Nucleotides Entrapped in Liposome Nanovesicles as Tools for Therapeutic and Diagnostic Use in Biomedical Applications
Abstract
:1. General Background of Liposomes
1.1. Definitions
1.2. Historical Aspects
1.3. Cationic Liposomes for Nucleotide Encapsulation
1.4. Review Objectives
2. Theranostic Nucleotide
2.1. Liposomes for the Delivery of Nucleic Acids in Cancer Therapy
2.2. Immunostimulatory Effects
2.2.1. Lipid-Based Ribozyme Delivery Systems for Theranostic Applications
2.2.2. Therapeutic Applications by Ribozymes
2.2.3. Diagnostic Applications by Ribozymes
2.3. Veterinary Applications
2.4. Nucleic Acids and Liposomes in the Prevention of Neglected Tropical Diseases
3. Conclusions
4. Perspectives for Biomedical Applications
Author Contributions
Funding
Conflicts of Interest
References
- Muehlmann, L.A.; Joanitti, G.A.; Silva, J.R.D.; Longo, J.P.F.; Azevedo, R.B. Liposomal photosensitizers: Potential platforms for anticancer photodynamic therapy. Braz. J. Med. Biol. Res. 2011, 44, 729–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005, 4, 145–160. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Chen, G.; Zhang, J. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules 2022, 27, 1372. [Google Scholar] [CrossRef] [PubMed]
- Gregoriadis, G. Liposomes and mRNA: Two technologies together create a COVID-19 vaccine. Med. Drug Discov. 2021, 12, 100104. [Google Scholar] [CrossRef]
- Sufian, M.A.; Ilies, M.A. Lipid-Based Nucleic Acid Therapeutics with In Vivo Efficacy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022, e1856. [Google Scholar] [CrossRef]
- Gregoriadis, G.; Ryman, B.E. Fate of protein-containing liposomes injected into rats: An approach to the treatment of storage diseases. Eur. J. Biochem. 1972, 24, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Figueiró Longo, J.P.; Muehlmann, L.A. How has nanomedical innovation contributed to the COVID-19 vaccine development? Nanomedicine 2021, 16, 1179–1181. [Google Scholar] [CrossRef]
- Longo, J.P.F.; Mussi, S.; Azevedo, R.B.; Muehlmann, L.A. Issues affecting nanomedicines on the way from the bench to the market. J. Mater. Chem. B 2020, 8, 10681–10685. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Câmara, A.L.; Nagel, G.; Tschiche, H.R.; Cardador, C.M.; Muehlmann, L.A.; de Oliveira, D.M.; Alvim, P.Q.; Azevedo, R.B.; Calderón, M.; Figueiro Longo, J.P. Acid-sensitive lipidated doxorubicin prodrug entrapped in nanoemulsion impairs lung tumor metastasis in a breast cancer model. Nanomedicine 2017, 12, 1751–1765. [Google Scholar] [CrossRef]
- Faria, R.S.; de Lima, L.I.; Bonadio, R.S.; Longo, J.P.F.; Roque, M.C.; de Matos Neto, J.N.; Moya, S.E.; de Oliveira, M.C.; Azevedo, R.B. Liposomal paclitaxel induces apoptosis, cell death, inhibition of migration capacity and antitumoral activity in ovarian cancer. Biomed. Pharmacother. 2021, 142, 112000. [Google Scholar] [CrossRef]
- de Lima, L.I.; Faria, R.S.; Franco, M.S.; Roque, M.C.; Arruda Pacheco, T.J.; Rodrigues, M.C.; Muehlmann, L.A.; Moya, S.E.; Azevedo, R.B.; de Oliveira, M.C.; et al. Combined paclitaxel-doxorubicin liposomal results in positive prognosis with infiltrating lymphocytes in lung metastasis. Nanomedicine 2020, 15, 2753–2770. [Google Scholar] [CrossRef] [PubMed]
- James, N.; Coker, R.; Tomlinson, D.; Harris, J.; Gompels, M.; Pinching, A.; Stewart, J. Liposomal doxorubicin (Doxil): An effective new treatment for Kaposi’s sarcoma in AIDS. Clin. Oncol. 1994, 6, 294–296. [Google Scholar] [CrossRef] [PubMed]
- Germain, M.; Caputo, F.; Metcalfe, S.; Tosi, G.; Spring, K.; Åslund, A.K.; Pottier, A.; Schiffelers, R.; Ceccaldi, A.; Schmid, R. Delivering the power of nanomedicine to patients today. J. Control. Release 2020, 326, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Metselaar, J.M.; Lammers, T. Challenges in nanomedicine clinical translation. Drug Deliv. Transl. Res. 2020, 10, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgado, L.F.; Travolo, A.R.F.; Muehlmann, L.A.; Narcizo, P.S.; Nunes, R.B.; Pereira, P.A.G.; Py-Daniel, K.R.; Jiang, C.S.; Gu, J.S.; Azevedo, R.B.; et al. Photodynamic Therapy treatment of onychomycosis with Aluminium-Phthalocyanine Chloride nanoemulsions: A proof of concept clinical trial. J. Photochem. Photobiol. B Biol. 2017, 173, 266–270. [Google Scholar] [CrossRef]
- He, H.; Liu, L.; Morin, E.E.; Liu, M.; Schwendeman, A. Survey of clinical translation of cancer nanomedicines—Lessons learned from successes and failures. Acc. Chem. Res. 2019, 52, 2445–2461. [Google Scholar] [CrossRef]
- Akinc, A.; Maier, M.A.; Manoharan, M.; Fitzgerald, K.; Jayaraman, M.; Barros, S.; Ansell, S.; Du, X.; Hope, M.J.; Madden, T.D. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 2019, 14, 1084–1087. [Google Scholar] [CrossRef]
- Ewert, K.K.; Scodeller, P.; Simón-Gracia, L.; Steffes, V.M.; Wonder, E.A.; Teesalu, T.; Safinya, C.R. Cationic Liposomes as Vectors for Nucleic Acid and Hydrophobic Drug Therapeutics. Pharmaceutics 2021, 13, 1365. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.; Gonzalez-Duarte, A.; O'Riordan, W.D.; Yang, C.C.; Ueda, M.; Kristen, A.V.; Tournev, I.; Schmidt, H.H.; Coelho, T.; Berk, J.L.; et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N. Engl. J. Med. 2018, 379, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Wood, H. FDA Approves Patisiran to Treat Hereditary Transthyretin Amyloidosis; Nature Publishing Group: New York, NY, USA, 2018. [Google Scholar]
