Topical Delivery of Diacetyl Boldine in a Microemulsion Formulation for Chemoprotection against Melanoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Construction of Pseudo Ternary Phase Diagram and Preparation of Microemulsions
2.3. Preparation and Characterization of Microemulsions
2.4. In Vitro Release of DAB from Microemulsions
2.5. Skin Permeation
2.6. Data Analysis
2.7. Skin Retention
2.8. High-Performance Liquid Chromatography (HPLC) Analysis
2.9. Measurement of Cytotoxicity by MTT Assay
2.10. Live/Dead Cell Staining
2.11. Statistical Analysis
3. Results
3.1. Preparation and Characterization of Microemulsions
3.2. In Vitro Release and Skin Permeation Studies
3.3. Cell Cytotoxicity Assays
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Cancer Institute. Cancer Stat Facts: Melanoma of the Skin. Available online: https://seer.cancer.gov/statfacts/html/melan.html (accessed on 1 December 2022).
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Behranvand, N.; Nasri, F.; Emameh, R.Z.; Khani, P.; Hosseini, A.; Garssen, J.; Falak, R. Chemotherapy: A double-edged sword in cancer treatment. Cancer Immunol. Immunother. 2022, 71, 507–526. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, J.; Abbasi, B.H.; Mahmood, T.; Kanwal, S.; Ali, B.; Shah, S.A.; Khalil, A.T. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed. 2017, 7, 1129–1150. [Google Scholar] [CrossRef]
- Sithranga Boopathy, N.; Kathiresan, K. Anticancer drugs from marine flora: An overview. J. Oncol. 2010, 2010, 214186. [Google Scholar] [CrossRef] [Green Version]
- Gerhardt, D.; Bertola, G.; Bernardi, A.; Pires, E.; Frozza, R.; Edelweiss, M.; Battastini, A.; Salbego, C. Boldine Attenuates Cancer Cell Growth in an Experimental Model of Glioma In vivo. J. Cancer Sci. Ther. 2013, 5, 194–199. [Google Scholar] [CrossRef]
- Gerhardt, D.; Bertola, G.; Dietrich, F.; Figueiro, F.; Zanotto-Filho, A.; Fonseca, J.C.M.; Morrone, F.B.; Barrios, C.H.; Battastini, A.M.O.; Salbego, C.G. Boldine induces cell cycle arrest and apoptosis in T24 human bladder cancer cell line via regulation of ERK, AKT, and GSK-3β. Urol. Oncol. Semin. Orig. Investig. 2014, 32, 36.e1–36.e9. [Google Scholar] [CrossRef]
- Subramaniam, N.; Kannan, P.; Thiruvengadam, D. Hepatoprotective effect of boldine against diethylnitrosamine-induced hepatocarcinogenesis in wistar rats. J. Biochem. Mol. Toxicol. 2019, 33, e22404. [Google Scholar] [CrossRef]
- Paydar, M.; Kamalidehghan, B.; Wong, Y.L.; Wong, W.F.; Looi, C.Y.; Mustafa, M.R. Evaluation of cytotoxic and chemotherapeutic properties of boldine in breast cancer using in vitro and in vivo models. Drug Des. Dev. Ther. 2014, 8, 719. [Google Scholar]
- Russo, A.; Cardile, V.; Caggia, S.; Gunther, G.; Troncoso, N.; Garbarino, J. Boldo prevents UV light and nitric oxide-mediated plasmid DNA damage and reduces the expression of Hsp70 protein in melanoma cancer cells. J. Pharm. Pharmacol. 2011, 63, 1219–1229. [Google Scholar] [CrossRef]
- Mas-Chamberlin, C.; Peschard, O.; Leroux, R.; Mondon, P.; Lamy, F.; Lintner, K. Di-acetyl-nor-aporphines: Novel Molecules and Novel Mechanism to inhibit Melanogenesis. SÖFW-J. 2004, 130, 2–10. [Google Scholar]
- Khmaladze, I.; Österlund, C.; Smiljanic, S.; Hrapovic, N.; Lafon-Kolb, V.; Amini, N.; Xi, L.; Fabre, S. A novel multifunctional skin care formulation with a unique blend of antipollution, brightening and antiaging active complexes. J. Cosmet. Dermatol. 2020, 19, 1415–1425. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.N.; Moraes, C.A.P. Bioactive peptides: Applications and relevance for cosmeceuticals. Cosmetics 2018, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- PubChem Compound Summary for CID 11732365, Diacetyl Boldine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Diacetyl-boldine (accessed on 5 March 2023).
