A Comparative Study of Cancer Cells Susceptibility to Silver Nanoparticles Produced by Electron Beam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Silver Nanoparticles
2.2. Characterization of the Silver Nanoparticles
2.2.1. UV-Vis Spectroscopy
2.2.2. Hydrodynamic Diameter and Zeta-Potential Analysis
2.2.3. Transmission Electron Microscopy Analysis (TEM)
2.3. Cytotoxicity Evaluation of Silver Nanoparticles
2.3.1. Cell Cultures
2.3.2. Cytotoxicity Assay
2.3.3. Fluorescent Microscopy
2.3.4. Flow Cytometry
2.4. Statistical Analysis
3. Results
3.1. Characterization of the Silver Nanoparticles
3.1.1. Transmission Electron Microscopy (TEM)
3.1.2. UV-Vis Spectroscopy
3.1.3. Dynamic Light Scattering
3.2. Cytotoxicity Properties of Silver Nanoparticles
3.2.1. Cytotoxicity Assay
3.2.2. Fluorescent Microscopy
3.2.3. Flow Cytometry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Darvishi, V.; Navidbakhsh, M.; Amanpour, S. Heat and mass transfer in the hyperthermia cancer treatment by magnetic nanoparticles. Heat Mass Transf. 2022, 58, 1029–1039. [Google Scholar] [CrossRef]
- Sukhanova, A.; Bozrova, S.; Sokolov, P.; Berestovoy, M.; Karaulov, A.; Nabiev, I. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties. Nanoscale Res. Lett. 2018, 13, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woźniak, A.; Malankowska, A.; Nowaczyk, G.; Grześkowiak, B.F.; Tuśnio, K.; Słomski, R.; Zaleska-Medynska, A.; Jurga, S. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J. Mater. Sci. Mater. Med. 2017, 28, 92. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, D.; Li, W.; Yu, J.; Chen, Y. Effect of Size, Shape, and Surface Modification on Cytotoxicity of Gold Nanoparticles to Human HEp-2 and Canine MDCK Cells. J. Nanomater. 2012, 2012, 375496. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, S.M.; Schneider, M.; Türeli, A.E.; Günday Türeli, N. Key for crossing the BBB with nanoparticles: The rational design. Beilstein J. Nanotechnol. 2020, 11, 866–883. [Google Scholar] [CrossRef]
- Ajdary, M.; Moosavi, M.A.; Rahmati, M.; Falahati, M.; Mahboubi, M.; Mandegary, A.; Jangjoo, S.; Mohammadinejad, R.; Varma, R.S. Health Concerns of Various Nanoparticles: A Review of Their in Vitro and in Vivo Toxicity. Nanomaterials 2018, 8, 634. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, K.C.; Rippstein, P.; Tayabali, A.F.; Willmore, W.G. Mitochondrial Toxicity of Cadmium Telluride Quantum Dot Nanoparticles in Mammalian Hepatocytes. Toxicol. Sci. 2015, 146, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Ochoa-Meza, A.R.; Álvarez-Sánchez, A.R.; Romo-Quiñonez, C.R.; Barraza, A.; Magallón-Barajas, F.J.; Chávez-Sánchez, A.; García-Ramos, J.C.; Toledano-Magaña, Y.; Bogdanchikova, N.; Pestryakov, A.; et al. Silver nanoparticles enhance survival of white spot syndrome virus infected Penaeus vannamei shrimps by activation of its immunological system. Fish Shellfish Immunol. 2019, 84, 1083–1089. [Google Scholar] [CrossRef]
- Galdiero, S.; Falanga, A.; Vitiello, M.; Cantisani, M.; Marra, V.; Galdiero, M. Silver nanoparticles as potential antiviral agents. Molecules 2011, 16, 8894–8918. [Google Scholar] [CrossRef] [Green Version]
