamm, H. Considerations on a Definition of Nanomaterial for Regulatory Purposes; EUR 24403 EN; Publications Office of the European Union: Luxembourg, 2010. [Google Scholar] [CrossRef]
- Liu, C.; Guo, J.; Yan, X.; Tang, Y.; Mazumder, A.; Wu, S.; Liang, Y. Antimicrobial nanomaterials against biofilms: An alternative strategy. Environ. Rev. 2017, 25, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Simon, S.; Sibuyi, N.R.S.; Fadaka, A.O.; Meyer, S.; Josephs, J.; Onani, M.O.; Meyer, M.; Madiehe, A.M. Biomedical applications of plant extract-synthesized silver nanoparticles. Biomedicines 2022, 10, 2792. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.Y.; Chen, M.R.; Liu, S.W.; Lin, J.Y.; Yang, Y.T.; Huang, H.Y.; Chen, J.K.; Yang, C.S.; Lin, K.M.C. Assessment of polyethylene glycol-coated gold nanoparticle toxicity and inflammation in vivo using NF-Κb reporter mice. Int. J. Mol. Sci. 2020, 21, 8158. [Google Scholar] [CrossRef] [PubMed]
- Schwass, D.R.; Lyons, K.M.; Love, R.; Tompkins, G.R.; Meledandri, C.J. Antimicrobial activity of a colloidal agnp suspension demonstrated in vitro against monoculture biofilms: Toward a novel tooth disinfectant for treating dental caries. Adv. Dent. Res. 2018, 29, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Rompelberg, C.; Heringa, M.B.; van Donkersgoed, G.; Drijvers, J.; Roos, A.; Westenbrink, S.; Peters, R.; van Bemmel, G.; Brand, W.; Oomen, A.G.; et al. Oral intake of added titanium dioxide and its nanofraction from food products, food supplements and toothpaste by the Dutch population. Nanotoxicology 2016, 10, 1404–1414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noronha, V.T.; Paula, A.J.; Durán, G.; Galembeck, A.; Cogo-Müller, K.; Franz-Montan, M.; Durán, N. Silver nanoparticles in dentistry. Dent. Mater. 2017, 33, 1110–1126. [Google Scholar] [CrossRef]
- Ahmed, O.; Sibuyi, N.R.S.; Fadaka, A.O.; Madiehe, A.M.; Maboza, E.; Olivier, A.; Meyer, M.; Geerts, G. Antimicrobial effects of gum arabic-silver nanoparticles against oral pathogens. Bioinorg. Chem. Appl. 2022, 2022, 9602325. [Google Scholar] [CrossRef]
- Fernandez, C.C.; Sokolonski, A.R.; Fonseca, M.S.; Stanisic, D.; Araújo, D.B.; Azevedo, V.; Portela, R.D.; Tasic, L. Applications of silver nanoparticles in dentistry: Advances and technological innovation. Int. J. Mol. Sci. 2021, 22, 2485. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.Y.; Huang, J.; Chen, C.Y.; Wang, Z.X.; Xie, H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 2020, 10, 8996–9031. [Google Scholar] [CrossRef]
- Panáček, A.; Kolář, M.; Večeřová, R.; Prucek, R.; Soukupová, J.; Kryštof, V.; Hamal, P.; Zbořil, R.; Kvítek, L. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 2009, 30, 6333–6340. [Google Scholar] [CrossRef]
- Adelere, I.A.; Aboyeji, D.O.; Akindurodoye, F.O.; Adabara, N.U.; Babayi, H. Cashew Plant-Mediated Biosynthesis of silver nanoparticles and evaluation of their applications as antimicrobial additive for consumer care products. Tanzan. J. Sci. 2020, 46, 768–778. [Google Scholar]