- Walsh, E.E.; Frenck, R.W., Jr.; Falsey, A.R.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Mulligan, M.J.; Bailey, R. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. N. Engl. J. Med. 2020, 383, 2439–2450. [Google Scholar] [CrossRef]
- Gabizon, A.; Shmeeda, H.; Horowitz, A.T.; Zalipsky, S. Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid–PEG conjugates. Adv. Drug Deliv. Rev. 2004, 56, 1177–1192. [Google Scholar] [CrossRef]
- Longo, J.P.F.; Lozzi, S.P.; Simioni, A.R.; Morais, P.C.; Tedesco, A.C.; Azevedo, R.B. Photodynamic therapy with aluminum-chloro-phtalocyanine induces necrosis and vascular damage in mice tongue tumors. J. Photochem. Photobiol. B Biol. 2009, 94, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Chen, M.; Wang, T. Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization. J. Control. Release 2019, 303, 130–150. [Google Scholar] [CrossRef] [PubMed]
- Nosova, A.; Koloskova, O.; Nikonova, A.; Simonova, V.; Smirnov, V.; Kudlay, D.; Khaitov, M. Diversity of PEGylation methods of liposomes and their influence on RNA delivery. MedChemComm 2019, 10, 369–377. [Google Scholar] [CrossRef]
- Narayanaswamy, R.; Torchilin, V.P. Targeted delivery of combination therapeutics using monoclonal antibody 2C5-modified immunoliposomes for cancer therapy. Pharm. Res. 2021, 38, 429–450. [Google Scholar] [CrossRef] [PubMed]
- Maurer, N.; Mori, A.; Palmer, L.; Monck, M.A.; Mok, K.W.; Mui, B.; Akhong, Q.F.; Cullis, P.R. Lipid-based systems for the intracellular delivery of genetic drugs. Mol. Membr. Biol. 1999, 16, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Stuart, D.D.; Kao, G.Y.; Allen, T.M. A novel, long-circulating, and functional liposomal formulation of antisense oligodeoxynucleotides targeted against MDR1. Cancer Gene Ther. 2000, 7, 466–475. [Google Scholar] [CrossRef] [Green Version]
- Longo, J.P.F.; Leal, S.C.; Simioni, A.R.; Almeida-Santos, M.D.M.; Tedesco, A.C.; Azevedo, R.B. Photodynamic therapy disinfection of carious tissue mediated by aluminum-chloride-phthalocyanine entrapped in cationic liposomes: An in vitro and clinical study. Lasers Med. Sci. 2012, 27, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Aleku, M.; Schulz, P.; Keil, O.; Santel, A.; Schaeper, U.; Dieckhoff, B.; Janke, O.; Endruschat, J.; Durieux, B.; Röder, N. Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res. 2008, 68, 9788–9798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultheis, B.; Strumberg, D.; Kuhlmann, J.; Wolf, M.; Link, K.; Seufferlein, T.; Kaufmann, J.; Gebhardt, F.; Bruyniks, N.; Pelzer, U. A phase Ib/IIa study of combination therapy with gemcitabine and Atu027 in patients with locally advanced or metastatic pancreatic adenocarcinoma. J. Clin. Oncol. 2016, 34, 385. [Google Scholar] [CrossRef]
- Wahane, A.; Waghmode, A.; Kapphahn, A.; Dhuri, K.; Gupta, A.; Bahal, R. Role of lipid-based and polymer-based non-viral vectors in nucleic acid delivery for next-generation gene therapy. Molecules 2020, 25, 2866. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, H.; Zheng, B.; Liu, J.; Huang, Y.; Wang, H.; Zheng, D.; Mao, N.; Meng, J.; Zhou, S.; Zhong, L. Efficient targeted tumor imaging and secreted endostatin gene delivery by anti-CD105 immunoliposomes. J. Exp. Clin. Cancer Res. 2018, 37, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, X.; Wang, X.; Wei, Y.; Wen, C.; Zhang, Q.; Xu, C.; Liu, C.; Zhang, C.; Meng, F.; Zhao, N. ApoE-modified liposomes mediate the antitumour effect of survivin promoter-driven HSVtk in hepatocellular carcinoma. Cancer Gene Ther. 2020, 27, 754–767. [Google Scholar] [CrossRef] [PubMed]
- Hossain, J.A.; Latif, M.A.; Ystaas, L.A.; Ninzima, S.; Riecken, K.; Muller, A.; Azuaje, F.; Joseph, J.V.; Talasila, K.M.; Ghimire, J. Long-term treatment with valganciclovir improves lentiviral suicide gene therapy of glioblastoma. Neuro-Oncology 2019, 21, 890–900. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, G.; Li, B.; Wu, Y.; Liu, X.; Tan, Y.; Du, B. Dioscin augments HSV-tk-mediated suicide gene therapy for melanoma by promoting connexin-based intercellular communication. Oncotarget 2017, 8, 798. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhang, S.; Zhang, Y.; Cui, S.; Chen, H.; Zhi, D.; Zhen, Y.; Zhang, S.; Huang, L. Tri-peptide cationic lipids for gene delivery. J. Mater. Chem. B 2015, 3, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Meng, Y.; Zhao, Y.; Zhu, J.; Xu, H.; Zhang, E.; Shi, L.; Du, L.; Liu, G.; Zhang, C. Toxicological exploration of peptide-based cationic liposomes in siRNA delivery. Coll. Surf. B Biointerfaces 2019, 179, 66–76. [Google Scholar] [CrossRef]
- Lorentzen, C.L.; Haanen, J.B.; Met, Ö.; Svane, I.M. Clinical advances and ongoing trials on mRNA vaccines for cancer treatment. Lancet Oncol. 2022, 23, e450–e458. [Google Scholar] [CrossRef]
- Sayour, E.J.; Mendez-Gomez, H.R.; Mitchell, D.A. Cancer vaccine immunotherapy with RNA-loaded liposomes. Int. J. Mol. Sci. 2018, 19, 2890. [Google Scholar] [CrossRef] [Green Version]
- Kranz, L.M.; Diken, M.; Haas, H.; Kreiter, S.; Loquai, C.; Reuter, K.C.; Meng, M.; Fritz, D.; Vascotto, F.; Hefesha, H. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016, 534, 396–401. [Google Scholar] [CrossRef]
