Platinum-Nucleos(t)ide Compounds as Possible Antimetabolites for Antitumor/Antiviral Therapy: Properties and Perspectives
Abstract
:1. Introduction
2. Platinated Nucleos(t)ides
2.1. Anticancer Activity
2.2. Antiviral Activity
3. Cellular Processing of Platinated Nucleotides
3.1. Incorporation of Model Platinum-Nucleotide Complexes into Newly Synthesized DNA by DNA Polymerases
3.2. Effects of N7-Platinated Ribonucleotides on RNA Polymerases Activity
3.3. Plasma Membrane Transport of Platinated Nucleos(t)ides
3.4. Transport and Incorporation in Mitochondrial DNA (mtDNA) of Platinated Nucleotide Analogues
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahmoud, S.; Hasabelnaby, S.; Hammad, S.; Sakr, T. Antiviral Nucleoside and Nucleotide Analogs: A Review. J. Adv. Pharm. Res. 2018, 2, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Jordheim, L.P.; Durantel, D.; Zoulim, F.; Dumontet, C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov. 2013, 12, 447–464. [Google Scholar] [CrossRef] [PubMed]
- Kataev, V.E.; Garifullin, B.F. Antiviral nucleoside analogs. Chem. Heterocycl. 2021, 57, 326–341. [Google Scholar] [CrossRef]
- Galmarini, C.M.; Mackey Dumontet, C., Jr.; Dumontet, C. Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol. 2002, 3, 415–424. [Google Scholar] [CrossRef]
- Yates, M.K.; Seley-Radtke, K.L. The evolution of antiviral nucleoside analogues: A review for chemists and non-chemists. Part II: Complex modifications to the nucleoside scaffold. Antivir. Res. 2019, 162, 5–21. [Google Scholar] [CrossRef]
- Mathews, C.K. Deoxyribonucleotide metabolism, mutagenesis and cancer. Nat. Rev. Cancer 2015, 15, 528–539. [Google Scholar] [CrossRef]
- Kovalev, I.S.; Zyryanov, G.V.; Santra, S.; Majee, A.; Varaksin, M.A.-O.; Charushin, V.A.-O.X. Folic Acid Antimetabolites (Antifolates): A Brief Review on Synthetic Strategies and Application Opportunities. Molecules 2022, 27, 6229. [Google Scholar] [CrossRef]
- Wang, F.; Li, P.; Chu, H.C.; Lo, P.K. Nucleic Acids and Their Analogues for Biomedical Applications. Biosensors 2022, 12, 93. [Google Scholar] [CrossRef] [PubMed]
- Gearry, R.B.; Barclay, M.L. Azathioprine and 6-mercaptopurine pharmacogenetics and metabolite monitoring in inflammatory bowel disease. J. Gastroenterol. Hepatol. 2005, 20, 1149–1157. [Google Scholar] [CrossRef]
- Roberts, C.; Strauss, V.Y.; Kopijasz, S.; Gourley, C.; Hall, M.; Montes, A.; Abraham, J.; Clamp, A.; Kennedy, R.; Banerjee, S.; et al. Results of a phase II clinical trial of 6-mercaptopurine (6MP) and methotrexate in patients with BRCA-defective tumours. Br. J. Cancer 2020, 122, 483–490. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.S.; Raj, R.; Kaur, T.; Weadick, B.; Nayak, D.; No, M.; Protos, J.; Odom, H.; Desai, K.; Persaud, A.K.; et al. Solute Carrier Nucleoside Transporters in Hematopoiesis and Hematological Drug Toxicities: A Perspective. Cancers 2022, 14, 3113. [Google Scholar] [CrossRef] [PubMed]
- Leist, T.P.; Weissert, R. Cladribine: Mode of Action and Implications for Treatment of Multiple Sclerosis. Clin. Neuropharmacol. 2011, 34, 28–35. [Google Scholar] [CrossRef]
- Xie, J.; Span, M.; van Maarseveen, E.; Langenhorst, J.; Boddy, A.V.; Sia, K.C.S.; Sutton, R.; Venn, N.; Punt, A.M.; Tyrrell, V.; et al. Optimization of a clofarabine-based drug combination regimen for the preclinical evaluation of pediatric acute lymphoblastic leukemia. Pediatr. Blood Cancer 2020, 67, e28133. [Google Scholar] [CrossRef]
- Ewert de Oliveira, B.; Junqueira Amorim, O.H.; Lima, L.L.; Rezende, R.A.; Mestnik, N.C.; Bagatin, E.; Leonardi, G.R. 5-Fluorouracil, innovative drug delivery systems to enhance bioavailability for topical use. J. Drug Deliv. Sci. Technol. 2021, 61, 102155. [Google Scholar] [CrossRef]
- Di Francia, R.; Crisci, S.; De Monaco, A.; Cafiero, C.; Re, A.; Iaccarino, G.; De Filippi, R.; Frigeri, F.; Corazzelli, G.; Micera, A.; et al. Response and Toxicity to Cytarabine Therapy in Leukemia and Lymphoma: From Dose Puzzle to Pharmacogenomic Biomarkers. Cancers 2021, 13, 966. [Google Scholar] [CrossRef]
- Müller, A.; Florek, M. 5-Azacytidine/Azacitidine. In Small Molecules in Oncology; Martens, U.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 159–170. [Google Scholar]
- Bedoui, Y.; Guillot, X.; Sélambarom, J.; Guiraud, P.; Giry, C.; Jaffar-Bandjee, M.C.; Ralandison, S.; Gasque, P. Methotrexate an Old Drug with New Tricks. Int. J. Mol. Sci. 2019, 20, 5023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Rouw, N.; Piet, B.; Derijks, H.J.; van den Heuvel, M.M.; ter Heine, R. Mechanisms, Management and Prevention of Pemetrexed-Related Toxicity. Drug Saf. 2021, 44, 1271–1281. [Google Scholar] [CrossRef] [PubMed]
- Andrei, G.; Snoeck, R. Advances and Perspectives in the Management of Varicella-Zoster Virus Infections. Molecules 2021, 26, 1132. [Google Scholar] [CrossRef]
