Quatsomes Loaded with Squaraine Dye as an Effective Photosensitizer for Photodynamic Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Bromo-Squaraine-C12 Dye
2.1.1. Quaternarization Synthesis of Indolenine 5-Bromo-1-dodecyl-2,3,3-trimethyl-3H-indol-1-ium Iodide
2.1.2. Synthesis of Br-Sq-C12
2.2. Preparation of Dye-Loaded Chol/Stk QS by DELOS-Susp
Determination of the Dye Concentration and Dye Loading in QS Nanovesicles
2.3. Spectroscopic Characterization of Free Br-Sq-C12 and Dye-Loaded QSs
2.3.1. UV–Vis Spectroscopy, Molar Extinction Coefficient, and Solvatochromism
2.3.2. Fluorescence Spectroscopy
2.4. Physicochemical Characterization and Stability of Dye-Loaded QS
2.4.1. Dynamic Light Scattering (DLS) and Electrophoretic Light Scattering (ELS)
2.4.2. Cryogenic Transmission Electron Microscopy
2.5. Evaluation of ROS Generation with DPBF and DCFH
2.6. Biological Assays
2.6.1. Cell Culture, Cell Viability, and Phototoxicity Assay
2.6.2. Cellular Uptake
2.6.3. Statistical Analysis
3. Results and Discussion
3.1. Synthesis of Br-Sq-C12 and Preparation of Br-Sq-C12-Loaded Quatsomes
3.2. Physicochemical Properties
3.3. Spectroscopic Characterization
3.4. Evaluation of Colloidal Stability and Photostability
3.5. ROS Production
3.6. Cytotoxicity and PDT Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, Y.M.; Adelzadeh, L.; Wu, J.J. Photodynamic Therapy for Psoriasis. J. Dermatol. Treat. 2015, 26, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Makuch, S.; Dróżdż, M.; Makarec, A.; Ziółkowski, P.; Woźniak, M. An Update on Photodynamic Therapy of Psoriasis—Current Strategies and Nanotechnology as a Future Perspective. Int. J. Mol. Sci. 2022, 23, 9845. [Google Scholar] [CrossRef]
- Xu, H.-Z.; Li, T.-F.; Ma, Y.; Li, K.; Zhang, Q.; Xu, Y.-H.; Zhang, Y.-C.; Zhao, L.; Chen, X. Targeted Photodynamic Therapy of Glioblastoma Mediated by Platelets with Photo-Controlled Release Property. Biomaterials 2022, 290, 121833. [Google Scholar] [CrossRef]
- Akasov, R.A.; Sholina, N.V.; Khochenkov, D.A.; Alova, A.V.; Gorelkin, P.V.; Erofeev, A.S.; Generalova, A.N.; Khaydukov, E.V. Photodynamic Therapy of Melanoma by Blue-Light Photoactivation of Flavin Mononucleotide. Sci. Rep. 2019, 9, 9679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolmans, D.E.J.G.J.; Fukumura, D.; Jain, R.K. Photodynamic Therapy for Cancer. Nat. Rev. Cancer 2003, 3, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Gunaydin, G.; Gedik, M.E.; Ayan, S. Photodynamic Therapy—Current Limitations and Novel Approaches. Front. Chem. 2021, 9, 691697. [Google Scholar] [CrossRef]
- McDonald, I.A.N.J.; Dougherty, T.J. Basic Principles of Photodynamic Therapy. J. Porphyr. Phthalocyanines 2001, 05, 105–129. [Google Scholar] [CrossRef]
- Henderson, B.W.; Dougherty, T.J. How does Photodnamic therapy work? Photochem. Photobiol. 1992, 55, 145–157. [Google Scholar] [CrossRef]
- Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic Therapy—Mechanisms, Photosensitizers and Combinations. Biomed. Pharmacother. 2018, 106, 1098–1107. [Google Scholar] [CrossRef] [PubMed]