- Mohanty, S.; Mishra, S.; Jena, P.; Jacob, B.; Sarkar, B.; Sonawane, A. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Beyene, H.D.; Werkneh, A.A.; Bezabh, H.K.; Ambaye, T.G. Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustain. Mater. Technol. 2017, 13, 18–23. [Google Scholar] [CrossRef]
- Gahlawat, G.; Choudhury, A.R. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 2019, 9, 12944–12967. [Google Scholar] [CrossRef] [Green Version]
- Guilger-Casagrande, M.; de Lima, R. Synthesis of silver nanoparticles mediated by fungi: A Review. Front. Bioeng. Biotechnol. 2019, 7, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mousavi, S.M.; Hashemi, S.A.; Ghasemi, Y.; Atapour, A.; Amani, A.M.; Savar Dashtaki, A.; Babapoor, A.; Arjmand, O. Green synthesis of silver nanoparticles toward bio and medical applications: Review study. Artif. Cells Nanomed. Biotechnol. 2018, 46, 855–872. [Google Scholar] [CrossRef] [Green Version]
- Souza, J.A.S.; Barbosa, D.B.; Berretta, A.A.; Do Amaral, J.G.; Gorup, L.F.; De Souza Neto, F.N.; Fernandes, R.A.; Fernandes, G.L.; Camargo, E.R.; Agostinho, A.M.; et al. Green synthesis of silver nanoparticles combined to calcium glycerophosphate: Antimicrobial and antibiofilm activities. Future Microbiol. 2018, 13, 345–357. [Google Scholar] [CrossRef] [Green Version]
- Emmanuel, R.; Palanisamy, S.; Chen, S.M.; Chelladurai, K.; Padmavathy, S.; Saravanan, M.; Prakash, P.; Ali, M.A.; Al-Hemaid, F.M. Antimicrobial efficacy of green synthesized drug blended silver nanoparticles against dental caries and periodontal disease causing microorganisms. Mater. Sci. Eng. C 2015, 56, 374–379. [Google Scholar] [CrossRef]
- Manojkanna Chandana, C.S.; Gayathri, R.; Vishnu Priya, V.; Geetha, R.V. Synthesis and characterization of silver nano particles from Plectranthus ambionicus extract and its antimicrobial activity against Enterococcus faecalis and Candida albicans. J. Pharm. Sci. Res. 2017, 9, 2423–2425. [Google Scholar]
- Abbaszadegan, A.; Nabavizadeh, M.; Gholami, A.; Aleyasin, Z.S.; Dorostkar, S.; Saliminasab, M.; Ghasemi, Y.; Hemmateenejad, B.; Sharghi, H. Positively charged imidazolium-based ionic liquid-protected silver nanoparticles: A promising disinfectant in root canal treatment. Int. Endod. J. 2015, 48, 790–800. [Google Scholar] [CrossRef]
- Al-Ansari, M.M.; Al-Dahmash, N.D.; Ranjitsingh, A.J.A. Synthesis of silver nanoparticles using gum Arabic: Evaluation of its inhibitory action on Streptococcus mutans causing dental caries and endocarditis. J. Infect. Public Health 2021, 14, 324–330. [Google Scholar] [CrossRef]
- Gurunathan, S.; Han, J.W.; Kwon, D.-N.; Kim, J.-H. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. J. Genet. Environ. Resour. Conserv. 2014, 4, 197–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Z.; Rong, K.; Li, J.; Yang, H.; Chen, R. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. J. Mater. Sci. Mater. Med. 2013, 24, 1465–1471. [Google Scholar] [CrossRef]