- Gursel, I.; Gursel, M.; Ishii, K.J.; Klinman, D.M. Sterically stabilized cationic liposomes improve the uptake and immunostimulatory activity of CpG oligonucleotides. J. Immunol. 2001, 167, 3324–3328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loira-Pastoriza, C.; Vanvarenberg, K.; Ucakar, B.; Franco, M.M.; Staub, A.; Lemaire, M.; Renauld, J.-C.; Vanbever, R. Encapsulation of a CpG oligonucleotide in cationic liposomes enhances its local antitumor activity following pulmonary delivery in a murine model of metastatic lung cancer. Int. J. Pharm. 2021, 600, 120504. [Google Scholar] [CrossRef] [PubMed]
- Guan, C.; Chernyak, N.; Dominguez, D.; Cole, L.; Zhang, B.; Mirkin, C.A. RNA-Based Immunostimulatory Liposomal Spherical Nucleic Acids as Potent TLR7/8 Modulators. Small 2018, 14, 1803284. [Google Scholar] [CrossRef] [PubMed]
- Callmann, C.E.; Kusmierz, C.D.; Dittmar, J.W.; Broger, L.; Mirkin, C.A. Impact of liposomal spherical nucleic acid structure on immunotherapeutic function. ACS Cent. Sci. 2021, 7, 892–899. [Google Scholar] [CrossRef]
- Wissinger, B.; Brennicke, A.; Schuster, W. Regenerating good sense: RNA editing and trans splicing in plant mitochondria. Trends Genet. 1992, 8, 322–328. [Google Scholar] [CrossRef]
- Pyle, A.M. Ribozymes: A distinct class of metalloenzymes. Science 1993, 261, 709–714. [Google Scholar] [CrossRef]
- Przybilski, R.; Gräf, S.; Lescoute, A.; Nellen, W.; Westhof, E.; Steger, G.; Hammann, C. Functional hammerhead ribozymes naturally encoded in the genome of Arabidopsis thaliana. Plant Cell 2005, 17, 1877–1885. [Google Scholar] [CrossRef] [Green Version]
- Dolan, G.F.; Müller, U.F. Trans-splicing with the group I intron ribozyme from Azoarcus. RNA 2014, 20, 202–213. [Google Scholar] [CrossRef] [Green Version]
- Gray, M.W.; Gopalan, V. Piece by piece: Building a ribozyme. J. Biol. Chem. 2020, 295, 2313–2323. [Google Scholar] [CrossRef] [Green Version]
- Doherty, E.A.; Doudna, J.A. Ribozyme structures and mechanisms. Ann. Rev. Biochem. 2000, 69, 597–615. [Google Scholar] [CrossRef] [Green Version]
- Altman, S. The road to RNase P. Nat. Struct. Biol. 2000, 7, 827–828. [Google Scholar] [CrossRef] [PubMed]
- Cech, T.R. The ribosome is a ribozyme. Science 2000, 289, 878–879. [Google Scholar] [CrossRef] [PubMed]
- Pyle, A.M.; Cech, T.R. Ribozyme recognition of RNA by tertiary interactions with specific ribose 2′-OH groups. Nature 1991, 350, 628–631. [Google Scholar] [CrossRef]
- Kruger, K.; Grabowski, P.J.; Zaug, A.J.; Sands, J.; Gottschling, D.E.; Cech, T.R. Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 1982, 31, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Tanner, N.K. Ribozymes: The characteristics and properties of catalytic RNAs. FEMS Microbiol. Rev. 1999, 23, 257–275. [Google Scholar] [CrossRef]
- Lewin, A.S.; Hauswirth, W.W. Ribozyme gene therapy: Applications for molecular medicine. Trends Mol. Med. 2001, 7, 221–228. [Google Scholar] [CrossRef]
- Park, S.V.; Yang, J.-S.; Jo, H.; Kang, B.; Oh, S.S.; Jung, G.Y. Catalytic RNA, ribozyme, and its applications in synthetic biology. Biotechnol. Adv. 2019, 37, 107452. [Google Scholar] [CrossRef]
- Wu, Q.; Huang, L.; Zhang, Y. The structure and function of catalytic RNAs. Sci. China Ser. C Life Sci. 2009, 52, 232–244. [Google Scholar] [CrossRef]
- Butcher, S.E. Structure and function of the small ribozymes. Curr. Opin. Struct. Biol. 2001, 11, 315–320. [Google Scholar] [CrossRef]
- Haugen, P.; Simon, D.M.; Bhattacharya, D. The natural history of group I introns. Trends Genet. 2005, 21, 111–119. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, C.; Wu, Q.-J.; Wang, Y.; Sun, Z.-T.; Deng, J.-C.; Zhang, Y. GISSD: Group I intron sequence and structure database. Nucleic Acids Res. 2008, 36, D31–D37. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Higgs, P.G. Origin of self-replicating biopolymers: Autocatalytic feedback can jump-start the RNA world. J. Mol. Evol. 2009, 69, 541–554. [Google Scholar] [CrossRef]
- Pan, T.; Uhlenbeck, O.C. In vitro selection of RNAs that undergo autolytic cleavage with lead (2+). Biochemistry 1992, 31, 3887–3895. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Uhlenbeck, O.C. A small metalloribozyme with a two-step mechanism. Nature 1992, 358, 560–563. [Google Scholar] [CrossRef] [PubMed]
- Jäschke, A. Artificial ribozymes and deoxyribozymes. Curr. Opin. Struct. Biol. 2001, 11, 321–326. [Google Scholar] [CrossRef]
- Serganov, A.; Keiper, S.; Malinina, L.; Tereshko, V.; Skripkin, E.; Höbartner, C.; Polonskaia, A.; Phan, A.T.; Wombacher, R.; Micura, R. Structural basis for Diels-Alder ribozyme-catalyzed carbon-carbon bond formation. Nat. Struct. Mol. Biol. 2005, 12, 218–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, H.A.; Gibson, I. The therapeutic potential of ribozymes. Blood J. Am. Soc. Hematol. 1998, 91, 371–382. [Google Scholar]
- McConnell, E.M.; Cozma, I.; Mou, Q.; Brennan, J.D.; Lu, Y.; Li, Y. Biosensing with DNAzymes. Chem. Soc. Rev. 2021, 50, 8954–8994. [Google Scholar] [CrossRef]
- Berber, B.; Aydin, C.; Kocabas, F.; Guney-Esken, G.; Yilancioglu, K.; Karadag-Alpaslan, M.; Caliseki, M.; Yuce, M.; Demir, S.; Tastan, C. Gene editing and RNAi approaches for COVID-19 diagnostics and therapeutics. Gene Ther. 2021, 28, 290–305. [Google Scholar] [CrossRef]
