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Abstract: Chromatographic retention data collected on immobilized keratin (KER) or immobilized
artificial membrane (IAM) stationary phases were used to predict skin permeability coefficient
(log Kp) and bioconcentration factor (log BCF) of structurally unrelated compounds. Models of
both properties contained, apart from chromatographic descriptors, calculated physico-chemical
parameters. The log Kp model, containing keratin-based retention factor, has slightly better statistical
parameters and is in a better agreement with experimental log Kp data than the model derived
from IAM chromatography; both models are applicable primarily to non-ionized compounds.Based
on the multiple linear regression (MLR) analyses conducted in this study, it was concluded that
immobilized keratin chromatographic support is a moderately useful tool for skin permeability
assessment.However, chromatography on immobilized keratin may also be of use for a different
purpose—in studies of compounds’ bioconcentration in aquatic organisms.

Keywords: biomimetic chromatography; immobilized keratin stationary phase; immobilized artificial
membrane chromatography; skin permeability; bioconcentration factor

1. Introduction

Many chemicals enter the human body through the skin. Transdermal absorption is
an important route of drugs’ administration, and it is also very important in the context of
environmental toxicology, since undesired xenobiotics are often absorbed transdermally.
The skin permeability coefficient Kp is defined according to Equation (1):

Kp =
KmD

h
(1)

where: Km—the partition coefficient between the stratum corneum and the vehicle; D—the effec-
tive compound’s diffusion coefficient through the stratum corneum; h—the diffusional pathlength.

The experimental values of skin permeability coefficients are measured in vivo (on
human volunteers), ex vivo (on excised human skin), or on animal models [1], but such data
are difficult to obtain due to ethical and financial problems, and the results of experiments
in this area are often inconsistent due to variations in properties of different skin samples,
even taken from the same human or animal.

Apart from skin absorption, an important property of compounds of environmental
concern is their bioconcentration factor in aquatic organisms (BCF). The bioconcentration
factor is the ratio of the chemical concentration in the organism (CB) and water (Cw),
accounting for the absorption via the respiratory route (e.g., gills) and skin. It is used
to assess the bioaccumulation potential of compounds [2], especially in the absence of
their bioaccumulation factor (BAF),which accounts for dietary, dermal, and respiratory
exposures. According to different regulatory agencies, different criteria of bioaccumulation
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apply: bioaccumulative compounds have BCF > 5000 or BCF > 2000 [3]. In the absence
of BAF or BCF data, lipophilicity measured as the octanol-water partition coefficient Kow
is used to assess the compounds’ ability to bioaccumulate; if this is the case, the log Kow
threshold for bioaccumulative compounds is 5 [3,4], 4.5 [5], or 3.3 [6]. Measured and
estimated bioaccumulation data are also used to assign chemicals to three bioaccumulation
categories: not significantly bioaccumulative (BCF or BAF < 1000), bioaccumulative (BCF
or BAF between 1000 and 5000), and highly bioaccumulative (BCF or BAF > 5000) [7].

The ethical and financial problems related to BCF determination are similar to those
encountered during Kp measurements. In in vivo experiments, the need to use human
volunteers or lab animals, as well as the experiment timing, are the main limitations,
and, for this reason, both Kp and BCF are frequently assessed in vitro (using cell/tissue
assays or non-cell models based on chromatography or electrochromatography) or in silico
(calculations that can provide valuable information even without the access to compounds’
samples) [8–10].

Biomimetic chromatography essentially involves the application of stationary phases,
containing proteins or phospholipids, or mobile phases, including micelles or microemul-
sions [11–14]. The components of biomimetic chromatographic systems (stationary or
mobile phases) are designed to mimic some elements or functions of biomembranes and
the interactions between these components and studied molecules resemble transport and
partition phenomena encountered in a living being.

Immobilized artificial membrane (IAM) chromatography, with stationary phases
containing adsorbed or covalently bound phosphatidylcholine (or, more recently, sphyn-
gomyelin) groups, is used in modern lipohilicity studies, as well as in investigations
of compounds’ affinity for phospholipids, related to many biological properties of so-
lutes [15–17]. Chromatography on immobilized protein stationary phases was originally
developed to separate enantiomers [18]; apart from that, some protein-based stationary
phases simulate the interaction between a molecule and main plasma proteins, such as
human serum albumin (HSA) [19–22] or α1 acid glycoprotein (AGP) [21,23–25]. Retention
data obtained from chromatography in biomimetic systems are used to predict ADME (ab-
sorption, distribution, metabolism, and excretion) properties of compounds in early drug
discovery phases [11,26], as well as their environmental impact—mobility in soil, bioconcen-
tration/bioaccumulation, or aquatic toxicity [27–31]. Elements of natural biomembranes,
incorporated in chromatographic systems used in pharmacokinetic studies, include also
cholesterol or amide moieties [32,33].

Chromatographic descriptors have been used in skin permeability studies for many
years, and separation (chromatographic or electrochromatographic) techniques used in
these studies are liquid chromatography (HPLC or TLC), biopartitioning micellar chro-
matography, micellar electrokinetic chromatography, liposome electrokinetic chromatogra-
phy, and two-dimensional gas chromatography (GC × GC) [34–47].