- Qais, F.A.; Shafiq, A.; Khan, H.M.; Husain, F.M.; Khan, R.A.; Alenazi, B.; Alsalme, A.; Ahmad, I. Antibacterial effect of silver nanoparticles synthesized using murraya koenigii (l.) against multidrug-resistant pathogens. Bioinorg. Chem. Appl. 2019, 2019, 4649506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jinu, U.; Gomathi, M.; Saiqa, I.; Geetha, N.; Benelli, G.; Venkatachalam, P. Green engineered biomolecule-capped silver and copper nanohybrids using Prosopis cineraria leaf extract: Enhanced antibacterial activity against microbial pathogens of public health relevance and cytotoxicity on human breast cancer cells (MCF-7). Microb. Pathog. 2017, 105, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Wen, J.; Xiong, X.; Hu, Y. Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environ. Sci. Pollut. Res. 2016, 23, 4489–4497. [Google Scholar] [CrossRef]
- Prabhu, S.; Poulose, E.K. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2012, 2, 32. [Google Scholar] [CrossRef] [Green Version]
- Pulit-Prociak, J.; Banach, M. Silver nanoparticles—A material of the future…? Open Chem. 2016, 14, 76–91. [Google Scholar] [CrossRef]
- Junevičius, J.; Žilinskas, J.; Česaitis, K.; Česaitienė, G.; Gleiznys, D.; Maželienė, Ž. Antimicrobial activity of silver and gold in toothpastes: A comparative analysis. Balt. Dent. Maxillofac. J. 2015, 17, 9–12. [Google Scholar]
- Carrouel, F.; Viennot, S.; Ottolenghi, L.; Gaillard, C.; Bourgeois, D. Nanoparticles as anti-microbial, anti-inflammatory, and remineralizing agents in oral care cosmetics: A review of the current situation. Nanomaterials 2020, 10, 140. [Google Scholar] [CrossRef] [Green Version]
- Gaillet, S.; Rouanet, J.M. Silver nanoparticles: Their potential toxic effects after oral exposure and underlying mechanisms—A review. Food Chem. Toxicol. 2015, 77, 58–63. [Google Scholar] [CrossRef]
- Tang, X.; Li, L.; Meng, X.; Liu, T.; Hu, Q.; Miao, L. Cytotoxicity of silver nanoparticles on human periodontal ligament fibroblasts. Nanosci. Nanotechnol. Lett. 2017, 9, 1015–1022. [Google Scholar] [CrossRef]
- Fernández, E.; Sánchez M del, C.; Llama-Palacios, A.; Sanz, M.; Herrera, D. Antibacterial effects of toothpastes evaluated in an in vitro biofilm model. Oral Health Prev. Dent. 2017, 15, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Wikler, M.A. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard. CLSI 2006, 26, M7-A7. [Google Scholar]
- Thomas, P.; Sekhar, A.C.; Upreti, R.; Mujawar, M.M.; Pasha, S.S. Optimization of single plate-serial dilution spotting ( SP-SDS ) with sample anchoring as an assured method for bacterial and yeast CFU enumeration and single colony isolation from diverse samples. Biotechnol. Rep. 2015, 8, 45–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Meerloo, J.; Kaspers, G.J.L.; Cloos, J. Cell sensitivity assays: The MTT Assay. In Cancer Cell Culture: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2011; pp. 237–245. [Google Scholar] [CrossRef]
- Cvikl, B.; Lussi, A.; Gruber, R. The in vitro impact of toothpaste extracts on cell viability. Eur. J. Oral Sci. 2015, 123, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Fiorillo, L. Oral health: The first step to well-being. Medicina 2019, 55, 676. [Google Scholar] [CrossRef] [Green Version]