- Ratan, Z.A.; Mashrur, F.R.; Chhoan, A.P.; Shahriar, S.M.; Haidere, M.F.; Runa, N.J.; Kim, S.; Kweon, D.H.; Hosseinzadeh, H.; Cho, J.Y. Silver Nanoparticles as Potential Antiviral Agents. Pharmaceutics 2021, 13, 2034. [Google Scholar] [CrossRef]
- Wong, K.K.; Cheung, S.O.; Huang, L.; Niu, J.; Tao, C.; Ho, C.M.; Che, C.M.; Tam, P.K. Further evidence of the anti-inflammatory effects of silver nanoparticles. ChemMedChem 2009, 4, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Mohamed El-Rafie, H.; Abdel-Aziz Hamed, M. Antioxidant and anti-inflammatory activities of silver nanoparticles biosynthesized from aqueous leaves extracts of four Terminalia species. Adv. Nat. Sci. Nanosci. Nanotechnol. 2014, 5, 035008. [Google Scholar] [CrossRef]
- Bello-Bello, J.J.; Chavez-Santoscoy, R.A.; Lecona-Guzmán, C.A.; Bogdanchikova, N.; Salinas-Ruíz, J.; Gómez-Merino, F.C.; Pestryakov, A. Hormetic Response by Silver Nanoparticles on In Vitro Multiplication of Sugarcane (Saccharum spp. Cv. Mex 69-290) Using a Temporary Immersion System. Dose Response 2017, 15, 1559325817744945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Lima, R.; Seabra, A.B.; Durán, N. Silver nanoparticles: A brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J. Appl. Toxicol. 2012, 32, 867–879. [Google Scholar] [CrossRef]
- Akter, M.; Sikder, M.T.; Rahman, M.M.; Ullah, A.; Hossain, K.F.B.; Banik, S.; Hosokawa, T.; Saito, T.; Kurasaki, M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J. Adv. Res. 2018, 9, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Shen, W.; Xue, J.; Liu, Y.; Liu, Y.; Yan, P.; Liu, J.; Tang, J. Recent advances in synthetic methods and applications of silver nanostructures. Nanoscale Res. Lett. 2018, 13, 54. [Google Scholar] [CrossRef] [Green Version]
- Bouafia, A.; Laouini, S.E.; Ahmed, A.S.A.; Soldatov, A.V.; Algarni, H.; Feng Chong, K.; Ali, G.A.M. The Recent Progress on Silver Nanoparticles: Synthesis and Electronic Applications. Nanomaterials 2021, 11, 2318. [Google Scholar] [CrossRef]
- Vishwanath, R.; Negi, B. Conventional and green methods of synthesis of silver nanoparticles and their antimicrobial properties. Curr. Res. Green Sustain. Chem. 2021, 4, 100205. [Google Scholar] [CrossRef]
- Zhuravkov, S.; Plotnikov, E.; Martemiyanov, D.; Yavorovsky, N.; Hasse, U.; Zander, S. Properties of Silver Nanoparticles Prepared by the Electric Spark Dispersion Method. Adv. Mater. Res. 2014, 872, 74. [Google Scholar] [CrossRef]
- Burmistrov, V.A.; Burmistrov, A.V.; Burmistrov, I.V.; Burmistrov, A.V.; Pestrjakov, A.N.; Odegova, G.V.; Bogdanchikova, N.E. Method of Producing Colloidal Silver Nanoparticles. Patent RU 2,602,534, 20 November 2016. [Google Scholar]
- Burmistrov, V.A.; Burmistrov, A.V.; Burmistrov, I.V.; Burmistrov, A.V.; Pestrjakov, A.N.; Odegova, G.V.; Bogdanchikova, N.E. Method for Silver Proteinate Production. Patent RU 2,646,105, 1 March 2018. [Google Scholar]
- Vector-Vita. Available online: http://vector-vita.narod.ru/links.html (accessed on 30 March 2018).