The relationships between the IAM chromatographic retention factor (kIAM) and
the skin permeability coefficient have been studied most frequently for small groups of
compounds (n = 10 to 32), and the resulting dependencies are mostly univariate (linear
or quadratic) [35,36,39,41], the exceptions being the studies in which additional variables,
e.g., McGowan’s characteristic volume V or the octanol-water partition coefficient log
Kow [33,35,36] were incorporated. In our earlier study [48] conducted for a large group
of structurally unrelated compounds (n = 160), we demonstrated that log kIAM accounts
for ca. 46% of total log Kp variability, and the parameters whose contribution to log Kp
predictions is also significant are polar surface area (PSA) or polarizability (α).

Bioconcentration of compounds in aquatic organisms can be studied in vitro using
descriptors derived from HPLC chromatography on C18, C8, C2, and phenyl-bonded silica
sorbents (aromatic hydrocarbons [49]), C18 and cyanopropyl- and phenyl-bonded silica (aro-
matic hydrocarbons, alkylbenzenes, chlorinated benzenes, phthalates, nitroaromatics, phe-
nols, and aniline [50]), and RP-18 TLC (organic sunscreens and cosmetic preservatives [51]).
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More recently, the bioconcentration of compounds in aquatic organisms has been
investigated using chromatography on IAM stationary phases, developed initially to
mimic molecule–biomembrane interactions in ADME studies [31,52]. Earlier research
pointed to the importance of additional parameters, incorporated alongside log kIAM:
(i) a biodegradation estimate, BioWin5, calculated using the EPISuiteTM software and (to
a lesser extent) topological polar surface area (TPSA) [52]; (ii) TPSA—the fraction of sp3

carbon atoms (FCsp3) and hydrogen bond donor count (#HD) [31].
Turowski and Kaliszan postulated that predicting skin permeability of compounds

should be based on molecules’ lipophilicity and interactions with keratin, which is an
important constituent of the outmost layer of the epidermis [34]. An immobilized keratin-
based stationary phase, developed by Turowski and Kaliszan, was initially proposed to be
an in vitro tool in investigations of solutes′ skin permeability (log Kp) [34]. However, it was
discovered that the retention factor obtained on this sorbent (log kKER) is not a sufficiently
good predictor of skin permeability coefficient, and it cannot be used as a sole descriptor
in log Kp models. Turowski and Kaliszan reported that this descriptor can be combined
with the chromatographic retention factor obtained by immobilized artificial membrane
chromatography (log kIAM), and the results of log Kp predictions using multiple linear
regression (MLR) models satisfy (Equation (2)):

log Kp = −6.56 + 1.92 log kIAM − 1.04 log kKER (n = 17, R2 = 0.86) (2)

Turowski and Kaliszan concluded that skin permeability increases with the lipophilic-
ity of solutes (encoded primarily by log kIAM) and decreases with their affinity for keratin
(expressed as log kKER). Unfortunately, the model they proposed (Equation (2)) requires
two sets of chromatographic data, obtained on different stationary phases, this being
the likely reason why the immobilized keratin stationary phase they proposed has never
become widely popular and, to the best of our knowledge, it is not commercially available.

In this study, a novel application of immobilized keratin stationary phases developed
by Turowski and Kaliszan is proposed, and chromatography on immobilized keratin
sorbent is used to model compounds’ bioconcentration in aquatic organisms.

2. Materials and Methods
2.1. IAM and Immobilized Keratin Chromatography

The chromatographic retention factors for the compounds analyzed in this study
(Table 1) were taken from [34]. They were obtained on: (i) an IAM.PC.MG HPLC column
purchased from Regis (150 × 4.6 mm, particle diameter 12 µm, pore diameter 300 Å)
with a phosphate buffer (pH 6.0), including acetonitrile (95:5 v/v) mobile phase (flow
rate—1 mL min−1); (ii) physically immobilized keratin sorbent with pH 4.2 phosphate
buffer as a mobile phase (column dimensions—125 × 4 mm; flow rate—1 mL min−1). The
mobile phase used in keratin chromatography (pH 4.2 buffer) was selected on the basis of
QSRR studies as giving the “best” relationship between log kKER and structural descriptors
(molecular weight and dipole moment) [34].

2.2. Calculated Molecular Descriptors

Molecular weight (Mw), heavy atom count (#HvAt), aromatic heavy atom count
(#ArHvAt), fraction of sp3 carbons (FCsp3), rotatable bond count (#FRB), hydrogen donor
count (#HD), hydrogen acceptor count (#HA), molecular refractivity (MR), aqueous solubil-
ity (log S), and topological polar surface area (TPSA) were calculated using Swiss ADME
software available freely on-line [53]. The octanol–water partition coefficient (log Kow) was
predicted using EpiSuite [54]. Total counts of nitrogen and oxygen atoms (N + O) were
calculated manually on the basis of compounds’ molecular formulas (Table 1).
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Table 1. Chromatographic retention factors and calculated physico-chemical properties of compounds
1 to 32.