- Sioud, M. Application of preformed hammerhead ribozymes in the gene therapy of cancer. Int. J. Mol. Med. 1999, 3, 381–385. [Google Scholar] [CrossRef]
- Mulhbacher, J.; St-Pierre, P.; Lafontaine, D.A. Therapeutic applications of ribozymes and riboswitches. Curr. Opin. Pharmacol. 2010, 10, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, J.A.; Bouhana, K.S.; Gallegos, A.M.; Agrawal, A.B.; Grimm, S.L.; Wincott, F.E.; Reynolds, M.A.; Pavco, P.A.; Parry, T.J. Pharmacokinetics of an antiangiogenic ribozyme (ANGIOZYME™) in the mouse. Antisense Nucleic Acid Drug Dev. 1999, 9, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Kijima, H.; Scanlon, K.J. Ribozyme as an approach for growth suppression of human pancreatic cancer. Mol. Biotechnol. 2000, 14, 59–72. [Google Scholar] [CrossRef]
- Ojwang, J.O.; Hampel, A.; Looney, D.J.; Wong-Staal, F.; Rappaport, J. Inhibition of human immunodeficiency virus type 1 expression by a hairpin ribozyme. Proc. Natl. Acad. Sci. USA 1992, 89, 10802–10806. [Google Scholar] [CrossRef] [Green Version]
- Hotchkiss, G.; Maijgren-Steffensson, C.; Ährlund-Richter, L. Efficacy and mode of action of hammerhead and hairpin ribozymes against various HIV-1 target sites. Mol. Ther. 2004, 10, 172–180. [Google Scholar] [CrossRef]
- Rossi, J.J. Ribozyme therapy for HIV infection. Adv. Drug Deliv. Rev. 2000, 44, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Stobart, M.J.; Simon, S.L.; Plews, M.; Lamoureux, L.; Knox, J.D. Efficient knockdown of human prnp mRNA expression levels using hybrid hammerhead ribozymes. J. Toxicol. Environ. Health A 2009, 72, 1034–1039. [Google Scholar] [CrossRef] [PubMed]
- Beigelman, L.; Karpeisky, A.; Matulic-Adamic, J.; Haeberli, P.; Sweedler, D.; Usman, N. Synthesis of 2′-modified nucleotides and their incorporation into hammerhead ribozymes. Nucleic Acids Res. 1995, 23, 4434–4442. [Google Scholar] [CrossRef] [Green Version]
- Bramlage, B.; Alefelder, S.; Marschall, P.; Eckstein, F. Inhibition of luciferase expression by synthetic hammerhead ribozymes and their cellular uptake. Nucleic Acids Res. 1999, 27, 3159–3167. [Google Scholar] [CrossRef] [Green Version]
- Feng, M.; Jackson, W.H.; Goldman, C.K.; Rancourt, C.; Wang, M.; Dusing, S.K.; Siegal, G.; Curiel, D.T. Stable in vivo gene transduction via a novel adenoviral/retroviral chimeric vector. Nat. Biotechnol. 1997, 15, 866–870. [Google Scholar] [CrossRef]
- Kitajima, I.; Hanyu, N.; Soejima, Y.; Hirano, R.; Arahira, S.; Yamaoka, S.; Yamada, R.; Maruyama, I.; Kaneda, Y. Efficient transfer of synthetic ribozymes into cells using hemagglutinating virus of Japan (HVJ)-cationic liposomes. Application for ribozymes that target human t-cell leukemia virus type I tax/rex mRNA. J. Biol. Chem. 1997, 272, 27099–27106. [Google Scholar] [CrossRef] [Green Version]
- Suga, K.; Tanaka, S.; Umakoshi, H. Liposome membrane can induce self-cleavage of RNA that models the core fragments of hammerhead ribozyme. Eur. Biophys. J. 2016, 45, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Leopold, L.H.; Shore, S.K.; Newkirk, T.A.; Reddy, R.M.; Reddy, E.P. Multi-unit ribozyme-mediated cleavage of bcr-abl mRNA in myeloid leukemias. Blood 1995, 85, 2162–2170. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, L.; Zhu, W.; Guo, R.; Sun, H.; Chen, X.; Deng, N. Barriers and Strategies of Cationic Liposomes for Cancer Gene Therapy. Mol. Ther. Methods Clin. Dev. 2020, 18, 751–764. [Google Scholar] [CrossRef] [PubMed]
- Shoji, Y.; Nakashima, H. Current status of delivery systems to improve target efficacy of oligonucleotides. Curr. Pharm. Des. 2004, 10, 785–796. [Google Scholar] [CrossRef]
- Snyder, D.S.; Wu, Y.; McMahon, R.; Yu, L.; Rossi, J.J.; Forman, S.J. Ribozyme-mediated inhibition of a Philadelphia chromosome-positive acute lymphoblastic leukemia cell line expressing the p190 bcr-abl oncogene. Biol. Blood Marrow Transpl. 1997, 3, 179–186. [Google Scholar]
- Yang, J.P.; Huang, L. Time-dependent maturation of cationic liposome-DNA complex for serum resistance. Gene Ther. 1998, 5, 380–387. [Google Scholar] [CrossRef] [Green Version]
- Farhood, H.; Bottega, R.; Epand, R.M.; Huang, L. Effect of cationic cholesterol derivatives on gene transfer and protein kinase C activity. Biochim. Biophys. Acta 1992, 1111, 239–246. [Google Scholar] [CrossRef]
- Zelphati, O.; Szoka, F.C. Intracellular distribution and mechanism of delivery of oligonucleotides mediated by cationic lipids. Pharm. Res. 1996, 13, 1367–1372. [Google Scholar] [CrossRef]
- Kanasty, R.; Dorkin, J.R.; Vegas, A.; Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater. 2013, 12, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Wang, Y.; Gong, Y.; Lin, X.; Zhao, Y.; Zhi, D.; Zhou, Q.; Zhang, S. Correlation of the cytotoxic effects of cationic lipids with their headgroups. Toxicol. Res. 2018, 7, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Liu, X.; Liao, Y.-P.; Wang, X.; Ahmed, A.; Jiang, W.; Ji, Y.; Meng, H.; Nel, A.E. Breast cancer chemo-immunotherapy through liposomal delivery of an immunogenic cell death stimulus plus interference in the IDO-1 pathway. ACS Nano 2018, 12, 11041–11061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elhissi, A.; Phoenix, D.; Ahmed, W. Some approaches to large-scale manufacturing of liposomes. In Emerging Nanotechnologies for Manufacturing; Elsevier: Amsterdam, The Netherlands, 2015; pp. 402–417. [Google Scholar]