- Almanza-Reyes, H.; Moreno, S.; Plascencia-López, I.; Alvarado-Vera, M.; Patrón-Romero, L.; Borrego, B.; Reyes-Escamilla, A.; Valencia-Manzo, D.; Brun, A.; Pestryakov, A.; et al. Evaluation of silver nanoparticles for the prevention of SARS-CoV-2 infection in health workers: In vitro and in vivo. PLoS ONE 2021, 16, e0256401. [Google Scholar] [CrossRef]
- Gastelum-Leyva, F.; Pena-Jasso, A.; Alvarado-Vera, M.; Plascencia-López, I.; Patrón-Romero, L.; Loera-Castañeda, V.; Gándara-Mireles, J.A.; Lares-Asseff, I.; Leal-Ávila, M.Á.; Alvelais-Palacios, J.A.; et al. Evaluation of the Efficacy and Safety of Silver Nanoparticles in the Treatment of Non-Neurological and Neurological Distemper in Dogs: A Randomized Clinical Trial. Viruses 2022, 14, 2329. [Google Scholar] [CrossRef] [PubMed]
- Stephano-Hornedo, J.L.; Torres-Gutiérrez, O.; Toledano-Magaña, Y.; Gradilla-Martínez, I.; Pestryakov, A.; Sánchez-González, A.; García-Ramos, J.C.; Bogdanchikova, N. Argovit™ silver nanoparticles to fight Huanglongbing disease in Mexican limes (Citrus aurantifolia Swingle). RSC Adv. 2020, 10, 6146–6155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luna-Vázquez-Gómez, R.; Arellano-García, M.E.; Toledano-Magaña, Y.; García-Ramos, J.C.; Radilla-Chávez, P.; Salas-Vargas, D.S.; Casillas-Figueroa, F.; Ruiz-Ruiz, B.; Pestryakov, A.; Bogdanchikova, N. Bell Shape Curves of Hemolysis Induced by Silver Nanoparticles: Review and Experimental Assay. Nanomaterials 2022, 12, 1066. [Google Scholar] [CrossRef]
- Ruiz-Ruiz, B.; Arellano-García, M.E.; Radilla-Chávez, P.; Salas-Vargas, D.S.; Toledano-Magaña, Y.; Casillas-Figueroa, F.; Luna Vazquez-Gomez, R.; Pestryakov, A.; García-Ramos, J.C.; Bogdanchikova, N. Cytokinesis-Block Micronucleus Assay Using Human Lymphocytes as a Sensitive Tool for Cytotoxicity/Genotoxicity Evaluation of AgNPs. ACS Omega 2020, 5, 12005–12015. [Google Scholar] [CrossRef]
- Cruz-Ramírez, O.U.; Valenzuela-Salas, L.M.; Blanco-Salazar, A.; Rodríguez-Arenas, J.A.; Mier-Maldonado, P.A.; García-Ramos, J.C.; Bogdanchikova, N.; Pestryakov, A.; Toledano-Magaña, Y. Antitumor Activity against Human Colorectal Adenocarcinoma of Silver Nanoparticles: Influence of [Ag]/[PVP] Ratio. Pharmaceutics 2021, 13, 1000. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela-Salas, L.M.; Blanco-Salazar, A.; Perrusquía-Hernández, J.D.; Nequiz-Avendaño, M.; Mier-Maldonado, P.A.; Ruiz-Ruiz, B.; Campos-Gallegos, V.; Arellano-García, M.E.; García-Ramos, J.C.; Pestryakov, A.; et al. New Protein-Coated Silver Nanoparticles: Characterization, Antitumor and Amoebicidal Activity, Antiproliferative Selectivity, Genotoxicity, and Biocompatibility Evaluation. Pharmaceutics 2021, 13, 65. [Google Scholar] [CrossRef] [PubMed]
- Murray, K.A.; Kennedy, J.E.; Mcevoy, B.; Vrain, O.; Ryan, D.; Cowman, R.; Higginbotham, C.L. Effects of gamma ray and electron beam irradiation on the mechanical, thermal, structural and physicochemical properties of poly (ether-block-amide) thermoplastic elastomers. J. Mech. Behav. Biomed. Mater. 2013, 17, 252–268. [Google Scholar] [CrossRef]