- Pott Junior, H.; de Oliveira, M.F.B.; Gambero, S.; Amazonas, R.B. Randomized clinical trial of famciclovir or acyclovir for the treatment of herpes zoster in adults. Int. J. Infect. Dis. 2018, 72, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Märtson, A.-G.; Edwina, A.E.; Kim, H.Y.; Knoester, M.; Touw, D.J.; Sturkenboom, M.G.G.; Alffenaar, J.-W.C. Therapeutic Drug Monitoring of Ganciclovir: Where Are We? Ther. Drug Moni. 2022, 44, 138–147. [Google Scholar] [CrossRef]
- Chuchkov, K.; Chayrov, R.; Hinkov, A.; Todorov, D.; Shishkova, K.; Stankova, I.G. Modifications on the heterocyclic base of ganciclovir, penciclovir, acyclovir—Syntheses and antiviral properties. Nucleos. Nucl. Nucl. 2020, 39, 979–990. [Google Scholar] [CrossRef] [PubMed]
- Bodilsen, J.; Nielsen, H.; Whitley, R.J. Valaciclovir therapy for herpes encephalitis: Caution advised. J. Antimicrob. Chemother. 2019, 74, 1467–1468. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.; Hilbig, A.; Soe, T.T.; Ei, W.L.S.S.; Soe, K.P.; Ciglenecki, I. Treating HIV-associated cytomegalovirus retinitis with oral valganciclovir and intra-ocular ganciclovir by primary HIV clinicians in southern Myanmar: A retrospective analysis of routinely collected data. BMC Infect. Dis. 2020, 20, 842. [Google Scholar] [CrossRef] [PubMed]
- Haque, N.; Parveen, S.; Tang, T.; Wei, J.; Huang, Z. Marine Natural Products in Clinical Use. Mar. Drugs 2022, 20, 528. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, E. Clinical Potential of the Acyclic Nucleoside Phosphonates Cidofovir, Adefovir, and Tenofovir in Treatment of DNA Virus and Retrovirus Infections. Clin. Microbiol. Rev. 2003, 16, 569–596. [Google Scholar] [CrossRef] [Green Version]
- Rabie, A.M. Efficacious Preclinical Repurposing of the Nucleoside Analogue Didanosine against COVID-19 Polymerase and Exonuclease. ACS Omega 2022, 7, 21385–21396. [Google Scholar] [CrossRef]
- Li, J.; Hu, C.; Chen, Y.; Zhang, R.; Fu, S.; Zhou, M.; Gao, Z.; Fu, M.; Yan, T.; Yang, Y.; et al. Short-term and long-term safety and efficacy of tenofovir alafenamide, tenofovir disoproxil fumarate and entecavir treatment of acute-on-chronic liver failure associated with hepatitis B. BMC Infect. Dis. 2021, 21, 567. [Google Scholar] [CrossRef]
- De Clercq, E. Tribute to John C. Martin at the Twentieth Anniversary of the Breakthrough of Tenofovir in the Treatment of HIV Infections. Viruses 2021, 13, 2410. [Google Scholar] [CrossRef]
- Ude, I.N.; Yeh, S.; Shantha, J.G. Cytomegalovirus retinitis in the highly active anti-retroviral therapy era. Ann. Eye Sci. 2022, 7, 5. [Google Scholar] [CrossRef]
- Chodosh, J.; Ung, L. Adoption of Innovation in Herpes Simplex Virus Keratitis. Cornea 2020, 39, S7–S18. [Google Scholar] [CrossRef]
- Anderson, P.L.; Kiser, J.J.; Gardner, E.M.; Rower, J.E.; Meditz, A.; Grant, R.M. Pharmacological considerations for tenofovir and emtricitabine to prevent HIV infection. J. Antimicrob. Chemother. 2011, 66, 240–250. [Google Scholar] [CrossRef] [Green Version]
- Zamora, F.J.; Dowers, E.; Yasin, F.; Ogbuagu, O. Dolutegravir And Lamivudine Combination For The Treatment Of HIV-1 Infection. HIV/AIDS-Res. Palliat. Care 2019, 11, 255–263. [Google Scholar]
- Cano-Soldado, P.; Pastor-Anglada, M. Transporters that translocate nucleosides and structural similar drugs: Structural requirements for substrate recognition. Med. Res. Rev. 2012, 32, 428–457. [Google Scholar] [CrossRef]
- Pastor-Anglada, M.; Pérez-Torras, S. Emerging Roles of Nucleoside Transporters. Front. Pharmacol. 2018, 9, 606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galmarini, C.M.; Mackey, J.R.; Dumontet, C. Nucleoside analogues: Mechanisms of drug resistance and reversal strategies. Leukemia 2001, 15, 875–890. [Google Scholar] [CrossRef] [Green Version]
- Abdullah Al Awadh, A. Nucleotide and nucleoside-based drugs: Past, present, and future. Saudi J. Biol. Sci. 2022, 29, 103481. [Google Scholar] [CrossRef]
- Van Rompay, A.R.; Johansson, M.; Karlsson, A. Substrate specificity and phosphorylation of antiviral and anticancer nucleoside analogues by human deoxyribonucleoside kinases and ribonucleoside kinases. Pharmacol. Ther. 2003, 100, 119–139. [Google Scholar] [CrossRef] [PubMed]
- Tsesmetzis, N.; Paulin, C.B.J.; Rudd, S.G.; Herold, N. Nucleobase and Nucleoside Analogues: Resistance and Re-Sensitisation at the Level of Pharmacokinetics, Pharmacodynamics and Metabolism. Cancers 2018, 10, 240. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Nie, Y.H.; Cai, M.B.; Li, Z.M.; Zhu, H.B.; Tan, Y.R. Gemcitabine Combined with Cisplatin Has a Better Effect in the Treatment of Recurrent/Metastatic Advanced Nasopharyngeal Carcinoma. Drug Des. Dev. Ther. 2022, 16, 1191–1198. [Google Scholar] [CrossRef]