- Pratchyapurit, W.O. Combined use of two formulations containing diacetyl boldine, TGF-β1 biomimetic oligopeptide-68 with other hypopigmenting/exfoliating agents and sunscreen provides effective and convenient treatment for facial melasma. Either is equal to or is better than 4% hydroquinone on normal skin. J. Cosmet. Dermatol. 2016, 15, 131–144. [Google Scholar] [PubMed]
- Morganti, P.; Del Ciotto, P.; Carezzi, F.; Guarneri, F.; Yeo, Y.J. Skin lightening efficacy of new formulations enhanced by chitin nanoparticles delivery system. Note I. J. Appl. Cosmetol 2014, 32, 57–71. [Google Scholar]
- Joseph, S. Synthetic and Biological Exploration of (+)-Boldine-Identification of Potential CNS Receptor Ligands. Master’s Thesis, City University of New York, New York, NY, USA, 2016. [Google Scholar]
- Lv, X.; Liu, T.; Ma, H.; Tian, Y.; Li, L.; Li, Z.; Gao, M.; Zhang, J.; Tang, Z. Preparation of essential oil-based microemulsions for improving the solubility, pH stability, photostability, and skin permeation of quercetin. AAPS PharmSciTech 2017, 18, 3097–3104. [Google Scholar] [CrossRef]
- Panapisal, V.; Charoensri, S.; Tantituvanont, A. Formulation of microemulsion systems for dermal delivery of silymarin. AAPS PharmSciTech 2012, 13, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Rangsimawong, W.; Wattanasri, P.; Tonglairoum, P.; Akkaramongkolporn, P.; Rojanarata, T.; Ngawhirunpat, T.; Opanasopit, P. Development of microemulsions and microemulgels for enhancing transdermal delivery of Kaempferia parviflora extract. AAPS PharmSciTech 2018, 19, 2058–2067. [Google Scholar] [CrossRef]
- Tabosa, M.A.M.; de Andrade, A.R.B.; Lira, A.A.M.; Sarmento, V.H.V.; de Santana, D.P.; Leal, L.B. Microemulsion formulations for the transdermal delivery of lapachol. AAPS PharmSciTech 2018, 19, 1837–1846. [Google Scholar] [CrossRef]
- Rhee, Y.-S.; Choi, J.-G.; Park, E.-S.; Chi, S.-C. Transdermal delivery of ketoprofen using microemulsions. Int. J. Pharm. 2001, 228, 161–170. [Google Scholar] [CrossRef]
- Dreher, F.; Walde, P.; Walther, P.; Wehrli, E. Interaction of a lecithin microemulsion gel with human stratum corneum and its effect on transdermal transport. J. Control. Release 1997, 45, 131–140. [Google Scholar] [CrossRef]
- Kogan, A.; Garti, N. Microemulsions as transdermal drug delivery vehicles. Adv. Colloid Interface Sci. 2006, 123–126, 369–385. [Google Scholar] [CrossRef] [PubMed]
- Kreilgaard, M. Influence of microemulsions on cutaneous drug delivery. Adv. Drug Deliv. Rev. 2002, 54, S77–S98. [Google Scholar] [CrossRef] [PubMed]
- Salerno, C.; Carlucci, A.M.; Bregni, C. Study of in vitro drug release and percutaneous absorption of fluconazole from topical dosage forms. AAPS PharmSciTech 2010, 11, 986–993. [Google Scholar] [CrossRef] [Green Version]
- Alsaqr, A.; Rasoully, M.; Musteata, F.M. Investigating transdermal delivery of vitamin D3. AAPS PharmSciTech 2015, 16, 963–972. [Google Scholar] [CrossRef]