- Coulson, J.M.; Poyner, D.R.; Chantry, A.; Irwin, W.J.; Akhtar, S. A nonantisense sequence-selective effect of a phosphorothioate oligodeoxynucleotide directed against the epidermal growth factor receptor in A431 cells. Mol. Pharmacol. 1996, 50, 314–325. [Google Scholar]
- Sioud, M.; Natvig, J.B.; Førre, O. Preformed ribozyme destroys tumour necrosis factor mRNA in human cells. J. Mol. Biol. 1992, 223, 831–835. [Google Scholar] [CrossRef]
- Sioud, M. Ribozyme modulation of lipopolysaccharide-induced tumor necrosis factor-alpha production by peritoneal cells in vitro and in vivo. Eur. J. Immunol. 1996, 26, 1026–1031. [Google Scholar] [CrossRef]
- Snyder, D.S.; Wu, Y.; Wang, J.L.; Rossi, J.J.; Swiderski, P.; Kaplan, B.E.; Forman, S.J. Ribozyme-mediated inhibition of bcr-abl gene expression in a Philadelphia chromosome-positive cell line. Blood 1993, 82, 600–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarvis, T.C.; Alby, L.J.; Beaudry, A.A.; Wincott, F.E.; Beigelman, L.; McSwiggen, J.A.; Usman, N.; Stinchcomb, D.T. Inhibition of vascular smooth muscle cell proliferation by ribozymes that cleave c-myb mRNA. RNA 1996, 2, 419–428. [Google Scholar] [PubMed]
- Scherr, M.; Grez, M.; Ganser, A.; Engels, J.W. Specific hammerhead ribozyme-mediated cleavage of mutant N-ras mRNA in vitro and ex vivo. Oligoribonucleotides as therapeutic agents. J. Biol. Chem. 1997, 272, 14304–14313. [Google Scholar] [CrossRef] [Green Version]
- Sioud, M.; Sørensen, D.R. A nuclease-resistant protein kinase C alpha ribozyme blocks glioma cell growth. Nat. Biotechnol. 1998, 16, 556–561. [Google Scholar] [CrossRef]
- Konopka, K.; Rossi, J.J.; Swiderski, P.; Slepushkin, V.A.; Düzgüneş, N. Delivery of an anti-HIV-1 ribozyme into HIV-infected cells via cationic liposomes. Biochim. Biophys. Acta 1998, 1372, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Kossen, K.; Vaish, N.K.; Jadhav, V.R.; Pasko, C.; Wang, H.; Jenison, R.; McSwiggen, J.A.; Polisky, B.; Seiwert, S.D. High-throughput ribozyme-based assays for detection of viral nucleic acids. Chem. Biol. 2004, 11, 807–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penchovsky, R. Engineering integrated digital circuits with allosteric ribozymes for scaling up molecular computation and diagnostics. ACS Synth. Biol. 2012, 1, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Liao, A.M.; Pan, W.; Benson, J.C.; Wong, A.D.; Rose, B.J.; Caltagirone, G.T. A Simple Colorimetric System for Detecting Target Antigens by a Three-Stage Signal Transformation-Amplification Strategy. Biochemistry 2018, 57, 5117–5126. [Google Scholar] [CrossRef] [PubMed]
- Camussone, C.M.; Reidel, I.G.; Molineri, A.I.; Cicotello, J.; Miotti, C.; Suarez Archilla, G.A.; Curti, C.C.; Veaute, C.; Calvinho, L.F. Efficacy of immunization with a recombinant S. aureus vaccine formulated with liposomes and ODN-CpG against natural S. aureus intramammary infections in heifers and cows. Res. Vet. Sci. 2022, 145, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Novoa, M.B.; Sarli, M.; Reidel, I.G.; Veaute, C.; Valentini, B.; Primo, M.E. Neospora caninum truncated recombinant proteins formulated with liposomes and CpG-ODNs triggered a humoral immune response in cattle after immunisation and challenge. Vet. Immunol. Immunopathol. 2021, 238, 110285. [Google Scholar] [CrossRef]
- Liu, L.; Yin, M.; Li, Y.; Su, H.; Fang, L.; Sun, X.; Chang, S.; Zhao, P.; Wang, Y. DNA Prime and Recombinant Protein Boost Vaccination Confers Chickens with Enhanced Protection against Chicken Infectious Anemia Virus. Viruses 2022, 14, 2115. [Google Scholar] [CrossRef]
- Mueller, R.S.; Veir, J.; Fieseler, K.V.; Dow, S.W. Use of immunostimulatory liposome-nucleic acid complexes in allergen-specific immunotherapy of dogs with refractory atopic dermatitis—A pilot study. Vet. Dermatol. 2005, 16, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Ommen, P.; Hansen, L.; Hansen, B.K.; Vu-Quang, H.; Kjems, J.; Meyer, R.L. Aptamer-Targeted Drug Delivery for. Front. Cell. Infect. Microbiol. 2022, 12, 814340. [Google Scholar] [CrossRef]
- Lee, E.S.; Walker, C.S.; Moskowitz, J.E.; Johnson, V.A.; Kendall, L.V. Cationic Liposome-Oligonucleotide Complex as an Alternative Adjuvant for Polyclonal Antibody Production in New Zealand White Rabbits (Oryctolaguscuniculus). Comp. Med. 2017, 67, 498–503. [Google Scholar]
- Acosta-Coley, I.; Cervantes-Ceballos, L.; Tejeda-Benítez, L.; Sierra-Márquez, L.; Cabarcas-Montalvo, M.; García-Espiñeira, M.; Coronell-Rodríguez, W.; Arroyo-Salgado, B. Vaccines platforms and COVID-19: What you need to know. Trop. Dis. Travel Med. Vaccines 2022, 8, 1–19. [Google Scholar] [CrossRef]
- Lamb, Y.N. BNT162b2 mRNA COVID-19 vaccine: First approval. Drugs 2021, 81, 495–501. [Google Scholar] [CrossRef]
- Bruce, J.; Johnson, S.B. Exploring the ethics of genetic prioritisation for COVID-19 vaccines. Eur. J. Human Genet. 2022, 30, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Gerber, J.E.; Brewer, J.; Limaye, R.J.; Sutherland, A.; Geller, G.; Spina, C.I.; Salmon, D.A. Ethical and policy implications of vaccinomics in the United States: Community members’ perspectives. Human Vaccines Immunother. 2021, 17, 2133–2144. [Google Scholar] [CrossRef] [PubMed]