- Falk-Mahapatra, R.; Gollnick, S.O. Photodynamic Therapy and Immunity: An Update. Photochem. Photobiol. 2020, 96, 550–559. [Google Scholar] [CrossRef] [Green Version]
- Allison, R.R.; Downie, G.H.; Cuenca, R.; Hu, X.-H.; Childs, C.J.H.; Sibata, C.H. Photosensitizers in Clinical PDT. Photodiagn. Photodyn. 2004, 1, 27–42. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, A.E.; Gallagher, W.M.; Byrne, A.T. Porphyrin and Nonporphyrin Photosensitizers in Oncology: Preclinical and Clinical Advances in Photodynamic Therapy. Photochem. Photobiol. 2009, 85, 1053–1074. [Google Scholar] [CrossRef]
- Baskaran, R.; Lee, J.; Yang, S.-G. Clinical Development of Photodynamic Agents and Therapeutic Applications. Biomater. Res. 2018, 22, 25. [Google Scholar] [CrossRef]
- Berlanda, J.; Kiesslich, T.; Engelhardt, V.; Krammer, B.; Plaetzer, K. Comparative in Vitro Study on the Characteristics of Different Photosensitizers Employed in PDT. J. Photochem. Photobiol. B 2010, 100, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, T. Photodynamic Therapy Expands Its Horizons. JNCI J. Natl. Cancer Inst. 1997, 89, 112–114. [Google Scholar] [CrossRef] [Green Version]
- Wyss, P.; Schwarz, V.; Dobler-Girdziunaite, D.; Hornung, R.; Walt, H.; Degen, A.; Fehr, M. Photodynamic Therapy of Locoregional Breast Cancer Recurrences Using a Chlorin-Type Photosensitizer. Int. J. Cancer 2001, 93, 720–724. [Google Scholar] [CrossRef]
- Bown, S.G.; Rogowska, A.Z.; Whitelaw, D.E.; Lees, W.R.; Lovat, L.B.; Ripley, P.; Jones, L.; Wyld, P.; Gillams, A.; Hatfield, A.W.R. Photodynamic Therapy for Cancer of the Pancreas. Gut 2002, 50, 549. [Google Scholar] [CrossRef] [PubMed]
- Dereje, D.M.; Pontremoli, C.; Moran Plata, M.J.; Visentin, S.; Barbero, N. Polymethine Dyes for PDT: Recent Advances and Perspectives to Drive Future Applications. Photochem. Photobiol. Sci. 2022, 21, 397–419. [Google Scholar] [CrossRef] [PubMed]
- Avirah, R.R.; Jayaram, D.T.; Adarsh, N.; Ramaiah, D. Squaraine Dyes in PDT: From Basic Design to in Vivo Demonstration. Org. Biomol. Chem. 2012, 10, 911–920. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, S.; Priefer, R. Non-Porphyrin Dyes Used as Photosensitizers in Photodynamic Therapy. J. Drug Deliv. Sci. Technol. 2020, 60, 101979. [Google Scholar] [CrossRef]
- Lange, N.; Szlasa, W.; Saczko, J.; Chwiłkowska, A. Potential of Cyanine Derived Dyes in Photodynamic Therapy. Pharmaceutics 2021, 13, 818. [Google Scholar] [CrossRef]
- Pontremoli, C.; Chinigò, G.; Galliano, S.; Moran Plata, M.J.; Dereje, D.M.; Sansone, E.; Gilardino, A.; Barolo, C.; Fiorio Pla, A.; Visentin, S.; et al. Photosensitizers for Photodynamic Therapy: Structure-Activity Analysis of Cyanine Dyes through Design of Experiments. Dye. Pigment. 2023, 210, 111047. [Google Scholar] [CrossRef]
- Ilina, K.; MacCuaig, W.M.; Laramie, M.; Jeouty, J.N.; McNally, L.R.; Henary, M. Squaraine Dyes: Molecular Design for Different Applications and Remaining Challenges. Bioconjugate Chem. 2020, 31, 194–213. [Google Scholar] [CrossRef] [PubMed]