- Mosconi, A.M.; Crinò, L.; Tonato, M. Combination therapy with gemcitabine in non-small cell lung cancer. Eur. J. Cancer 1997, 33, S14–S17. [Google Scholar] [CrossRef]
- Englinger, B.; Pirker, C.; Heffeter, P.; Terenzi, A.; Kowol, C.R.; Keppler, B.K.; Berger, W. Metal Drugs and the Anticancer Immune Response. Chem. Rev. 2019, 119, 1519–1624. [Google Scholar] [CrossRef]
- Lucaciu, R.L.; Hangan, A.C.; Sevastre, B.; Oprean, L.S. Metallo-Drugs in Cancer Therapy: Past, Present and Future. Molecules 2022, 27, 6485. [Google Scholar] [CrossRef]
- Stefàno, E.; De Castro, F.; De Luca, E.; Muscella, A.; Marsigliante, S.; Benedetti, M.; Fanizzi, F.P. Synthesis and comparative evaluation of the cytotoxic activity of cationic organometallic complexes of the type [Pt(η1-CH2-CH2-OR)(DMSO)(phen)]+ (R = Me, Et, Pr, Bu). Inorg. Chim. Acta 2023, 546, 121321. [Google Scholar] [CrossRef]
- Cirri, D.; Pratesi, A.; Marzo, T.; Messori, L. Metallo therapeutics for COVID-19. Exploiting metal-based compounds for the discovery of new antiviral drugs. Expert Opin. Drug Discov. 2020, 16, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Marzo, T.; Messori, L. A Role for Metal-Based Drugs in Fighting COVID-19 Infection? The Case of Auranofin. ACS Med. Chem. Lett. 2020, 11, 1067–1068. [Google Scholar] [CrossRef] [PubMed]
- Anthony, E.J.; Bolitho, E.M.; Bridgewater, H.E.; Carter, O.W.L.; Donnelly, J.M.; Imberti, C.; Lant, E.C.; Lermyte, F.; Needham, R.J.; Palau, M.; et al. Metallodrugs are unique: Opportunities and challenges of discovery and development. Chem. Sci. 2020, 11, 12888–12917. [Google Scholar] [CrossRef]
- Mjos, K.D.; Orvig, C. Metallodrugs in Medicinal Inorganic Chemistry. Chem. Rev. 2014, 114, 4540–4563. [Google Scholar] [CrossRef]
- Vernon, G. Syphilis and Salvarsan. Br. J. Gen. Pract. 2019, 69, 246. [Google Scholar] [CrossRef]
- Li, H.; Wang, R.; Sun, H. Systems Approaches for Unveiling the Mechanism of Action of Bismuth Drugs: New Medicinal Applications beyond Helicobacter Pylori Infection. Acc. Chem. Res. 2019, 52, 216–227. [Google Scholar] [CrossRef]
- Wang, H.; Yang, X.; Wang, M.; Hu, M.; Xu, X.; Yan, A.; Hao, Q.; Li, H.; Sun, H. Atomic differentiation of silver binding preference in protein targets: Escherichia coli malate dehydrogenase as a paradigm. Chem. Sci. 2020, 11, 11714–11719. [Google Scholar] [CrossRef] [PubMed]
- de Souza, C.C.; de Azevedo-França, J.A.; Barrias, E.; Cavalcante, S.C.F.; Vieira, E.G.; Ferreira, A.M.D.C.; de Souza, W.; Navarro, M. Silver and copper-benznidazole derivatives as potential antiparasitic metallodrugs: Synthesis, characterization, and biological evaluation. J. Inorg. Biochem. 2023, 239, 112047. [Google Scholar] [CrossRef]
- Volkmann, C.; Bschor, T.; Köhler, S. Lithium Treatment Over the Lifespan in Bipolar Disorders. Front. Psychiatry 2020, 11, 377. [Google Scholar] [CrossRef] [PubMed]
- Fountoulakis, K.N.; Tohen, M.; Zarate, C.A. Lithium treatment of Bipolar disorder in adults: A systematic review of randomized trials and meta-analyses. Eur. Neuropsychopharmacol. 2022, 54, 100–115. [Google Scholar] [CrossRef] [PubMed]
- Frei, A.; Ramu, S.; Lowe, G.J.; Dinh, H.; Semenec, L.; Elliott, A.G.; Zuegg, J.; Deckers, A.; Jung, N.; Bräse, S.; et al. Platinum Cyclooctadiene Complexes with Activity against Gram-positive Bacteria. ChemMedChem 2021, 16, 3165–3171. [Google Scholar] [CrossRef] [PubMed]
- Wheate, N.J.; Walker, S.; Craig, G.E.; Oun, R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 2010, 39, 8113–8127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Famurewa, A.C.; Mukherjee, A.G.; Wanjari, U.R.; Sukumar, A.; Murali, R.; Renu, K.; Vellingiri, B.; Dey, A.; Valsala Gopalakrishnan, A. Repurposing FDA-approved drugs against the toxicity of platinum-based anticancer drugs. Life Sci. 2022, 305, 120789. [Google Scholar] [CrossRef]
- Garutti, M.; Pelizzari, G.; Bartoletti, M.; Malfatti, M.C.; Gerratana, L.; Tell, G.; Puglisi, F. Platinum Salts in Patients with Breast Cancer: A Focus on Predictive Factors. Int. J. Mol. Sci. 2019, 20, 3390. [Google Scholar] [CrossRef] [Green Version]
- Coluccia, M.; Boccarelli, A.; Cermelli, C.; Portolani, M.; Natile, G. Platinum(II)-Acyclovir Complexes: Synthesis, Antiviral and Antitumour Activity. Met Based Drugs 1995, 2, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Bailly, B.; Gorle, A.K.; Dirr, L.; Malde, A.K.; Farrell, N.P.; Berners-Price, S.J.; von Itzstein, M. Platinum complexes act as shielding agents against virus infection. Chem. Commun. 2021, 57, 4666–4669. [Google Scholar] [CrossRef]
- Abate, C.; Carnamucio, F.; Giuffrè, O.; Foti, C. Metal-Based Compounds in Antiviral Therapy. Biomolecules 2022, 12, 933. [Google Scholar] [CrossRef]