- Talapko, J.; Matijević, T.; Juzbašić, M.; Antolović-Požgain, A.; Škrlec, I. Antibacterial activity of silver and its application in dentistry, cardiology and dermatology. Microorganisms 2020, 8, 1400. [Google Scholar] [CrossRef]
- Fadaka, A.O.; Meyer, S.; Ahmed, O.; Geerts, G.; Madiehe, M.A.; Meyer, M.; Sibuyi, N.R. Broad spectrum anti-bacterial activity and non-selective toxicity of gum arabic silver nanoparticles. Int. J. Mol. Sci. 2022, 23, 1799. [Google Scholar] [CrossRef]
- Prasanth, M. Antimicrobial efficacy of different toothpastes and mouthrinses: An in vitro study. Dent. Res. J. 2011, 8, 85. [Google Scholar]
- Dhakal, A.; Sundaram, S.; Rajesh, V.; John, R.; Rajan, A.P. Comparative antimicrobial efficacy study of different commercially available toothpaste in In-dia: An in vitro study. J. Environ. Agric. Energy 2021, 2, 122. [Google Scholar] [CrossRef]
- Gautam, B.; Dongol, E.; Shrestha, A. In-vitro antimicrobial activity of different toothpastes. J. Kathmandu Med. Coll. 2018, 6, 52–58. [Google Scholar] [CrossRef]
- Valm, A.M. The structure of dental plaque microbial communities in the transition from health to dental caries and periodontal disease. J. Mol. Biol. 2019, 431, 2957–2969. [Google Scholar] [CrossRef] [PubMed]
- de Rossi, A.D.; Cunha Araújo Ferreira, D.; Assed Bezerra da Silva, R.; Mussolino de Queiroz, A.; Assed Bezerra da Silva, L.; Nelson-Filho, P. Antimicrobial activity of toothpastes containing natural extracts, chlorhexidine or triclosan. Braz. Dent. J. 2014, 25, 186–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nqakala, Z.B.; Sibuyi, N.R.S.; Fadaka, A.O.; Meyer, M.; Onani, M.O.; Madiehe, A.M. Advances in nanotechnology towards development of silver nanoparticle-based wound-healing agents. Int. J. Mol. Sci. 2021, 22, 11272. [Google Scholar] [CrossRef]
- Kong, B.; Seog, J.H.; Graham, L.M.; Lee, S.B. Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine 2011, 6, 929–941. [Google Scholar] [CrossRef] [Green Version]
- Bouwmeester, H.; van der Zande, M.; Jepson, M.A. Effects of food-borne nanomaterials on gastrointestinal tissues and microbiota. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, e1481. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.; Li, Y.; Tjong, S.C. Bactericidal and cytotoxic properties of silver nanoparticles. Int. J. Mol. Sci. 2019, 20, 449. [Google Scholar] [CrossRef] [Green Version]
- Debnath, B.; Das, R. Presence of fluoride in water diminishes fast the SPR peak of silver nanocrystals showing large red shift with quick sedimentation—A fast sensing and fast removal case. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 249, 119306. [Google Scholar] [CrossRef]
- Jensen, O.; Gabre, P.; Sköld, U.M.; Birkhed, D. Is the use of fluoride toothpaste optimal? Knowledge, attitudes and behaviour concerning fluoride toothpaste and toothbrushing in different age groups in Sweden. Community Dent. Oral Epidemiol. 2012, 40, 175–184. [Google Scholar] [CrossRef]