- Chinigò, G.; Gonzalez-Paredes, A.; Gilardino, A.; Barbero, N.; Barolo, C.; Gasco, P.; Fiorio Pla, A.; Visentin, S. Polymethine Dyes-Loaded Solid Lipid Nanoparticles (SLN) as Promising Photosensitizers for Biomedical Applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 271, 120909. [Google Scholar] [CrossRef] [PubMed]
- Escudero, A.; Carrillo-Carrión, C.; Castillejos, M.C.; Romero-Ben, E.; Rosales-Barrios, C.; Khiar, N. Photodynamic Therapy: Photosensitizers and Nanostructures. Mater. Chem. Front. 2021, 5, 3788–3812. [Google Scholar] [CrossRef]
- Miletto, I.; Fraccarollo, A.; Barbero, N.; Barolo, C.; Cossi, M.; Marchese, L.; Gianotti, E. Mesoporous Silica Nanoparticles Incorporating Squaraine-Based Photosensitizers: A Combined Experimental and Computational Approach. Dalton Trans. 2018, 47, 3038–3046. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Nadal, G.; Köber, M.; Nsamela, A.; Terenziani, F.; Sissa, C.; Pescina, S.; Sonvico, F.; Gazzali, A.M.; Wahab, H.A.; Grisanti, L.; et al. Fluorescent Multifunctional Organic Nanoparticles for Drug Delivery and Bioimaging: A Tutorial Review. Pharmaceutics 2022, 14, 2498. [Google Scholar] [CrossRef]
- Jia, H.-R.; Zhu, Y.-X.; Xu, K.-F.; Liu, X.; Wu, F.-G. Plasma Membrane-Anchorable Photosensitizing Nanomicelles for Lipid Raft-Responsive and Light-Controllable Intracellular Drug Delivery. J. Control. Release 2018, 286, 103–113. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, L.; Cao, H.; Li, Q.; Li, Y.; Han, M.; Wang, H.; Li, J. Photodynamic Therapy with Liposomes Encapsulating Photosensitizers with Aggregation-Induced Emission. Nano Lett. 2019, 19, 1821–1826. [Google Scholar] [CrossRef]
- Dong, S.; Teo, J.D.W.; Chan, L.Y.; Lee, C.-L.K.; Sou, K. Far-Red Fluorescent Liposomes for Folate Receptor-Targeted Bioimaging. ACS Appl. Nano Mater. 2018, 1, 1009–1013. [Google Scholar] [CrossRef]
- Sun, Y.; Geng, X.; Wang, Y.; Su, X.; Han, R.; Wang, J.; Li, X.; Wang, P.; Zhang, K.; Wang, X. Highly Efficient Water-Soluble Photosensitizer Based on Chlorin: Synthesis, Characterization, and Evaluation for Photodynamic Therapy. ACS Pharm. Transl. Sci. 2021, 4, 802–812. [Google Scholar] [CrossRef] [PubMed]
- Drogat, N.; Gady, C.; Granet, R.; Sol, V. Design and Synthesis of Water-Soluble Polyaminated Chlorins and Bacteriochlorins—With near-Infrared Absorption. Dye. Pigment. 2013, 98, 609–614. [Google Scholar] [CrossRef]
- Han, J.; Park, W.; Park, S.; Na, K. Photosensitizer-Conjugated Hyaluronic Acid-Shielded Polydopamine Nanoparticles for Targeted Photomediated Tumor Therapy. ACS Appl. Mater. Interfaces 2016, 8, 7739–7747. [Google Scholar] [CrossRef]
- Sheng, Z.; Hu, D.; Zheng, M.; Zhao, P.; Liu, H.; Gao, D.; Gong, P.; Gao, G.; Zhang, P.; Ma, Y.; et al. Smart Human Serum Albumin-Indocyanine Green Nanoparticles Generated by Programmed Assembly for Dual-Modal Imaging-Guided Cancer Synergistic Phototherapy. ACS Nano 2014, 8, 12310–12322. [Google Scholar] [CrossRef] [PubMed]