- Jia, S.; Wang, R.; Wu, K.A.-O.; Jiang, H.; Du, Z. Elucidation of the Mechanism of Action for Metal Based Anticancer Drugs by Mass Spectrometry-Based Quantitative Proteomics. Molecules 2019, 24, 581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Castro, F.; Stefàno, E.; De Luca, E.; Muscella, A.; Marsigliante, S.; Benedetti, M.; Fanizzi, F.P. A NMR-Based Metabolomic Approach to Investigate the Antitumor Effects of the Novel [Pt(η1-C2H4OMe)(DMSO)(phen)]+(phen = 1,10-Phenanthroline) Compound on Neuroblastoma Cancer Cells. Bioinorg. Chem. Appl. 2022, 2022, 8932137. [Google Scholar] [CrossRef] [PubMed]
- De Castro, F.; Benedetti, M.; Antonaci, G.; Del Coco, L.; De Pascali, A.S.; Muscella, A.; Marsigliante, S.; Fanizzi, P.F. Response of Cisplatin Resistant Skov-3 Cells to [Pt(O,O′-Acac)(γ-Acac)(DMS)] Treatment Revealed by a Metabolomic 1H-NMR Study. Molecules 2018, 23, 2301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedetti, M.; Girelli, C.R.; Antonucci, D.; De Pascali, S.A.; Fanizzi, F.P. New method for the synthesis of [PtCl{η1-CH2C(O)R}(N-N)] ketonyl derivatives starting from the Zeise’s salt. Inorg. Chim. Acta 2014, 413, 109–114. [Google Scholar] [CrossRef]
- Schoch, S.; Gajewski, S.; Rothfuß, J.; Hartwig, A.; Köberle, B. Comparative Study of the Mode of Action of Clinically Approved Platinum-Based Chemotherapeutics. Int. J. Mol. Sci. 2020, 21, 6928. [Google Scholar] [CrossRef]
- Tylkowski, B.; Jastrząb, R.; Odani, A. Developments in platinum anticancer drugs. Phys. Sci. Rev. 2018, 3, 20160007. [Google Scholar] [CrossRef]
- Sarkisyan, Z.M.; Shkutina, I.V.; Srago, I.A.; Kabanov, A.V. Relevance of Using Platinum-Containing Antitumor Compounds (A Review). Pharm. Chem. J. 2022, 56, 729–735. [Google Scholar] [CrossRef]
- De Castro, F.; Vergaro, V.; Benedetti, M.; Baldassarre, F.; Del Coco, L.; Dell’Anna, M.M.; Mastrorilli, P.; Fanizzi, F.P.; Ciccarella, G. Visible Light-Activated Water-Soluble Platicur Nanocolloids: Photocytotoxicity and Metabolomics Studies in Cancer Cells. ACS Appl. Bio Mater. 2020, 3, 6836–6851. [Google Scholar] [CrossRef]
- De Castro, F.; Stefàno, E.; Migoni, D.; Iaconisi, G.N.; Muscella, A.; Marsigliante, S.; Benedetti, M.; Fanizzi, F.P. Synthesis and Evaluation of the Cytotoxic Activity of Water-Soluble Cationic Organometallic Complexes of the Type [Pt(η1-C2H4OMe)(L)(Phen)]+ (L = NH3, DMSO.; Phen = 1,10-Phenanthroline). Pharmaceutics 2021, 13, 642. [Google Scholar] [CrossRef]
- Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chem. Rev. 2016, 116, 3436–3486. [Google Scholar] [CrossRef] [Green Version]
- Martinho, N.; Santos, T.C.B.; Florindo, H.F.; Silva, L.C. Cisplatin-Membrane Interactions and Their Influence on Platinum Complexes Activity and Toxicity. Front. Physiol. 2019, 9, 1898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabano, E.; Ravera, M.; Osella, D. The drug targeting and delivery approach applied to pt-antitumour complexes. A coordination point of view. Curr. Med. Chem. 2009, 16, 4544–4580. [Google Scholar] [CrossRef] [PubMed]
- De Castro, F.; De Luca, E.; Benedetti, M.; Fanizzi, F.P. Platinum compounds as potential antiviral agents. Coord. Chem. Rev. 2022, 451, 214276. [Google Scholar] [CrossRef]
- Benedetti, M.; Antonucci, D.; Girelli, C.R.; Capitelli, F.; Fanizzi, F.P. Reactivity of [PtCl(η2-C2H4)(N-N)]+, N-N=diimine ligand, with phenol derivatives and first comparison between single crystal X-ray structures of syn- and anti-[Pt(N-N)(phenolate)2] rotamers in the solid state. Inorg. Chim. Acta 2014, 409, 427–432. [Google Scholar] [CrossRef]
- Benedetti, M.; Barone, C.R.; Girelli, C.R.; Fanizzi, F.P.; Natile, G.; Maresca, L. H/D exchange at sp3 carbons in the coordination sphere of platinum(ii). Dalton Trans. 2014, 43, 3669–3675. [Google Scholar] [CrossRef]
- Benedetti, M.; Girelli, C.R.; Antonucci, D.; Fanizzi, F.P. [PtCl(η1-CH2–CH2OR)(NˆN)] and [PtCl(η2-CH2CH2)(NˆN)]+, NˆN = dinitrogen ligand, complexes. Sterical and electronic effects evidenced by NMR analysis. J. Organomet. Chem. 2014, 771, 40–46. [Google Scholar] [CrossRef]
- Benedetti, M.; Barone, C.R.; de Pinto, S.; De Castro, F.; Natile, G.; Fanizzi, F.P. Cationic olefin complexes of platinum(II): Aspects of availability and reactivity. Inorg. Chim. Acta 2018, 470, 172–180. [Google Scholar] [CrossRef]
- Müller, J. Nucleic acid duplexes with metal-mediated base pairs and their structures. Coord. Chem. Rev. 2019, 393, 37–47. [Google Scholar] [CrossRef]
- Hollis, L.S.; Amundsen, A.R.; Stern, E.W. Chemical and biological properties of a new series of cis-diammineplatinum(II) antitumor agents containing three nitrogen donors: Cis-[Pt(NH3)2(N-donor) Cl]+. J. Med. Chem. 1989, 32, 128–136. [Google Scholar] [CrossRef]
- Maeda, M.; Abiko, N.; Uchida, H.; Sasaki, T. Synthesis and antitumor activity of cis-dichloroplatinum(II)-N-aminated nucleoside. J. Med. Chem. 1984, 27, 444–449. [Google Scholar] [CrossRef]