- Scomoroscenco, C.; Teodorescu, M.; Raducan, A.; Stan, M.; Voicu, S.N.; Trica, B.; Ninciuleanu, C.M.; Nistor, C.L.; Mihaescu, C.I.; Petcu, C.; et al. Novel gel microemulsion as topical drug delivery system for curcumin in dermatocosmetics. Pharmaceutics 2021, 13, 505. [Google Scholar] [CrossRef]
- Almawash, S.; Quadir, S.S.; Al Saqr, A.; Sharma, G.; Raza, K. Dual Delivery of Fluticasone Propionate and Levocetirizine Dihydrochloride for the Management of Atopic Dermatitis Using a Microemulsion-Based Topical Gel. ACS Omega 2022, 7, 7696–7705. [Google Scholar] [CrossRef]
- Siepmann, J.; Peppas, N.A. Higuchi equation: Derivation, applications, use and misuse. Int. J. Pharm. 2011, 418, 6–12. [Google Scholar] [CrossRef]
- Mortazavi, S.A.; Pishrochi, S.; Azar, Z.J. Formulation and in-vitro evaluation of tretinoin microemulsion as a potential carrier for dermal drug delivery. Iran. J. Pharm. Res. IJPR 2013, 12, 599–609. [Google Scholar]
- Singh, V.K.; Anis, A.; Al-Zahrani, S.; Pal, K. Microemulsions of sorbitans and its derivatives for iontophoretic drug delivery. Int. J. Electrochem. Sci. 2015, 10, 2239–2252. [Google Scholar]
- Schlupp, P.; Weber, M.; Schmidts, T.; Geiger, K.; Runkel, F. Development and validation of an alternative disturbed skin model by mechanical abrasion to study drug penetration. Results Pharma Sci. 2014, 4, 26–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fantini, A.; Demurtas, A.; Nicoli, S.; Padula, C.; Pescina, S.; Santi, P. In vitro skin retention of crisaborole after topical application. Pharmaceutics 2020, 12, 491. [Google Scholar] [CrossRef]
- Datta, D.; Panchal, D.S.; Venuganti, V.V.K. Transdermal delivery of vancomycin hydrochloride: Influence of chemical and physical permeation enhancers. Int. J. Pharm. 2021, 602, 120663. [Google Scholar] [CrossRef] [PubMed]
- Paolino, D.; Ventura, C.A.; Nistico, S.; Puglisi, G.; Fresta, M. Lecithin microemulsions for the topical administration of ketoprofen: Percutaneous adsorption through human skin and in vivo human skin tolerability. Int. J. Pharm. 2002, 244, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Kriwet, K.; Müller-Goymann, C.C. Diclofenac release from phospholipid drug systems and permeation through excised human stratum corneum. Int. J. Pharm. 1995, 125, 231–242. [Google Scholar] [CrossRef]
- Peira, E.; Carlotti, M.E.; Cavalli, R.; Trotta, M. Azelaic acid sodium salt in the formulation of microemulsions for topical applications. J. Drug Deliv. Sci. Technol. 2006, 16, 375–379. [Google Scholar] [CrossRef]
- Arima, H.; Miyaji, T.; Irie, T.; Hirayama, F.; Uekama, K. Enhancing effect of hydroxypropyl-β-cyclodextrin on cutaneous penetration and activation of ethyl 4-biphenylyl acetate in hairless mouse skin. Eur. J. Pharm. Sci. 1998, 6, 53–59. [Google Scholar] [CrossRef]