- Son, J.; Yang, S.M.; Yi, G.; Roh, Y.J.; Park, H.; Park, J.M.; Choi, M.-G.; Koo, H. Folate-Modified PLGA Nanoparticles for Tumor-Targeted Delivery of Pheophorbide a in Vivo. Biochem. Biophys. Res. Commun. 2018, 498, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor Vascular Permeability and the EPR Effect in Macromolecular Therapeutics: A Review. J. Control. Release 2000, 65, 271–284. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, U.S. Liposomes in Drug Delivery: Progress and Limitations. Int. J. Pharm. 1997, 154, 123–140. [Google Scholar] [CrossRef]
- Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and Challenges of Liposome Assisted Drug Delivery. Front Pharm. 2015, 6, 286. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.-H.; Lim, S.-J.; Lee, M.-K. Chitosan-Coated Liposomes to Stabilize and Enhance Transdermal Delivery of Indocyanine Green for Photodynamic Therapy of Melanoma. Carbohydr. Polym. 2019, 224, 115143. [Google Scholar] [CrossRef]
- Köber, M.; Illa-Tuset, S.; Ferrer-Tasies, L.; Moreno-Calvo, E.; Tatkiewicz, W.I.; Grimaldi, N.; Piña, D.; Pérez, A.P.; Lloveras, V.; Vidal-Gancedo, J.; et al. Stable Nanovesicles Formed by Intrinsically Planar Bilayers. J. Colloid Interface Sci. 2023, 631, 202–211. [Google Scholar] [CrossRef]
- Ferrer-Tasies, L.; Moreno-Calvo, E.; Cano-Sarabia, M.; Aguilella-Arzo, M.; Angelova, A.; Lesieur, S.; Ricart, S.; Faraudo, J.; Ventosa, N.; Veciana, J. Quatsomes: Vesicles Formed by Self-Assembly of Sterols and Quaternary Ammonium Surfactants. Langmuir 2013, 29, 6519–6528. [Google Scholar] [CrossRef] [PubMed]
- Morla-Folch, J.; Vargas-Nadal, G.; Zhao, T.; Sissa, C.; Ardizzone, A.; Kurhuzenkau, S.; Köber, M.; Uddin, M.; Painelli, A.; Veciana, J.; et al. Dye-Loaded Quatsomes Exhibiting FRET as Nanoprobes for Bioimaging. ACS Appl. Mater. Interfaces 2020, 12, 20253–20262. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Nadal, G.; Muñoz-Ubeda, M.; Alamo, P.; Arnal, M.M.; Céspedes, V.; Köber, M.; Gonzalez, E.; Ferrer-Tasies, L.; Vinardell, M.P.; Mangues, R.; et al. MKC-Quatsomes: A Stable Nanovesicle Platform for Bio-Imaging and Drug-Delivery Applications. Nanomedicine 2020, 24, 102136. [Google Scholar] [CrossRef]
- Kou, L.; Bhutia, Y.D.; Yao, Q.; He, Z.; Sun, J.; Ganapathy, V. Transporter-Guided Delivery of Nanoparticles to Improve Drug Permeation across Cellular Barriers and Drug Exposure to Selective Cell Types. Front. Pharm. 2018, 9, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco, E.; Shen, H.; Ferrari, M. Principles of Nanoparticle Design for Overcoming Biological Barriers to Drug Delivery. Nat. Biotechnol. 2015, 33, 941–951. [Google Scholar] [CrossRef]
- Andreas, R.; Klymchenko, A.S. Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging. Small 2016, 12, 1968–1992. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, I.; Elizondo, E.; Esteban, O.; Corchero, J.L.; Melgarejo, M.; Pulido, D.; Córdoba, A.; Moreno, E.; Unzueta, U.; Vazquez, E.; et al. Multifunctional Nanovesicle-Bioactive Conjugates Prepared by a One-Step Scalable Method Using CO2-Expanded Solvents. Nano Lett. 2013, 13, 3766–3774. [Google Scholar] [CrossRef]