- Štarha, P.; Vančo, J.; Trávníček, Z. Platinum complexes containing adenine-based ligands: An overview of selected structural features. Coord. Chem. Rev. 2017, 332, 1–29. [Google Scholar] [CrossRef]
- Eastman, A. Separation and characterization of products resulting from the reaction of cis-diamminedichloroplatinum(II) with deoxyribonucleosides. Biochemistry 1982, 21, 6732–6736. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, S.; Albertí, F.M.; Sanz Miguel, P.J.; Lippert, B. Exploring the Metal Coordination Properties of the Pyrimidine Part of Purine Nucleobases: Isomerization Reactions in Heteronuclear PtII/PdII of 9-Methyladenine. Inorg. Chem. 2011, 50, 10439–10447. [Google Scholar] [CrossRef] [PubMed]
- Cleare, M.J.; Hoeschele, J.D. Studies on the antitumor activity of group VIII transition metal complexes. Part I. Platinum (II) complexes. Bioinorg. Chem. 1973, 2, 187–210. [Google Scholar] [CrossRef]
- Baranowska-Kortylewicz, J.; Pavlik, E.J.; Smith, W.T.; Flanigan, R.C.; Van Nagell, J.R.; Ross, D.; Kenady, D.E. Dichloro(6-aminoethylaminopurine)platinum(II) and its hydroxy analogues: Synthesis and preliminary evaluation. Inorg. Chim. Acta 1985, 108, 91–98. [Google Scholar] [CrossRef]
- Nayak, K.K.; Bhattacharyya, R.; Maity, P. Synthesis, characterization, and in vitro cytotoxic effects of K4 [PtCl2ATP]. J. Inorg. Biochem. 1991, 41, 293–298. [Google Scholar] [CrossRef]
- Kirschner, S.; Wei, Y.K.; Francis, D.; Bergman, J.G. Anticancer and potential antiviral activity of complex inorganic compounds. J. Med. Chem. 1966, 9, 369–372. [Google Scholar] [CrossRef]
- Pasini, A.; Zunino, F. New Cisplatin Analogues—On the Way to Better Antitumor Agents. Angew. Chem. Int. Ed. 1987, 26, 615–624. [Google Scholar] [CrossRef]
- Vasta, L.M.; Zanetti, R.C.; Parekh, D.S.; Warwick, A.B.; Lieuw, K. A Retrospective Review of Mercaptopurine Metabolism Reveals High Rate of Patients With Suboptimal Metabolites Successfully Corrected With Allopurinol. J. Pediatr. Hematol. Oncol. 2021, 43, e1003–e1009. [Google Scholar]
- Maeda, M.; Abiko, N.; Sasaki, T. Synthesis and antitumor activity of seleno- and thio-purines complexed with cis-diamminoplatinum (II). J. Pharmacobiodyn. 1982, 5, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.S.; Ali Khan, S.R.; Ojima, H.; Guzman, I.Y.; Whitmire, K.H.; Siddik, Z.H.; Khokhar, A.R. Model platinum nucleobase and nucleoside complexes and antitumor activity: X-ray crystal structure of [PtIV(trans-1R,2R-diaminocyclohexane)trans-(acetate)2(9-ethylguanine)Cl]NO3·H2O. J. Inorg. Biochem. 2005, 99, 795–804. [Google Scholar] [CrossRef]
- Lapponi, M.J.; Rivero, C.W.; Zinni, M.A.; Britos, C.N.; Trelles, J.A. New developments in nucleoside analogues biosynthesis: A review. J. Mol. Catal. B-Enzym. 2016, 133, 218–233. [Google Scholar] [CrossRef]
- De Clercq, E. New Nucleoside Analogues for the Treatment of Hemorrhagic Fever Virus Infections. Chem.-Asian J. 2019, 14, 3962–3968. [Google Scholar] [CrossRef] [PubMed]
- Varga, A.; Lionne, C.; Fau-Roy, B.; Roy, B. Intracellular Metabolism of Nucleoside/Nucleotide Analogues: A Bottleneck to Reach Active Drugs on HIV Reverse Transcriptase. Curr. Drug Metab. 2016, 17, 237–252. [Google Scholar] [CrossRef] [PubMed]
- Huchting, J. Targeting viral genome synthesis as broad-spectrum approach against RNA virus infections. Antivir. Chem. Chemother. 2020, 28, 2040206620976786. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.T.; Liu, P.Y.; Gao, Z.H.; Lee, S.W.; Lee, W.K.; Wu, S.N. Evidence for the Effectiveness of Remdesivir (GS-5734), a Nucleoside-Analog Antiviral Drug in the Inhibition of I (K(M)) or I (K(DR)) and in the Stimulation of I (MEP). Front. Pharmacol. 2020, 11, 1091. [Google Scholar] [CrossRef]
- Balcarova, Z.; Kasparkova, J.; Zakovska, A.; Novakova, O.; Sivo, M.F.; Natile, G.; Brabec, V. DNA interactions of a novel platinum drug, cis-[PtCl(NH3)2(N7-acyclovir)]+. Mol. Pharm. 1998, 53, 846–855. [Google Scholar]
- Margiotta, N.; Bergamo, A.; Sava, G.; Padovano, G.; de Clercq, E.; Natile, G. Antiviral properties and cytotoxic activity of platinum(II) complexes with 1,10-phenanthrolines and acyclovir or penciclovir. J. Inorg. Biochem. 2004, 98, 1385–1390. [Google Scholar] [CrossRef]
- Margiotta, N.; Fanizzi, F.P.; Kobe, J.; Natile, G. Synthesis, Characterisation and Antiviral Activity of Platinum(II) Complexes with 1,10-Phenanthrolines and the Antiviral Agents Acyclovir and Penciclovir. Eur. J. Inorg. Chem. 2001, 2001, 1303–1310. [Google Scholar] [CrossRef]
- De Clercq, E.; Li, G. Approved Antiviral Drugs over the Past 50 Years. Clin. Microbiol. Rev. 2016, 29, 695. [Google Scholar] [CrossRef] [Green Version]