- Khalkho, B.R.; Kurrey, R.; Deb, M.K.; Shrivas, K.; Thakur, S.S.; Pervez, S.; Jain, V.K. L-cysteine modified silver nanoparticles for selective and sensitive colorimetric detection of vitamin B1 in food and water samples. Heliyon 2020, 6, e03423. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Jha, S.; Srivastava, G.; Sarkar, P.; Gogoi, P. Silver Nanoparticles as Fluorescent Probes: New Approach for Bioimaging. Int. J. Sci. Technol. Res. 2013, 2, 153–157. [Google Scholar]
- Kumar, A.; Dixit, C.K. 3—Methods for characterization of nanoparticles. In Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids; Nimesh, S., Chandra, R., Gupta, N., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 43–58. [Google Scholar]
- Zielinska, E.; Zauszkiewicz-Pawlak, A.; Wojcik, M.; Inkielewicz-Stepniak, I. Silver nanoparticles of different sizes induce a mixed type of programmed cell death in human pancreatic ductal adenocarcinoma. Oncotarget 2018, 9, 4675–4697. [Google Scholar] [CrossRef] [Green Version]
- Rohde, M.M.; Snyder, C.M.; Sloop, J.; Solst, S.R.; Donati, G.L.; Spitz, D.R.; Furdui, C.M.; Singh, R. The mechanism of cell death induced by silver nanoparticles is distinct from silver cations. Part. Fibre Toxicol. 2021, 18, 37. [Google Scholar] [CrossRef]
- Rodríguez-Razón, C.M.; Yañez-Sánchez, I.; Ramos-Santillan, V.O.; Velásquez-Ordóñez, C.; Gutiérrez-Rubio, S.A.; García-García, M.R.; López-Roa, R.I.; Sánchez-Hernández, P.E.; Daneri-Navarro, A.; García-Iglesias, T. Adhesion, proliferation, and apoptosis in different molecular portraits of breast cancer treated with silver nanoparticles and its pathway-network analysis. Int. J. Nanomed. 2018, 13, 1081–1095. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Ryu, D.Y. Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J. Appl. Toxicol. 2013, 33, 78–89. [Google Scholar] [CrossRef]
- Kovalevich, J.; Langford, D. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol. Biol. 2013, 1078, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Cui, J.; Liu, Z.; Zhou, X.; Li, Z.; Yu, Y.; Jia, Y.; Zuo, D.; Wu, Y. Silver nanoparticles induce SH-SY5Y cell apoptosis via endoplasmic reticulum- and mitochondrial pathways that lengthen endoplasmic reticulum-mitochondria contact sites and alter inositol-3-phosphate receptor function. Toxicol. Lett. 2018, 285, 156–167. [Google Scholar] [CrossRef]
- Thakore, S.; Rathore, P.; Jadeja, R.; Thounaojam, M.; Devkar, R. Sunflower oil mediated biomimetic synthesis and cytotoxicity of monodisperse hexagonal silver nanoparticles. Mater. Sci. Eng. C 2014, 44, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Coccini, T.; Manzo, L.; Bellotti, V.; De Simone, U. Assessment of cellular responses after short- and long-term exposure to silver nanoparticles in human neuroblastoma (SH-SY5Y) and astrocytoma (D384) cells. Sci. World J. 2014, 2014, 259765. [Google Scholar] [CrossRef] [Green Version]
- Gurunathan, S.; Jeyaraj, M.; Kang, M.H.; Kim, J.H. Mitochondrial Peptide Humanin Protects Silver Nanoparticles-Induced Neurotoxicity in Human Neuroblastoma Cancer Cells (SH-SY5Y). Int. J. Mol. Sci. 2019, 20, 4439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurunathan, S.; Han, J.W.; Eppakayala, V.; Jeyaraj, M.; Kim, J.H. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BioMed Res. Int. 2013, 2013, 535796. [Google Scholar] [CrossRef] [Green Version]