- Porter, K.R.; Raviprakash, K. DNA vaccine delivery and improved immunogenicity. Curr. Issues Mol. Biol. 2017, 22, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Porter, K.R.; Raviprakash, K. Nucleic acid (DNA) immunization as a platform for dengue vaccine development. Vaccine 2015, 33, 7135–7140. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Wu, C.; Song, J.; Wang, J.; Zhang, E.; Liu, H.; Yang, D.; Chen, X.; Lu, M.; Xu, Y. DNA immunization with fusion of CTLA-4 to hepatitis B virus (HBV) core protein enhanced Th2 type responses and cleared HBV with an accelerated kinetic. PLoS ONE 2011, 6, e22524. [Google Scholar] [CrossRef] [Green Version]
- Doolan, D.; Hedstrom, R.; Gardner, M.; Sedegah, M.; Wang, H.; Gramzinski, R.; Margalith, M.; Hobart, P.; Hoffman, S. DNA vaccination as an approach to malaria control: Current status and strategies. DNA Vaccin./Genet. Vaccin. 1998, 226, 37–56. [Google Scholar]
- Rodríguez-Morales, O.; Pérez-Leyva, M.M.; Ballinas-Verdugo, M.A.; Carrillo-Sánchez, S.C.; Rosales-Encina, J.L.; Alejandre-Aguilar, R.; Reyes, P.A.; Arce-Fonseca, M. Plasmid DNA immunization with Trypanosoma cruzi genes induces cardiac and clinical protection against Chagas disease in the canine model. Vet. Res. 2012, 43, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Li, M.-J.; Lei, J.-H.; Wang, T.; Lu, S.-J.; Guan, F.; Liu, W.-Q.; Li, Y.-L. Cimetidine enhances the protective effect of GST DNA vaccine against Schistosoma japonicum. Exp. Parasitol. 2011, 128, 427–432. [Google Scholar] [CrossRef]
- Saenz-Badillos, J.; Amin, S.; Granstein, R. RNA as a tumor vaccine: A review of the literature. Exp. Dermatol. 2001, 10, 143–154. [Google Scholar] [CrossRef]
- Joshi, G.; Quadir, S.S.; Yadav, K.S. Road map to the treatment of neglected tropical diseases: Nanocarriers interventions. J. Control. Release 2021, 339, 51–74. [Google Scholar] [CrossRef] [PubMed]
- Mengarda, A.C.; Iles, B.; Longo, J.P.F.; de Moraes, J. Recent approaches in nanocarrier-based therapies for neglected tropical diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022, e1852. [Google Scholar] [CrossRef] [PubMed]
- Maruggi, G.; Zhang, C.; Li, J.; Ulmer, J.B.; Yu, D. mRNA as a transformative technology for vaccine development to control infectious diseases. Mol. Ther. 2019, 27, 757–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.A. Immunologic basis of vaccine vectors. Immunity 2010, 33, 504–515. [Google Scholar] [CrossRef] [Green Version]
- Wollner, C.J.; Richner, M.; Hassert, M.A.; Pinto, A.K.; Brien, J.D.; Richner, J.M. A dengue virus serotype 1 mRNA-LNP vaccine elicits protective immune responses. J. Virol. 2021, 95, e02482-20. [Google Scholar] [CrossRef]
- Cao-Lormeau, V.-M.; Blake, A.; Mons, S.; Lastère, S.; Roche, C.; Vanhomwegen, J.; Dub, T.; Baudouin, L.; Teissier, A.; Larre, P. Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: A case-control study. Lancet 2016, 387, 1531–1539. [Google Scholar] [CrossRef] [Green Version]
- Mlakar, J.; Korva, M.; Tul, N.; Popović, M.; Poljšak-Prijatelj, M.; Mraz, J.; Kolenc, M.; Resman Rus, K.; Vesnaver Vipotnik, T.; Fabjan Vodušek, V. Zika virus associated with microcephaly. N. Engl. J. Med. 2016, 374, 951–958. [Google Scholar] [CrossRef]
- Bollman, B.A.; Nunna, N.; Bahl, K.; Hsiao, C.J.; Bennett, H.; Butler, S.; Foreman, B.; Burgomaster, K.E.; Aleshnick, M.; Kong, W.-P. An optimized messenger RNA vaccine candidate protects non-human primates from Zika virus infection. bioRxiv 2022. [Google Scholar] [CrossRef]
- Machado, F.S.; Dutra, W.O.; Esper, L.; Gollob, K.J.; Teixeira, M.M.; Factor, S.M.; Weiss, L.M.; Nagajyothi, F.; Tanowitz, H.B.; Garg, N.J. Current Understanding of Immunity to Trypanosoma Cruzi Infection and Pathogenesis of Chagas Disease. Semin. Immunopathol. 2012, 34, 753–770. [Google Scholar] [CrossRef] [Green Version]
- Luecke, S.; Paludan, S.R. Molecular requirements for sensing of intracellular microbial nucleic acids by the innate immune system. Cytokine 2017, 98, 4–14. [Google Scholar] [CrossRef]
- Orabi, A.; Maarouf, M.; Alammori, M. Evaluation of immune response and protection induced by V-ATPase subunit F as DNA vaccine against Leishmania tropica (LCED Syrian 01) after detection and sequencing. Avicenna J. Med. Biotechnol. 2020, 12, 9. [Google Scholar] [PubMed]
- Perrie, Y.; Frederik, P.M.; Gregoriadis, G. Liposome-mediated DNA vaccination: The effect of vesicle composition. Vaccine 2001, 19, 3301–3310. [Google Scholar] [CrossRef] [PubMed]
- Arce-Fonseca, M.; Rios-Castro, M.; Carrillo-Sánchez, S.d.C.; Martínez-Cruz, M.; Rodríguez-Morales, O. Prophylactic and therapeutic DNA vaccines against Chagas disease. Parasites Vectors 2015, 8, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lokugamage, N.; Chowdhury, I.H.; Biediger, R.J.; Market, R.V.; Khounlo, S.; Warier, N.D.; Hwang, S.-A.; Actor, J.K.; Woodside, D.G.; Marathi, U. Use of a small molecule integrin activator as a systemically administered vaccine adjuvant in controlling Chagas disease. npj Vaccines 2021, 6, 1–14. [Google Scholar] [CrossRef]