- Kyriakides, T.R.; Raj, A.; Tseng, T.H.; Xiao, H.; Nguyen, R.; Mohammed, F.S.; Halder, S.; Xu, M.; Wu, M.J.; Bao, S.; et al. Biocompatibility of nanomaterials and their immunological properties. Biomed. Mater. 2021, 16, 042005. [Google Scholar] [CrossRef] [PubMed]
Microbes | TP-1 (mm) | TP-2 (mm) | TP-3 (mm) | TP-4 (mm) | 0.2% CHX (mm) | Nystatin (mm) |
---|---|---|---|---|---|---|
S. sanguinis | 9.32 ± 1.7 | 10.89 ± 0.76 | 9.41 ± 0.59 | 12.91 ± 0.40 | 17.36 ± 0.31 | |
S. mutans | 8.70 ± 0.10 | 8.55 ± 1.62 | 8.36 ± 0.12 | 12.43 ± 0.34 | 16.22 ± 0.02 | |
L. acidophilus | 9.00 ± 0.8 | 9.8 ± 1.4 | 9.25 ± 0.08 | 12.11 ± 0.55 | 16.99 ± 0.32 | |
C. albicans | 7.00 ± 1.44 | 7.77 ± 3.62 | 8.19 ± 0.04 | 11.99 ± 0.35 | 15.75 ± 0.16 |
TPs | [TP] µg/mL | |||||||
---|---|---|---|---|---|---|---|---|
3.9 | 7.8 | 15.6 | 31.3 | 62.5 | 125 | 250 | 500 | |
TP-1 | +++ | +++ | +++ | +++ | ++ | + | + | - |
TP-3 | +++ | +++ | +++ | ++ | - | - | - | - |
Microbes | [AgNPs] (µg/mL) Added in TP-1 | GA-AgNPs_0.4g (mm) | GA-AgNPs_TP-1 (mm) | 0.2% CHX (mm) | Nystatin (mm) |
---|---|---|---|---|---|
S. sanguinis | 100 50 25 | 9.11 ± 0.14 8.95 ± 0.32 8.25 ± 0.25 | 9.17 ± 0.20 9.06 ± 0.08 7.17 ± 0.18 | 17.29 ± 0.36 | |
S. mutans | 100 50 25 | 9.80 ± 0.19 9.87 ± 0.17 7.19 ± 0.16 | 9.56 ± 0.39 9.96 ± 0.20 6.14 ± 0.14 | 16.17 ± 0.16 | |
L. acidophilus | 100 50 25 | 10.04 ± 0.18 9.09 ± 0.09 7.22 ± 0.31 | 10.23 ± 0.23 9.10 ± 0.09 7.41 ± 0.34 | 17.00 ± 0.39 | |
C. albicans | 100 50 25 | 10.28 ± 0.18 9.46 ± 0.22 7.12 ± 0.13 | 10.33 ± 0.20 9.71 ± 0.17 7.31 ± 0.18 | 15.10 ± 0.15 |
TP Formulations | [Formulation] µg/mL | ||||
---|---|---|---|---|---|
6.25 | 12.5 | 25 | 50 | 100 | |
GA-AgNPs_0.4g | +++ | ++ | - | - | - |
GA-AgNPs_TP-1 | +++ | ++ | - | - | - |
Microbes | MIC50 (µg/mL) | |
---|---|---|
GA-AgNPs_0.4g | GA-AgNPs_TP-1 | |
S. sanguinis | 10.09 | 15.66 |
S. mutans | 12.26 | 11.89 |
L. acidophilus | 7.12 | 20.89 |
C. albicans | 10.47 | 12.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, O.A.K.; Sibuyi, N.R.S.; Fadaka, A.O.; Maboza, E.; Olivier, A.; Madiehe, A.M.; Meyer, M.; Geerts, G. Prospects of Using Gum Arabic Silver Nanoparticles in Toothpaste to Prevent Dental Caries. Pharmaceutics 2023, 15, 871. https://doi.org/10.3390/pharmaceutics15030871
Ahmed OAK, Sibuyi NRS, Fadaka AO, Maboza E, Olivier A, Madiehe AM, Meyer M, Geerts G. Prospects of Using Gum Arabic Silver Nanoparticles in Toothpaste to Prevent Dental Caries. Pharmaceutics. 2023; 15(3):871. https://doi.org/10.3390/pharmaceutics15030871
Chicago/Turabian StyleAhmed, Omnia Abdelmoneim Khidir, Nicole Remaliah Samantha Sibuyi, Adewale Oluwaseun Fadaka, Ernest Maboza, Annette Olivier, Abram Madimabe Madiehe, Mervin Meyer, and Greta Geerts. 2023. "Prospects of Using Gum Arabic Silver Nanoparticles in Toothpaste to Prevent Dental Caries" Pharmaceutics 15, no. 3: 871. https://doi.org/10.3390/pharmaceutics15030871
APA StyleAhmed, O. A. K., Sibuyi, N. R. S., Fadaka, A. O., Maboza, E., Olivier, A., Madiehe, A. M., Meyer, M., & Geerts, G. (2023). Prospects of Using Gum Arabic Silver Nanoparticles in Toothpaste to Prevent Dental Caries. Pharmaceutics, 15(3), 871. https://doi.org/10.3390/pharmaceutics15030871