- Zu, Q.; Yu, Y.; Bi, X.; Zhang, R.; Di, L. Microneedle-assisted percutaneous delivery of a Tetramethylpyrazine-loaded microemulsion. Molecules 2017, 22, 2022. [Google Scholar] [CrossRef] [Green Version]
- Mojeiko, G.; de Brito, M.; Salata, G.C.; Lopes, L.B. Combination of microneedles and microemulsions to increase celecoxib topical delivery for potential application in chemoprevention of breast cancer. Int. J. Pharm. 2019, 560, 365–376. [Google Scholar] [CrossRef]
- Annaji, M.; Mita, N.; Rangari, S.; Aldawsari, M.F.; Alsaqr, A.; Poudel, I.; Fasina, O.; Babu, R.J. Enhanced Topical Co-delivery of Acyclovir and Lidocaine Gel Formulation Across Dermatomed Human Skin. AAPS PharmSciTech 2022, 23, 305. [Google Scholar] [CrossRef]
- Nimbkar, S.; Leena, M.M.; Moses, J.; Anandharamakrishnan, C. Medium chain triglycerides (MCT): State-of-the-art on chemistry, synthesis, health benefits and applications in food industry. Compr. Rev. Food Sci. Food Saf. 2022, 21, 843–867. [Google Scholar] [CrossRef] [PubMed]
- Fiume, Z. Final report on the safety assessment of Lecithin and Hydrogenated Lecithin. Int. J. Toxicol. 2001, 20, 21–45. [Google Scholar] [PubMed]
- Chen, H.; Chang, X.; Weng, T.; Zhao, X.; Gao, Z.; Yang, Y.; Xu, H.; Yang, X. A study of microemulsion systems for transdermal delivery of triptolide. J. Control. Release 2004, 98, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Strickley, R.G. Solubilizing excipients in oral and injectable formulations. Pharm. Res. 2004, 21, 201–230. [Google Scholar] [CrossRef]
- Ray, P.D.; Huang, B.-W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 2012, 24, 981–990. [Google Scholar] [CrossRef] [Green Version]
- Konrath, E.L.; Santin, K.; Nassif, M.; Latini, A.; Henriques, A.; Salbego, C. Antioxidant and pro-oxidant properties of boldine on hippocampal slices exposed to oxygen–glucose deprivation in vitro. Neurotoxicology 2008, 29, 1136–1140. [Google Scholar] [CrossRef]
- Kettler, K.; Veltman, K.; van De Meent, D.; van Wezel, A.; Hendriks, A.J. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ. Toxicol. Chem. 2014, 33, 481–492. [Google Scholar] [CrossRef]
- Qu, D.; Ma, Y.; Sun, W.; Chen, Y.; Zhou, J.; Liu, C.; Huang, M. Microemulsion-based synergistic dual-drug codelivery system for enhanced apoptosis of tumor cells. Int. J. Nanomed. 2015, 10, 1173. [Google Scholar]
- Chen, H.; Guan, Y.; Baek, S.J.; Zhong, Q. Caffeic acid phenethyl ester loaded in microemulsions: Enhanced in vitro activity against colon and breast cancer cells and possible cellular mechanisms. Food Biophys. 2019, 14, 80–89. [Google Scholar] [CrossRef]
- Monteagudo, E.; Gándola, Y.; González, L.; Bregni, C.; Carlucci, A. Development, characterization, and in vitro evaluation of tamoxifen microemulsions. J. Drug Deliv. 2012, 2012, 236713. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.X.; Fu, X.; Chen, J.; Zhou, L.; Chen, G. Preparation and characterization of microemulsions of myricetin for improving its antiproliferative and antioxidative activities and oral bioavailability. J. Agric. Food Chem. 2016, 64, 6286–6294. [Google Scholar] [CrossRef] [PubMed]