- D’Errico, S.; Falanga, A.P.; Capasso, D.; Di Gaetano, S.; Marzano, M.; Terracciano, M.; Roviello, G.; Piccialli, G.; Oliviero, G.; Borbone, N. Probing the DNA Reactivity and the Anticancer Properties of a Novel Tubercidin-Pt(II) Complex. Pharmaceutics 2020, 12, 627. [Google Scholar] [CrossRef] [PubMed]
- D’Errico, S.; Borbone, N.; Piccialli, V.; Di Gennaro, E.; Zotti, A.; Budillon, A.; Vitagliano, C.; Piccialli, I.; Oliviero, G. Synthesis and Evaluation of the Antitumor Properties of a Small Collection of PtII Complexes with 7-Deazaadenosine as Scaffold. Eur. J. Org. Chem. 2017, 2017, 4935–4947. [Google Scholar] [CrossRef]
- D’Errico, S.; Oliviero, G.; Borbone, N.; Di Gennaro, E.; Zotti, A.I.; Budillon, A.; Cerullo, V.; Nici, F.; Mayol, L.; Piccialli, V.; et al. Synthesis and Evaluation of the Antiproliferative Properties of a Tethered Tubercidin–Platinum(II) Complex. Eur. J. Org. Chem. 2015, 2015, 7550–7556. [Google Scholar] [CrossRef]
- Ami, E.-i.; Ohrui, H. Intriguing Antiviral Modified Nucleosides: A Retrospective View into the Future Treatment of COVID-19. ACS Med. Chem. Lett. 2021, 12, 510–517. [Google Scholar] [CrossRef]
- Farrell, N.; Bierbach, U. Preparation of Platinum Nucleobase Complexes with Anti-Viral Activity and Method of Using Same. WO9964019A1, 16 December 1999. [Google Scholar]
- Sartori, D.A.; Miller, B.; Bierbach, U.; Farrell, N. Modulation of the chemical and biological properties of trans platinum complexes: Monofunctional platinum complexes containing one nucleobase as potential antiviral chemotypes. J. Biol. Inorg. Chem. 2000, 5, 575–583. [Google Scholar] [CrossRef]
- Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.A.-O.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020, 30, 269–271. [Google Scholar] [CrossRef]
- Johnson, K.A.; Dangerfield, T. Mechanisms of inhibition of viral RNA replication by nucleotide analogs. Enzymes 2021, 49, 39–62. [Google Scholar]
- Tchesnokov, E.P.; Feng, J.Y.; Porter, D.P.; Götte, M. Mechanism of Inhibition of Ebola Virus RNA-Dependent RNA Polymerase by Remdesivir. Viruses 2019, 11, 326. [Google Scholar] [CrossRef] [Green Version]
- Gordon, C.J.; Tchesnokov, E.P.; Feng, J.Y.; Porter, D.P.; Götte, M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J. Biol. Chem. 2020, 295, 4773–4779. [Google Scholar] [CrossRef] [Green Version]
- Beigel, J.A.-O.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.A.-O.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the Treatment of COVID-19—Final Report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef]
- Ferren, M.; Horvat, B.; Mathieu, C. Measles Encephalitis: Towards New Therapeutics. Viruses 2019, 11, 1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoenen, T.; Groseth, A.; Feldmann, H. Therapeutic strategies to target the Ebola virus life cycle. Nat. Rev. Microbiol. 2019, 17, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Al-Tawfiq, J.A.; Al-Homoud, A.H.; Memish, Z.A. Remdesivir as a possible therapeutic option for the COVID-19. Travel Med. Infect. Dis. 2020, 34, 101615. [Google Scholar] [CrossRef] [PubMed]
- de Wit, E.A.-O.; Feldmann, F.; Cronin, J.; Jordan, R.; Okumura, A.; Thomas, T.; Scott, D.; Cihlar, T.; Feldmann, H. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc. Natl. Acad. Sci. USA 2020, 117, 6771–6776. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Mo, X.; Hu, Y.; Qi, X.; Jiang, F.; Jiang, Z.; Tong, S. Epidemiology of COVID-19 Among Children in China. Pediatrics 2020, 145, e20200702. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther. 2020, 14, 58–60. [Google Scholar] [CrossRef] [Green Version]
- Khot, W.Y.; Nadkar, M.Y. The 2019 Novel Coronavirus Outbreak—A Global Threat. J. Assoc. Physicians India 2020, 68, 67–71. [Google Scholar]
- Ko, W.C.; Rolain, J.M.; Lee, N.Y.; Chen, P.L.; Huang, C.T.; Lee, P.I.; Hsueh, P.R. Arguments in favour of remdesivir for treating SARS-CoV-2 infections. Int. J. Antimicrob. Agents. 2020, 55, 105933. [Google Scholar] [CrossRef]
- Shahabadi, N.; Abbasi, A.R.; Moshtkob, A.; Hadidi, S. Design, synthesis and DNA interaction studies of new fluorescent platinum complex containing anti-HIV drug didanosine. J. Biomol. Struct. Dyn. 2020, 38, 2837–2848. [Google Scholar] [CrossRef]
- Hofmann, K.A.; Bugge, G. Platinblau. Ber. Der Dtsch. Chem. Ges. 1908, 41, 312–314. [Google Scholar] [CrossRef] [Green Version]
- Pullen, S.; Hiller, W.G.; Lippert, B. Regarding the diamagnetic components in Rosenberg’s “platinum pyrimidine blues”: Species in the cis-Pt(NH3)2-1-methyluracil system. Inorg. Chim. Acta 2019, 494, 168–180. [Google Scholar] [CrossRef]
- Rosenberg, B.; Mansy, S.A.L.A.; Van Camp, L.L.; Peresie, H.J.; Fischer, R.G.; Davidson, J.P. Platinum-(2,4-dioxopyrimidine) Complex. U.S. Patent 4,419,351, 1 April 1976. [Google Scholar]