- Juarez-Moreno, K.; Gonzalez, E.B.; Girón-Vazquez, N.; Chávez-Santoscoy, R.A.; Mota-Morales, J.D.; Perez-Mozqueda, L.L.; Garcia-Garcia, M.R.; Pestryakov, A.; Bogdanchikova, N. Comparison of cytotoxicity and genotoxicity effects of silver nanoparticles on human cervix and breast cancer cell lines. Hum. Exp. Toxicol. 2017, 36, 931–948. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wu, Y.; Wang, C.; Li, H.C.; Wang, T.; Liao, C.Y.; Cui, L.; Zhou, Q.F.; Yan, B.; Jiang, G.B. Impact of silver nanoparticles on human cells: Effect of particle size. Nanotoxicology 2010, 4, 319–330. [Google Scholar] [CrossRef]
- Mittal, A.K.; Tripathy, D.; Choudhary, A.; Aili, P.K.; Chatterjee, A.; Singh, I.P.; Banerjee, U.C. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 53, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Gurunathan, S.; Qasim, M.; Park, C.; Yoo, H.; Kim, J.H.; Hong, K. Cytotoxic Potential and Molecular Pathway Analysis of Silver Nanoparticles in Human Colon Cancer Cells HCT116. Int. J. Mol. Sci. 2018, 19, 2269. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, N.; Ranjan, S.; Mishra, D.; Ramalingam, C. Thermal Co-reduction engineered silver nanoparticles induce oxidative cell damage in human colon cancer cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Chem.-Biol. Interact. 2018, 295, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Khedr, A.I.M.; Goda, M.S.; Farrag, A.F.S.; Nasr, A.M.; Swidan, S.A.; Nafie, M.S.; Abdel-Kader, M.S.; Badr, J.M.; Abdelhameed, R.F.A. Silver Nanoparticles Formulation of Flower Head’s Polyphenols of Cynara scolymus L.: A Promising Candidate against Prostate (PC-3) Cancer Cell Line through Apoptosis Activation. Molecules 2022, 27, 6304. [Google Scholar] [CrossRef]
- Khedr, A.I.M.; Farrag, A.F.S.; Nasr, A.M.; Swidan, S.A.; Nafie, M.S.; Abdel-Kader, M.S.; Goda, M.S.; Badr, J.M.; Abdelhameed, R.F.A. Comparative Estimation of the Cytotoxic Activity of Different Parts of Cynara scolymus L.: Crude Extracts versus Green Synthesized Silver Nanoparticles with Apoptotic Investigation. Pharmaceutics 2022, 14, 2185. [Google Scholar] [CrossRef]
- Ilić, K.; Krce, L.; Rodriguez-Ramos, J.; Rico, F.; Kalčec, N.; Aviani, I.; Turčić, P.; Pavičić, I.; Vinković Vrček, I. Cytotoxicity of nanomixture: Combined action of silver and plastic nanoparticles on immortalized human lymphocytes. J. Trace Elem. Med. Biol. Organ Soc. Miner. Trace Elem. (GMS) 2022, 73, 127004. [Google Scholar] [CrossRef]
- Parnsamut, C.; Brimson, S. Effects of silver nanoparticles and gold nanoparticles on IL-2, IL-6, and TNF-α production via MAPK pathway in leukemic cell lines. Genet. Mol. Res. 2015, 14, 3650–3668. [Google Scholar] [CrossRef]
- Fahrenholtz, C.; Swanner, J.; Ramirez-Perez, M.; Singh, R. Heterogeneous Responses of Ovarian Cancer Cells to Silver Nanoparticles as a Single Agent and in Combination with Cisplatin. J. Nanomater. 2017, 2017, 5107485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satyanarayana, B.M.; Reddy, N.V.; Kommula, S.K.R.; Rao, J.V. Biogenesis of silver nanoparticles using leaf extracts of Asparagus racemosus and Sophora interrupta: Structure characterization, antibacterial and anticancer studies. SN Appl. Sci. 2020, 2, 1857. [Google Scholar] [CrossRef]