- Maldonado, E.; Morales-Pison, S.; Urbina, F.; Solari, A. Vaccine Design against Chagas Disease Focused on the Use of Nucleic Acids. Vaccines 2022, 10, 587. [Google Scholar] [CrossRef]
Reference | Nucleotide Carried | Target Disease | Main Outcome |
---|---|---|---|
Aleku et al., 2008 [30] | siRNA (Atu027), targets the expression of protein kinase N3 (PKN3) | Preclinical—prostate and pancreatic cancer | Reduction in tumor vessels density |
Schultheis et al., 2016 [31] | siRNA (Atu027), targets the expression of protein kinase N3 (PKN3) | Clinical trial—advanced pancreatic carcinoma | Atu027, in combination with gemcitabine, was well tolerated in the clinical trial. The results suggest the efficacy of Atu027 in the pancreatic carcinoma therapy |
Zhuo et al., 2018 [33] | pcDNA3.1-CSF1-endostatin, mouse endostatin gene | Preclinical—mouse/breast cancer | Tumor suppression by 71% |
Mu et al. (2020) [34] | Herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) suicide gene system | Preclinical—mice hepatocellular carcinoma | Suppressed tumor growth and extended mice survival time |
Zhao et al. (2015) [37] | siRNA, for silencing c-Myc and VEGF oncogenic pathways | Preclinical—mice lung cancer | siRNA silenced distinct oncogenic pathways (c-MYC and VEGF) in mice lung tumors |
Zhu et al. (2019) [38] | siRNA, IGF-1R-siRNA to inhibit tumor growth | Preclinical—mice lung cancer | Controlled lung tumor growth tumor-bearing mice |
Reference | Nucleotide Carried | Target/Application | Main Outcome |
---|---|---|---|
Kranz et al. (2016) [41] | RNA, RNA-Lipoplex that triggers interferon-α (IFNα) release | Macrophages and dendritic cells | Effector and memory T-cell responses were triggered, and interferon-α-dependent rejection of tumors was observed in vivo |
Lorentzen et al. (2022) [39] | mRNA—review article with different vaccine applications | Vaccine against melanoma | Induced durable objective responses in patients with unresectable melanoma |
Gursel et al. (2001) [42] | CpG oligonucleotides, unmethylated oligodeoxynucleotides containing CpG motifs like bacterial nucleotides that trigger immune cells | Immune adjuvants, antiallergens, and immunoprotective agents | Increased 15- to 40-fold antigen immunization in mice models |
Loira-Pastoriza et al. (2021) [43] | CpG oligonucleotides, unmethylated oligodeoxynucleotides containing CpG motifs similar to bacterial nucleotides that trigger immune cells | Immunoadjuvant for murine lung tumors | Liposomes increased CpG effectiveness in controlling murine lung tumors |
Guan et al. (2018) [44] | Spherical nucleic acids, RNA selective for targeting toll-like receptors (TLRs) 7/8 | Dendritic cells | Potently activate TLR7/8 via NF-κΒ signaling |
Callmann (2020) [45] | Spherical nucleic acids, which are oligonucleotides functionalized with hydrophobic carbon chains to increase their liposome encapsulation. In this report, authors used immunostimulatory oligonucleotides | Preclinical—murine breast cancer | Reduce both primary tumor and metastatic growth due to immunostimulant effects |
Reference | Nucleotide Carried | Target/Application | Main Outcome |
---|---|---|---|
Sioud et al., 1992 [96] | Hammerhead ribozyme-mediated suppression of TNF-α through transfection with cationic liposomes. | HL60 and PBMNC cell lines in models of inflammatory rheumatic diseases. | 90% and 85% reduction in tumor necrosis factor alpha mRNA and protein, respectively. |
Sioud, 1996 [97] | Suppression of LPS-induced TNF-α through hammerhead ribozyme-mediated transfection with cationic liposomes. | Mice/Inflammatory rheumatic disease. | 50–70% inhibition of TNF-α gene expression through ribozymes. |
Snyder et al., 1993 [98] | Hammerhead ribozymes with RNA and RNA–DNA hybrid structures. Ribozyme structure cleaved bcr-abl (abnormal fused gene present in chronic leukemia) mRNA. | EM-2 cell line and patient-derived cell lines with blast crisis CML. | Reduced levels of bcr-abl mRNA involved in the pathogenesis of Ph1+ leukemia. |
Leopold et al., 1995 [84] | Transfection of double- and triple-unit ribozymes using liposomes or folic acid–polylysine as carriers. | 32D cells from murine myeloblasts associated with CML model disease. | Reduced levels of bcr-abl mRNA from the tyrosine kinase fusion gene resulting from the bcr gene on chromosome 22 and abl gene on chromosome 9. |
Jarvis et al., 1996 [99] | Hammerhead ribozymes complexed with DOSPA. Cleave c-myb RNA. | Rat aortic smooth muscle cells from female rats. | Reduction in c-myb proto-oncogene mRNA associated with the proliferation of vascular smooth muscle cells. |
Scherr et al., 1997 [100] | Hammerhead ribozymes complexed with DOSPA. Targeting N-ras oncogene. | HeLa cells assays. | Cleavage of N-ras oncogene RNAm in HeLa cells and reduced expression of N-ras/luciferase fusion gene. |
Sioud and Sørensen, 1998 [101] | The complex of modified PKCα ribozyme with cationic liposome. Inhibition of protein kinase Cα. | Solid tumors of malignant glioma. | Inhibition of PKCα gene expression. |
Kossen et al., 2004 [103] | Allosteric half-ribozyme used to detect natural viral sequences variants. | Detect the hepatitis C virus. | Upon binding to the target RNA, the half-ribozyme would go through a conformational change that allows substrate one with biotin on its 3′ and substrate two carrying a 5′-fluorescein to bind together. Being directly detected or its signal could be amplified. |