- Martínez-Miguel, M.; Castellote-Borrell, M.; Köber, M.; Kyvik, A.R.; Tomsen-Melero, J.; Vargas-Nadal, G.; Muñoz, J.; Pulido, D.; Cristóbal-Lecina, E.; Passemard, S.; et al. Hierarchical Quatsome-RGD Nanoarchitectonic Surfaces for Enhanced Integrin-Mediated Cell Adhesion. ACS Appl. Mater. Interfaces 2022, 14, 48179–48193. [Google Scholar] [CrossRef]
- Serpe, L.; Ellena, S.; Barbero, N.; Foglietta, F.; Prandini, F.; Gallo, M.P.; Levi, R.; Barolo, C.; Canaparo, R.; Visentin, S. Squaraines Bearing Halogenated Moieties as Anticancer Photosensitizers: Synthesis, Characterization and Biological Evaluation. Eur. J. Med. Chem. 2016, 113, 187–197. [Google Scholar] [CrossRef]
- Barbero, N.; Magistris, C.; Park, J.; Saccone, D.; Quagliotto, P.; Buscaino, R.; Medana, C.; Barolo, C.; Viscardi, G. Microwave-Assisted Synthesis of Near-Infrared Fluorescent Indole-Based Squaraines. Org. Lett. 2015, 17, 3306–3309. [Google Scholar] [CrossRef]
- Ventosa, N.; Veciana, J.; Sala, S.; Cano, M. Method for Obtaining Micro- and Nano-Disperse Systems. WO 2006/079889, 3 August 2006. [Google Scholar]
- Vargas-Nadal, G.; Ventosa, N.; Ferrer-Tasies, L. Novel Quatsome Nanovesicles, Prepared Using CO2, for the Development of Advanced Nanomedicines; Universitat de Barcelona: Barcelona, Spain, 2020. [Google Scholar]
- Delgado, A.v.; González-Caballero, F.; Hunter, R.J.; Koopal, L.K.; Lyklema, J. Measurement and Interpretation of Electrokinetic Phenomena (IUPAC Technical Report). Pure Appl. Chem. 2005, 77, 1753–1805. [Google Scholar] [CrossRef] [Green Version]
- Ardizzone, A.; Veciana i Miró, J.; Ventosa, N.; Pleixats i Rovira, R. New Fluorescent Nanovesicles, by Self-Assembly of Organic Fluorophores, Sterols and Surfactants, as Probes for Bioimaging; Departament de Química, Universitat Autònoma de Barcelona: Barcelona, Spain, 2017. [Google Scholar]
- Ardizzone, A.; Kurhuzenkau, S.; Illa-Tuset, S.; Faraudo, J.; Bondar, M.; Hagan, D.; van Stryland, E.W.; Painelli, A.; Sissa, C.; Feiner, N.; et al. Nanostructuring Lipophilic Dyes in Water Using Stable Vesicles, Quatsomes, as Scaffolds and Their Use as Probes for Bioimaging. Small 2018, 14, 1703851. [Google Scholar] [CrossRef] [Green Version]
- Morla-Folch, J.; Vargas-Nadal, G.; Fuentes, E.; Illa-Tuset, S.; Köber, M.; Sissa, C.; Pujals, S.; Painelli, A.; Veciana, J.; Faraudo, J.; et al. Ultrabright Föster Resonance Energy Transfer Nanovesicles: The Role of Dye Diffusion. Chem. Mater. 2022, 34, 8517–8527. [Google Scholar] [CrossRef]
- Liu, X.; Ardizzone, A.; Sui, B.; Anzola, M.; Ventosa, N.; Liu, T.; Veciana, J.; Belfield, K.D. Fluorenyl-Loaded Quatsome Nanostructured Fluorescent Probes. ACS Omega 2017, 2, 4112–4122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samimi, S.; Maghsoudnia, N.; Eftekhari, R.B.; Dorkoosh, F. Chapter 3—Lipid-Based Nanoparticles for Drug Delivery Systems. In Micro and Nano Technologies; Mohapatra, S., Ranjan, S., Dasgupta, N., Mishra, R., Thomas, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 47–76. ISBN 978-0-12-814031-4. [Google Scholar]