- Gurunathan, S.; Qasim, M.; Park, C.; Yoo, H.; Choi, D.Y.; Song, H.; Park, C.; Kim, J.-H.; Hong, K. Cytotoxicity and Transcriptomic Analysis of Silver Nanoparticles in Mouse Embryonic Fibroblast Cells. Int. J. Mol. Sci. 2018, 19, 3618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghobashy, M.; Abd El-Kodous, M.; Shabaka, S.; Younis, S.; Alshangiti, D.; Madani, M.; Al-Gahtany, S.; Elkhatib, W.; Noreddin, A.; Nady, N.; et al. An overview of methods for production and detection of silver nanoparticles, with emphasis on their fate and toxicological effects on human, soil, and aquatic environment. Nanotechnol. Rev. 2021, 10, 954–977. [Google Scholar] [CrossRef]
- Luna-Vázquez-Gómez, R.; Arellano-García, M.E.; García-Ramos, J.C.; Radilla-Chávez, P.; Salas-Vargas, D.S.; Casillas-Figueroa, F.; Ruiz-Ruiz, B.; Bogdanchikova, N.; Pestryakov, A. Hemolysis of Human Erythrocytes by Argovit™ AgNPs from Healthy and Diabetic Donors: An In Vitro Study. Materials 2021, 14, 2792. [Google Scholar] [CrossRef] [PubMed]
Preparation Method | Particle Size, nm | Stabilizer | Ag/Stabilizer Concentrations Ratio | Hydrodynamic Diameter, nm | Zeta Potential, mV | Cell Type | IC50, µg/mL | Reference |
---|---|---|---|---|---|---|---|---|
Commercial product (Colorobbia S.p.A., Vinci, Italy), series PARNASOS NAMA | Solutions were prepared by dissolving AgNPs in culture medium | AgNP 1% in water | 20 | SH-SY5Y | 30.73 ± 3.20 | [41] | ||
Bio-reduction of silver nitrate | 18 | 30 | SH-SY5Y | 10 | [42] | |||
Silver nitrate reduction by accelerated electron beam | Combined stabilizer PVP/protein hydrolysate | 1.2/18.8 (wt.%) | 142.6 | +9.15 | SH-SY5Y | 0.15 | This paper | |
Silver nitrate reduction by B. funiculus cultures supernatant. | 20 | MDA-MB-231 | 8.7 | [43] | ||||
Commercial product (Argovit). Silver nitrate reduction by accelerated electron beam | 35 ± 15 | PVP | 1.2/18.8 (wt.%) | 70 | −15 | MDA-MB-231 MCF-7 | 2.62 ± 0.027 3.06 ± 0.014 | [44] |
Silver nitrate reduction by accelerated electron beam | Combined stabilizer PVP/protein hydrolysate | 1.2/18.8 (wt.%) | 142.6 | +9.15 | MDA-MB-231 | 0.6 | This paper | |
Commercial product (Huzheng Nano Technology Limited Company (Shanghai, China)) 5, 20 and 50 nm. | 5.9 ±3.3, 23.8 ± 6.7 47.5 ± 22.1 | PVP | MCF-7 | 0.51 ± 0.02 14.33 ± 5.61 47.64 ± 14.67 | [45] | |||
Silver nitrate reduction by P. fulgens extracts | 10 to 15 nm | Potentilla fulgens extract | 39.04 | −18 mV | MCF-7 | 4.91 | [46] | |
Silver nitrate reduction by accelerated electron beam | Combined stabilizer PVP/protein hydrolysate | 1.2/18.8 (wt.%) | 142.6 | +9.15 | MCF-7 | 0.21 | This paper | |
Silver nitrate reduction by flavonoid naringenin | 6 | naringenin (NAR) | NAR (50 µM) mixed with 2 mM AgNO3 | 6 ± 1 | HCT-116 | 5 | [47] | |
Silver nitrate thermal reduction by NaBH4 | Trisodium citrate | 57.4 ± 3.8 | −39.4 | HCT-116 | 28.11 | [48] | ||
Silver nitrate reduction by accelerated electron beam | Combined stabilizer PVP/protein hydrolysate | 1.2/18.8 (wt.%) | 142.6 | +9.15 | HCT-116 | 0.63 | This paper | |