- Gąsior-Głogowska, M.; Malek, K.; Zajac, G.; Baranska, M. A new insight into the interaction of cisplatin with DNA: ROA spectroscopic studies on the therapeutic effect of the drug. Analyst 2016, 141, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, K. Organometallic nucleosides—Synthesis, transformations, and applications. Coord. Chem. Rev. 2021, 432, 213705. [Google Scholar] [CrossRef]
- Sigel, A.; Sigel, H.; Sigel, R.K.O. Coordination Chemistry of Nucleotides and Antivirally Active Acyclic Nucleoside Phosphonates, including Mechanistic Considerations. Molecules 2022, 27, 2625. [Google Scholar] [CrossRef] [PubMed]
- Lippert, B.; Sanz Miguel, P.J. Beyond sole models for the first steps of Pt-DNA interactions: Fundamental properties of mono(nucleobase) adducts of PtII coordination compounds. Coord. Chem. Rev. 2022, 465, 214566. [Google Scholar] [CrossRef]
- Benedetti, M.; Antonucci, D.; De Castro, F.; Girelli, C.R.; Lelli, M.; Roveri, N.; Fanizzi, F.P. Metalated nucleotide chemisorption on hydroxyapatite. J. Inorg. Biochem. 2015, 153, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, M.; De Castro, F.; Fanizzi, F.P. Square-Planar PtII versus Octahedral PtIV Halido Complexes: 195Pt NMR Explained by a Simple Empirical Approach. Eur. J. Inorg. 2016, 2016, 3957–3962. [Google Scholar] [CrossRef]
- Lippert, B.; Sanz Miguel, P.J. Chapter Six—Merging Metal–Nucleobase Chemistry with Supramolecular Chemistry. In Advances in Inorganic Chemistry; van Eldik, R., Puchta, R., Eds.; Academic Press: Cambridge, MA, USA, 2018; Volume 71, pp. 277–326. [Google Scholar]
- Kahlfuss, C.; Starck, E.; Tufenkjian, E.; Kyritsakas, N.; Jouaiti, A.; Baudron, S.A.; Hosseini, M.W.; Bulach, V. Construction of hydrogen bonding and coordination networks based on ethynylpyridine-appended nucleobases. CrystEngComm 2021, 23, 944–954. [Google Scholar] [CrossRef]
- Bertuzzi, D.L.; Perli, G.; Braga, C.B.; Ornelas, C. Synthesis, characterization, and anticancer activity of folate γ-ferrocenyl conjugates. New J. Chem. 2020, 44, 4694–4703. [Google Scholar] [CrossRef]
- Diehl, F.F.; Miettinen, T.P.; Elbashir, R.; Nabel, C.S.; Darnell, A.M.; Do, B.T.; Manalis, S.R.; Lewis, C.A.; Vander Heiden, M.G. Nucleotide imbalance decouples cell growth from cell proliferation. Nat. Cell Biol. 2022, 24, 1252–1264. [Google Scholar] [CrossRef]
- Benedetti, M.; Ducani, C.; Migoni, D.; Antonucci, D.; Vecchio, V.M.; Ciccarese, A.; Romano, A.; Verri, T.; Ciccarella, G.; Fanizzi, F.P. Experimental Evidence That a DNA Polymerase Can Incorporate N7-Platinated Guanines To Give Platinated DNA. Angew. Chem. Int. Ed. 2008, 47, 507–510. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, M.; Ducani, C.; Migoni, D.; Antonucci, D.; Vecchio, V.M.; Romano, A.; Verri, T.; Fanizzi, F.P. Possible Incorporation of Free N7-Platinated Guanines in DNA by DNA Polymerases, Relevance for the Cisplatin Mechanism of Action. In Platinum and Other Heavy Metal Compounds in Cancer Chemotherapy: Molecular Mechanisms and Clinical Applications; Bonetti, A., Leone, R., Muggia, F.M., Howell, S.B., Eds.; Humana Press: Totowa, NJ, USA, 2009; pp. 125–132. [Google Scholar]
- Minchin, S.; Lodge, J. Understanding biochemistry: Structure and function of nucleic acids. Essays Biochem. 2019, 63, 433–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedetti, M.; Romano, A.; De Castro, F.; Girelli, C.R.; Antonucci, D.; Migoni, D.; Verri, T.; Fanizzi, F.P. N7-platinated ribonucleotides are not incorporated by RNA polymerases. New perspectives for a rational design of platinum antitumor drugs. J. Inorg. Biochem. 2016, 163, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Hieb, A.R.; Baran, S.; Goodrich, J.A.; Kugel, J.F. An 8 nt RNA triggers a rate-limiting shift of RNA polymerase II complexes into elongation. EMBO J. 2006, 25, 3100–3109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Tullius, T.D.; Levin, J.R. Effects of Discontinuities in the DNA Template on Abortive Initiation and Promoter Escape by Escherichia coli RNA Polymerase. J. Biol. Chem. 2007, 282, 26917–26927. [Google Scholar] [CrossRef] [Green Version]
- Eljack, N.D.; Ma, H.-Y.M.; Drucker, J.; Shen, C.; Hambley, T.W.; New, E.J.; Friedrich, T.; Clarke, R.J. Mechanisms of cell uptake and toxicity of the anticancer drug cisplatin. Metallomics 2014, 6, 2126–2133. [Google Scholar] [CrossRef] [Green Version]
- De Castro, F.; De Luca, E.; Girelli, C.R.; Barca, A.; Romano, A.; Migoni, D.; Verri, T.; Benedetti, M.; Fanizzi, F.P. First evidence for N7-Platinated Guanosine derivatives cell uptake mediated by plasma membrane transport processes. J. Inorg. Biochem. 2022, 226, 111660. [Google Scholar] [CrossRef]
- Tian, C.; Liu, Y.; Li, Z.; Zhu, P.; Zhao, M. Mitochondria Related Cell Death Modalities and Disease. Front. Cell Dev. Biol. 2022, 10, 832356. [Google Scholar] [CrossRef]