- Alberto, G.; Barbero, N.; Divieto, C.; Rebba, E.; Sassi, M.P.; Viscardi, G.; Martra, G. Solid Silica Nanoparticles as Carriers of Fluorescent Squaraine Dyes in Aqueous Media: Toward a Molecular Engineering Approach. Colloids Surf. A Phys. Eng. Asp. 2019, 568, 123–130. [Google Scholar] [CrossRef]
- Park, J.; Barbero, N.; Yoon, J.; Dell’Orto, E.; Galliano, S.; Borrelli, R.; Yum, J.-H.; di Censo, D.; Grätzel, M.; Nazeeruddin, M.K.; et al. Panchromatic Symmetrical Squaraines: A Step Forward in the Molecular Engineering of Low Cost Blue-Greenish Sensitizers for Dye-Sensitized Solar Cells. Phys. Chem. Chem. Phys. 2014, 16, 24173–24177. [Google Scholar] [CrossRef]
- Barbero, N.; Butnarasu, C.; Visentin, S.; Barolo, C. Squaraine Dyes: Interaction with Bovine Serum Albumin to Investigate Supramolecular Adducts with Aggregation-Induced Emission (AIE) Properties. Chem. Asian J. 2019, 14, 896–903. [Google Scholar] [CrossRef]
- Ciubini, B.; Visentin, S.; Serpe, L.; Canaparo, R.; Fin, A.; Barbero, N. Design and Synthesis of Symmetrical Pentamethine Cyanine Dyes as NIR Photosensitizers for PDT. Dye. Pigment. 2019, 160, 806–813. [Google Scholar] [CrossRef]
- Galliano, S.; Novelli, V.; Barbero, N.; Smarra, A.; Viscardi, G.; Borrelli, R.; Sauvage, F.; Barolo, C. Dicyanovinyl and Cyano-Ester Benzoindolenine Squaraine Dyes: The Effect of the Central Functionalization on Dye-Sensitized Solar Cell Performance. Energies 2016, 9, 486. [Google Scholar] [CrossRef] [Green Version]
- Magistris, C.; Martiniani, S.; Barbero, N.; Park, J.; Benzi, C.; Anderson, A.; Law, C.; Barolo, C.; O’Regan, B. Near-Infrared Absorbing Squaraine Dye with Extended π Conjugation for Dye-Sensitized Solar Cells. Renew. Energy 2013, 60, 672–678. [Google Scholar] [CrossRef]
- Zhang, S.; Ding, S.; Yu, J.; Chen, X.; Lei, Q.; Fang, W. Antibacterial Activity, in Vitro Cytotoxicity, and Cell Cycle Arrest of Gemini Quaternary Ammonium Surfactants. Langmuir 2015, 31, 12161–12169. [Google Scholar] [CrossRef] [PubMed]
- Elder, R.L. Final Report on the Safety Assessment of Stearalkonium Chloride. J. Am. Coll. Toxicol. 1982, 1, 57–69. [Google Scholar] [CrossRef]
- Rapozzi, V.; Beverina, L.; Salice, P.; Pagani, G.A.; Camerin, M.; Xodo, L.E. Photooxidation and Phototoxicity of π-Extended Squaraines. J. Med. Chem. 2010, 53, 2188–2196. [Google Scholar] [CrossRef]
- Shafeekh, K.M.; Soumya, M.S.; Rahim, M.A.; Abraham, A.; Das, S. Synthesis and Characterization of Near-Infrared Absorbing Water Soluble Squaraines and Study of Their Photodynamic Effects in DLA Live Cells. Photochem. Photobiol. 2014, 90, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Geißler, D.; Gollwitzer, C.; Sikora, A.; Minelli, C.; Krumrey, M.; Resch-Genger, U. Effect of Fluorescent Staining on Size Measurements of Polymeric Nanoparticles Using DLS and SAXS. Anal. Methods 2015, 7, 9785–9790. [Google Scholar] [CrossRef] [Green Version]