Silver nitrate reduction by polyphenolic fraction of flower extract Cynara scolymus L. | Polyphenolic fraction of flower extract Cynara scolymus L. | 21.31 ± 0.431 | −34.0 ± 4.45 | PC-3 | 0.85 ± 0.01 | [49] | ||
Silver nitrate reduction by flower extract of Cynara scolymus L. | Cynara scolymus L. flower extract | 26.57 ± 0.431 | −29.9 ± 0.854 | PC-3 | 2.47 ± 0.24 | [50] | ||
Silver nitrate reduction by accelerated electron beam | Combined stabilizer PVP/protein hydrolysate | 1.2/18.8 (wt.%) | 142.6 | +9.15 | PC-3 | 0.76 | This paper | |
Silver nitrate with sodium borohydride using polyvinylpyrrolidone (PVP) as surface coating agent | 67.1 ± 5.7 | PVP | 119.5 ± 1.4 | −9.7 ± 0.2 | Jurkat | 42.9 | [51] | |
Silver nitrate reduction by 1% trisodium citrate with 0.3% polyvinylpyrrolidone (PVP) | 10–50 | PVP | Jurkat | 9.8 | [52] | |||
Silver nitrate reduction by accelerated electron beam | Combined stabilizer PVP/protein hydrolysate | 1.2/18.8 (wt.%) | 142.6 | +9.15 | Jurkat | 0.33 | This paper | |
Commercial product by nanoComposix. Powder. AgNPs with polyvinylpyrrolidone (PVP) | 23.1 ± 6.9 | PVP | Ag:PVP (15:85) | 24.1 ± 0.4 | −14.8 ± 0.5 | SKOV-3 | 9.4 ± 1.4 | [53] |
Silver nitrate reduction by leaf extracts S. interrupta | 5–14 | Leaf extracts S. interrupta | − 28.9 mV | SKOV-3 | 120.87 ± 14.9 | [54] | ||
Silver nitrate reduction by accelerated electron beam | Combined stabilizer PVP/protein hydrolysate | 1.2/18.8 (wt.%) | 142.6 | +9.15 | SKOV-3 | 1.22 | This paper | |
Microwave processing of a mixture sunflower oil and petroleum ether (1:1) and 0.01 M alcoholic silver nitrate solution | 1–21 | 9 | −27.31 | 3T3L1 | At 100 µg/mL only 30% cell death | [40] | ||
Silver nitrate reduction by myricetin | 50 ± 5 | 55 | −25.2 ± 0.1 | 3T3L1 | 15–20 | [55] | ||
Silver nitrate reduction by accelerated electron beam | Combined stabilizer PVP/protein hydrolysate | 1.2/18.8 (wt.%) | 142.6 | +9.15 | 3T3L1 | 1.73 | This paper |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plotnikov, E.V.; Tretayakova, M.S.; Garibo-Ruíz, D.; Rodríguez-Hernández, A.G.; Pestryakov, A.N.; Toledano-Magaña, Y.; Bogdanchikova, N. A Comparative Study of Cancer Cells Susceptibility to Silver Nanoparticles Produced by Electron Beam. Pharmaceutics 2023, 15, 962. https://doi.org/10.3390/pharmaceutics15030962
Plotnikov EV, Tretayakova MS, Garibo-Ruíz D, Rodríguez-Hernández AG, Pestryakov AN, Toledano-Magaña Y, Bogdanchikova N. A Comparative Study of Cancer Cells Susceptibility to Silver Nanoparticles Produced by Electron Beam. Pharmaceutics. 2023; 15(3):962. https://doi.org/10.3390/pharmaceutics15030962
Chicago/Turabian StylePlotnikov, Evgenii V., Maria S. Tretayakova, Diana Garibo-Ruíz, Ana G. Rodríguez-Hernández, Alexey N. Pestryakov, Yanis Toledano-Magaña, and Nina Bogdanchikova. 2023. "A Comparative Study of Cancer Cells Susceptibility to Silver Nanoparticles Produced by Electron Beam" Pharmaceutics 15, no. 3: 962. https://doi.org/10.3390/pharmaceutics15030962
APA StylePlotnikov, E. V., Tretayakova, M. S., Garibo-Ruíz, D., Rodríguez-Hernández, A. G., Pestryakov, A. N., Toledano-Magaña, Y., & Bogdanchikova, N. (2023). A Comparative Study of Cancer Cells Susceptibility to Silver Nanoparticles Produced by Electron Beam. Pharmaceutics, 15(3), 962. https://doi.org/10.3390/pharmaceutics15030962