- Lunetti, P.; Romano, A.; Carrisi, C.; Antonucci, D.; Verri, T.; De Benedetto, G.E.; Dolce, V.; Fanizzi, F.P.; Benedetti, M.; Capobianco, L. Platinated Nucleotides are Substrates for the Human Mitochondrial Deoxynucleotide Carrier (DNC) and DNA Polymerase γ: Relevance for the Development of New Platinum-Based Drugs. ChemistrySelect 2016, 1, 6616. [Google Scholar] [CrossRef] [Green Version]
- Carrisi, C.; Antonucci, D.; Lunetti, P.; Migoni, D.; Girelli, C.R.; Dolce, V.; Fanizzi, F.P.; Benedetti, M.; Capobianco, L. Transport of platinum bonded nucleotides into proteoliposomes, mediated by Drosophila melanogaster thiamine pyrophosphate carrier protein (DmTpc1). J. Inorg. Biochem. 2014, 130, 28–31. [Google Scholar] [CrossRef]
- Curcio, R.; Lunetti, P.; Zara, V.; Ferramosca, A.A.-O.; Marra, F.; Fiermonte, G.; Cappello, A.R.; De Leonardis, F.; Capobianco, L.; Dolce, V. Drosophila melanogaster Mitochondrial Carriers: Similarities and Differences with the Human Carriers. Int. J. Mol. Sci. 2020, 21, 6052. [Google Scholar] [CrossRef] [PubMed]
Antitumor Antimetabolites | Molecular Formula | Clinical Use | References |
---|---|---|---|
Purine analogues | |||
6-Mercaptopurine | C5H4N4S | Acute lymphocytic and acute myelogenous leukemias and small cell non-Hodgkin’s lymphoma | [9,10] |
Fludarabine | C10H12FN5O4 | Chronic lymphocytic leukemia and low-grade lymphomas | [11] |
Cladribine | C10H12ClN5O3 | Hairy cell leukemia and low-grade lymphomas | [12] |
Clofarabine | C10H11ClFN5O3 | Pediatric acute leukemia | [13] |
Pyrimidine analogues | |||
5-Fluorouracil | C4H3FN2O2 | Head and neck, colon, breast, esophageal, stomach, pancreas, premalignant skin | [14] |
Cytarabine | C9H13N3O5 | Acute lymphocytic leukemia, non-Hodgkin’s lymphoma, and acute myelogenous leukemia | [15] |
5-Azacytidine | C8H12N4O5 | Myelodysplasia | [16] |
Folate analogues | |||
Methotrexate | C20H22N8O5 | Acute lymphocytic leukemia, osteosarcoma, bladder cancer, head, neck, and lung cancer, breast | [17] |
Pemetrexed | C20H21N5O6 | Mesothelioma and lung cancer | [18] |
Antiviral antimetabolites | |||
Purine analogues | |||
Aciclovir | C8H11N5O3 | Chickenpox, shingles, herpes virus | [19] |
Famciclovir | C14H19N5O4 | Shingles | [20] |
Ganciclovir | C9H13N5O4 | Cytomegalovirus (CMV) infection of the eyes in people whose immune system is compromised | [21] |
Penciclovir | C10H15N5O3 | Herpes simplex virus infections around the mouth (cold sores) | [22] |
Valaciclovir | C13H20N6O4 | Herpes virus infections, shingles, and herpes simplex in adults | [23] |
Valganciclovir | C14H22N6O5 | Cytomegalovirus (CMV) retinitis in people who have acquired immunodeficiency syndrome (AIDS) | [24] |
Vidarabine | C10H15N5O5 | Acute keratoconjunctivitis and recurrent epithelial keratitis due to herpes simplex virus types l and 2. | [25] |
Adefovir | C8H12N5O4P | Chronic (long-term) hepatitis B infection | [26] |
Didanosine | C10H12N4O3 | Human immunodeficiency virus (HIV) infection | [27] |
Entecavir | C12H15N5O3 | Hepatitis B virus | [28] |
Tenofovir | C9H14N5O4P | HIV infection in adults and children | [29] |
Pyrimidine analogues | |||
Cidofovir | C8H14N3O6P | Cytomegaloviral retinitis in people with acquired immunodeficiency syndrome (AIDS) | [30] |
Trifluridine | C10H11F3N2O5 | Keratoconjunctivitis and recurrent epithelial keratitis due to herpes simplex virus, types 1 and 2 | [31] |
Emtricitabine | C8H10FN3O3S | Human immunodeficiency virus type 1 (HIV-1) (in combination with at least one other HIV drug) | [32] |
Lamivudine | C8H11N3O3S | HIV-1 infection, hepatitis B (HBV) virus infection | [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Castro, F.; Stefàno, E.; De Luca, E.; Benedetti, M.; Fanizzi, F.P. Platinum-Nucleos(t)ide Compounds as Possible Antimetabolites for Antitumor/Antiviral Therapy: Properties and Perspectives. Pharmaceutics 2023, 15, 941. https://doi.org/10.3390/pharmaceutics15030941
De Castro F, Stefàno E, De Luca E, Benedetti M, Fanizzi FP. Platinum-Nucleos(t)ide Compounds as Possible Antimetabolites for Antitumor/Antiviral Therapy: Properties and Perspectives. Pharmaceutics. 2023; 15(3):941. https://doi.org/10.3390/pharmaceutics15030941
Chicago/Turabian StyleDe Castro, Federica, Erika Stefàno, Erik De Luca, Michele Benedetti, and Francesco Paolo Fanizzi. 2023. "Platinum-Nucleos(t)ide Compounds as Possible Antimetabolites for Antitumor/Antiviral Therapy: Properties and Perspectives" Pharmaceutics 15, no. 3: 941. https://doi.org/10.3390/pharmaceutics15030941
APA StyleDe Castro, F., Stefàno, E., De Luca, E., Benedetti, M., & Fanizzi, F. P. (2023). Platinum-Nucleos(t)ide Compounds as Possible Antimetabolites for Antitumor/Antiviral Therapy: Properties and Perspectives. Pharmaceutics, 15(3), 941. https://doi.org/10.3390/pharmaceutics15030941