- Elizondo, E.; Larsen, J.; Hatzakis, N.S.; Cabrera, I.; Bjørnholm, T.; Veciana, J.; Stamou, D.; Ventosa, N. Influence of the Preparation Route on the Supramolecular Organization of Lipids in a Vesicular System. J. Am. Chem. Soc. 2012, 134, 1918–1921. [Google Scholar] [CrossRef]
Nanovesicle Sample | (Br-Sq-C12) (μM) | (Membrane Components) (mg/mL) |
---|---|---|
QS_Blank | / | 5.88 |
QS_Sq_160 | 200 | 5.88 |
QS_Sq_200 | 300 | 5.88 |
Br-Sq-C12 | QS_Blank (2 μg/mL Membrane Components) | QS_Sq_200 (2 μg/mL Membrane Components) | |
---|---|---|---|
Dye concentration (nM) | 85 | 0 | 85 |
Exposure time (min) | 15 | 15 | 15 |
Dilution rate | - | 1:2397 | 1:2130 |
QS_Blank | QS_Sq_160 | QS_Sq_200 | |
---|---|---|---|
(Br-Sq-C12) (μM) 1 | / | 159 | 200 |
(Membrane components) (mg/mL) 2 | 4.8 | 4.4 | 4.3 |
Br-Sq-C12 loading in mass ((w/w)%) 3 | / | 3.20 | 4.19 |
dhyd (nm) 4 | 85 ± 1 | 92 ± 1 | 89 ± 1 |
PDI 4 | 0.23 ± 0.05 | 0.19 ± 0.01 | 0.17 ± 0.01 |
ζ-potential (mV) 5 | 92 ± 3 | 67 ± 2 | 75 ± 2 |
Avg. geometric diameter (nm) 6 | 63 ± 19 | 66 ± 20 | 58 ± 18 |
Br-Sq-C12 | QS_Sq_160 | QS_Sq_200 | |
---|---|---|---|
ε
(× 105 M−1 cm−1) | 2.9 (3) | ||
λ
ex
max (nm) | Not soluble (1), 643 (2), 640 (3), 638 (4), 650 (5) | 644 (1), 643 (2), 640 (3), 637 (4), 652 (5) | 644 (1), 643 (2), 640 (3), 637 (4), 652 (5) |
λ
emmax (nm) | Not soluble (1), 651 (2), 649 (3), 645 (4), 660 (5) | 655 (1), 653 (2), 649 (3), 647 (4), 662 (5) | 655 (1), 653 (2), 649 (3), 647 (4), 662 (5) |
QY
(%) | 26 (3) | 3 (1) | 2 (1) |
τ
(ns) | 1.1 (100%) (3) | τ1 = 1.4 (11%) (1) | τ1 = 1.9 (16%) (1) |
τ2 = 2.7 (89%) (1) | τ2 = 2.9 (84%) (1) | ||
χ2 | 1.03 (3) | 1.02 (1) | 1.00 (1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bordignon, N.; Köber, M.; Chinigò, G.; Pontremoli, C.; Sansone, E.; Vargas-Nadal, G.; Moran Plata, M.J.; Fiorio Pla, A.; Barbero, N.; Morla-Folch, J.; et al. Quatsomes Loaded with Squaraine Dye as an Effective Photosensitizer for Photodynamic Therapy. Pharmaceutics 2023, 15, 902. https://doi.org/10.3390/pharmaceutics15030902
Bordignon N, Köber M, Chinigò G, Pontremoli C, Sansone E, Vargas-Nadal G, Moran Plata MJ, Fiorio Pla A, Barbero N, Morla-Folch J, et al. Quatsomes Loaded with Squaraine Dye as an Effective Photosensitizer for Photodynamic Therapy. Pharmaceutics. 2023; 15(3):902. https://doi.org/10.3390/pharmaceutics15030902
Chicago/Turabian StyleBordignon, Nicolò, Mariana Köber, Giorgia Chinigò, Carlotta Pontremoli, Ettore Sansone, Guillem Vargas-Nadal, Maria Jesus Moran Plata, Alessandra Fiorio Pla, Nadia Barbero, Judit Morla-Folch, and et al. 2023. "Quatsomes Loaded with Squaraine Dye as an Effective Photosensitizer for Photodynamic Therapy" Pharmaceutics 15, no. 3: 902. https://doi.org/10.3390/pharmaceutics15030902
APA StyleBordignon, N., Köber, M., Chinigò, G., Pontremoli, C., Sansone, E., Vargas-Nadal, G., Moran Plata, M. J., Fiorio Pla, A., Barbero, N., Morla-Folch, J., & Ventosa, N. (2023). Quatsomes Loaded with Squaraine Dye as an Effective Photosensitizer for Photodynamic Therapy. Pharmaceutics, 15(3), 902. https://doi.org/10.3390/pharmaceutics15030902