Penchovsky, 2012 [104] | Allosteric hammerhead ribozyme. | Detect oculopharyngeal muscular dystrophy (OPMD) disorder. | Allosteric hammerhead ribozymes that undergo a conformational change to their active forms in the presence of the RNA-carrying (GCG)11 repeats transcribed from the gene that encodes the human polyadenylate-binding nuclear protein 1 (PABPN1). |
Liao et al., 2018 [105] | Aptamer and an allosteric hammerhead ribozyme. | Detect the bronchodilator theophylline. | Upon binding of the ligand-target and the aptamer, the ribozyme under a conformational change and self-cleavage triggers the amplification of a reporter, which oxidizes a substrate leading to a visible color change. |
Reference | Nucleotide Carried | Target/Application | Main Outcome |
---|---|---|---|
Camussone et al. (2022) [106] | α-toxin gene (plasmid). CpG oligonucleotides, unmethylated oligodeoxynucleotides containing CpG motifs like bacterial nucleotides that trigger immune cells | Immunization against S. aureus intramammary infection (cow mastitis) | Reduction, but not significant of animal mastitis |
Liu et al. (2022) [108] | DNA plasmid (infectious anemia virus sequences) The plasmid was used as a vaccine booster in combination with the antigen exposition | Chicken viral infectious anemia | DNA vaccine alone did not protect against the infection. The combined vaccine (plasmid + antigen) had the best protection against the infection |
Mueller et al. (2005) [109] | DNA plasmid containing CpG oligonucleotides, which are unmethylated oligodeoxynucleotides that trigger immune cells | Immunostimulant against refractory canine atopic dermatitis | The vaccine decreased some signs and symptoms related to atopic dermatitis, as well as a reduction in IL-4 production |
Ommen et al. (2022) [110] | DNA aptamers that target and bound to S. aureus cells | The DNA aptamers were used as targeting molecules for liposome delivery to S. aureus biofilms | The aptamer was useful to improve the delivery of antibiotics entrapped in nano-sized liposomes |
Lee et al. (2017) [111] | Proprietary oligonucleotides (F5881, F5506, T2684, Sigma-Aldrich, St Louis, MO, USA) | Adjuvants in polyclonal antibody production in rabbits | The liposome oligonucleotide complexes were effective as immune adjuvants for polyclonal antibody production in rabbits |
Reference | Nucleotide Carried | Target/Application | Main Outcome |
---|---|---|---|
Yin et al., 2021 [118] | Hepatitis B virus plasmids expressing HBcAg and HBeAg | Hepatitis B (vaccine) | Strong Th1 and Th2 immune response resulting in the elimination of the virus after the challenge |
Rodríguez-Morales et al., 2012 [120] | Plasmids containing Trypanosoma cruzi genes encoding the Tc SP (trans-sialidase protein) and Tc SSP4 expression (amastigote-specific protein) | Chagas disease (vaccine) | Induction of moderate level of protection in immunized dogs |
Li et al., 2011 [121] | Plasmid containing the gene encoding glutathione S-transferase of Schistosoma japonicum | Schistosomiasis (vaccine) | The reduction rate of worm and egg burdens in the pEGFP-Sj26GST plus CIM group was more than 68% and higher than that in pEGFP-Sj26GST alone (p < 0.01) |
Wollner et al., 2021 [127] | Nucleotide-modified mRNA vaccine encoding the membrane and envelope structural proteins from DENV serotype 1 encapsulated in lipid nanoparticles | Dengue (vaccine) | Robust antiviral immune responses comparable to viral infection, with high levels of neutralizing antibody titers and antiviral CD4+ and CD8+ T cells |
Bollman et al., 2022 [130] | mRNA of VLPs Zika virus. mRNA-1325 encodes Zika Virus membrane envelope proteins | Zika (vaccine) | Complete protection against ZIKV challenge in nonhuman primates |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardador, C.M.; Muehlmann, L.A.; Coelho, C.M.; Silva, L.P.; Garay, A.V.; Carvalho, A.M.d.S.; Bastos, I.M.D.; Longo, J.P.F. Nucleotides Entrapped in Liposome Nanovesicles as Tools for Therapeutic and Diagnostic Use in Biomedical Applications. Pharmaceutics 2023, 15, 873. https://doi.org/10.3390/pharmaceutics15030873
Cardador CM, Muehlmann LA, Coelho CM, Silva LP, Garay AV, Carvalho AMdS, Bastos IMD, Longo JPF. Nucleotides Entrapped in Liposome Nanovesicles as Tools for Therapeutic and Diagnostic Use in Biomedical Applications. Pharmaceutics. 2023; 15(3):873. https://doi.org/10.3390/pharmaceutics15030873
Chicago/Turabian StyleCardador, Camila Magalhães, Luis Alexandre Muehlmann, Cíntia Marques Coelho, Luciano Paulino Silva, Aisel Valle Garay, Alexandra Maria dos Santos Carvalho, Izabela Marques Dourado Bastos, and João Paulo Figueiró Longo. 2023. "Nucleotides Entrapped in Liposome Nanovesicles as Tools for Therapeutic and Diagnostic Use in Biomedical Applications" Pharmaceutics 15, no. 3: 873. https://doi.org/10.3390/pharmaceutics15030873
APA StyleCardador, C. M., Muehlmann, L. A., Coelho, C. M., Silva, L. P., Garay, A. V., Carvalho, A. M. d. S., Bastos, I. M. D., & Longo, J. P. F. (2023). Nucleotides Entrapped in Liposome Nanovesicles as Tools for Therapeutic and Diagnostic Use in Biomedical Applications. Pharmaceutics, 15(3), 873. https://doi.org/10.3390/pharmaceutics15030873