- Ting, Y.; Chiou, Y.-S.; Pan, M.-H.; Ho, C.-T.; Huang, Q. In vitro and in vivo anti-cancer activity of tangeretin against colorectal cancer was enhanced by emulsion-based delivery system. J. Funct. Foods 2015, 15, 264–273. [Google Scholar] [CrossRef]
- Bondì, M.L.; Emma, M.R.; Botto, C.; Augello, G.; Azzolina, A.; Di Gaudio, F.; Craparo, E.F.; Cavallaro, G.; Bachvarov, D.; Cervello, M. Biocompatible lipid nanoparticles as carriers to improve curcumin efficacy in ovarian cancer treatment. J. Agric. Food Chem. 2017, 65, 1342–1352. [Google Scholar] [CrossRef] [PubMed]
Formulation Code | ME1 | ME2 | F1 | F2 |
---|---|---|---|---|
Composition (%w/w) | ||||
Diacetyl Boldine | 0% | 0% | 1% | 1% |
MCT Oil | 20% | 30% | 20% | 30% |
Lecithin | 13% | 13% | 13% | 13% |
Solutol® HS 15 | 13% | 13% | 13% | 13% |
Propylene Glycol | 25% | 25% | 25% | 25% |
Water | 29% | 19% | 28% | 18% |
Characteristics | ||||
pH | 5.47 ± 0.20 | 5.40 ± 0.16 | 6.23 ± 0.03 | 6.20 ± 0.04 |
Particle size (nm) | 49.77 ± 2.79 | 35.19 ± 0.24 | 54.96 ± 0.47 | 33.48 ± 0.28 |
Polydispersity Index (P.D.I.) | 0.151 ± 0.03 | 0.085 ± 0.01 | 0.146 ± 0.003 | 0.06 ± 0.002 |
Viscosity (at 1 rpm, cP) | 510.13 ± 3.25 | 536.26 ± 3.25 | 506 ± 3.30 | 551.56 ± 6.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Saqr, A.; Annaji, M.; Poudel, I.; Aldawsari, M.F.; Alrbyawi, H.; Mita, N.; Dhanasekaran, M.; Boddu, S.H.S.; Neupane, R.; Tiwari, A.K.; et al. Topical Delivery of Diacetyl Boldine in a Microemulsion Formulation for Chemoprotection against Melanoma. Pharmaceutics 2023, 15, 901. https://doi.org/10.3390/pharmaceutics15030901
Al Saqr A, Annaji M, Poudel I, Aldawsari MF, Alrbyawi H, Mita N, Dhanasekaran M, Boddu SHS, Neupane R, Tiwari AK, et al. Topical Delivery of Diacetyl Boldine in a Microemulsion Formulation for Chemoprotection against Melanoma. Pharmaceutics. 2023; 15(3):901. https://doi.org/10.3390/pharmaceutics15030901
Chicago/Turabian StyleAl Saqr, Ahmed, Manjusha Annaji, Ishwor Poudel, Mohammed F. Aldawsari, Hamad Alrbyawi, Nur Mita, Muralikrishnan Dhanasekaran, Sai H. S. Boddu, Rabin Neupane, Amit K. Tiwari, and et al. 2023. "Topical Delivery of Diacetyl Boldine in a Microemulsion Formulation for Chemoprotection against Melanoma" Pharmaceutics 15, no. 3: 901. https://doi.org/10.3390/pharmaceutics15030901
APA StyleAl Saqr, A., Annaji, M., Poudel, I., Aldawsari, M. F., Alrbyawi, H., Mita, N., Dhanasekaran, M., Boddu, S. H. S., Neupane, R., Tiwari, A. K., & Babu, R. J. (2023). Topical Delivery of Diacetyl Boldine in a Microemulsion Formulation for Chemoprotection against Melanoma. Pharmaceutics, 15(3), 901. https://doi.org/10.3390/pharmaceutics15030901