No. Compound log
kKER

log
kIAM

Mw #HvAt #ArHvAt FCsp3 #FRB #HA #HD MR TPSA (N +
O)

log
Kow

log S

1 2-Cresole −0.18 0.36 108.1 8 6 0.14 0 1 1 33.4 20.2 1 1.95 −2.29
2 2-Naphtol 0.88 1.25 144.2 11 10 0 0 1 1 46.0 20.2 1 2.70 −3.11
3 3-Cresole −0.22 0.36 108.1 8 6 0.14 0 1 1 33.4 20.2 1 1.96 −2.30
4 3-Nitrophenol 0.24 0.60 139.1 10 6 0 1 3 1 37.3 66.1 4 2.00 −2.34
5 4-Bromophenol 0.34 1.00 173.0 8 6 0 0 1 1 36.2 20.2 1 2.59 −3.10
6 4-Chlorophenol 0.27 0.73 128.6 8 6 0 0 1 1 33.5 20.2 1 2.39 −2.70
7 4-Cresole −0.08 0.42 108.1 8 6 0.14 0 1 1 33.4 20.2 1 1.94 −2.29
8 4-Ethylphenol −0.25 0.76 122.2 9 6 0.25 1 1 1 38.2 20.2 1 2.58 −2.65
9 4-Nitrophenol 0.19 0.60 139.1 10 6 0 1 3 1 37.3 66.1 4 1.91 −2.28
10 Baclofen −0.33 −0.73 213.7 14 6 0.3 4 3 2 55.3 63.3 3 −0.96 −0.61
11 Chlorocresole 0.68 1.18 142.6 9 6 0.14 0 1 1 38.4 20.2 1 2.70 −3.09
12 Methylparaben 0.04 0.52 152.2 11 6 0.12 2 3 1 39.7 46.5 3 1.96 −2.29
13 Phenol −0.27 0.37 94.1 7 6 0 0 1 1 28.5 20.2 1 1.46 −1.98
14 Phenylalanine −0.20 −0.65 165.2 12 6 0.22 3 3 2 45.5 63.3 3 −1.44 −0.08
15 Resorcinol −0.38 −0.14 110.1 8 6 0 0 2 2 30.5 40.5 2 0.80 −1.58
16 Salcylic acid −0.06 −0.58 138.1 10 6 0 1 3 2 35.4 57.5 3 2.26 −2.50
17 Thymol 0.52 1.34 150.2 11 6 0.4 1 1 1 48.0 20.2 1 3.30 −3.19
18 1,2,3-tris(1-

methylethyl)benzene 0.75 2.43 204.4 15 6 0.6 3 0 0 70.2 0.0 0 6.36 −4.54
19 1,4-dinitrobenzene 0.45 0.16 168.1 12 6 0 2 4 0 44.1 91.6 6 1.46 −2.04
20 3-

(trifluoromethyl)phenol 0.19 1.23 162.1 11 6 0.14 1 4 1 33.5 20.2 1 2.95 −3.04
21 4-cyanophenol −0.05 0.77 119.1 9 6 0 0 2 1 33.2 44.0 2 1.60 −2.08
22 4-iodophenol 0.80 1.59 220.0 8 6 0 0 1 1 41.2 20.2 1 2.91 −3.59
23 4-nitrobenzoic acid −0.23 −0.23 167.1 12 6 0 2 4 1 42.2 83.1 5 1.89 −2.30
24 Anizole −0.09 0.31 108.1 8 6 0.14 1 1 0 32.9 9.2 1 2.11 −2.33
25 Benzamide −0.04 −0.10 121.1 9 6 0 1 1 1 34.5 43.1 2 0.64 −1.42
26 benzene −0.27 0.09 78.1 6 6 0 0 0 0 26.4 0.0 0 2.13 −2.41
27 benzoic acid −0.21 −0.74 122.1 9 6 0 1 2 1 33.4 37.3 2 1.87 −2.20
28 Benzonitrile 0.02 0.15 103.1 8 6 0 0 1 0 31.2 23.8 1 1.56 −2.02
29 caffeine 0.08 −0.40 194.2 14 9 0.38 0 3 0 52.0 61.8 6 −0.07 −1.48
30 Chlorobenzene 0.13 0.66 112.6 7 6 0 0 0 0 31.5 0.0 0 2.84 −2.96
31 Indazole 0.23 0.71 118.1 9 9 0 0 1 1 36.1 28.7 2 1.77 −2.72
32 Toluene −0.05 0.44 92.1 7 6 0.14 0 0 0 31.4 0.0 0 2.73 −2.77

2.3. Reference Values of Skin Permeability Coefficient (log Kp) and Bioconcentration Factor
(log BCF)

The experimentally determined values of log Kp and log BCF are available for only
some compounds within the studied group. For this reason, the models of skin perme-
ability and bioconcentration factor, involving chromatographic and calculated descriptors,
were generated and validated using log Kp and log BCF values obtained in silico with
the EpiSuite v. 4.1 software (log Kp

EPI—DERMWIN v. 2.02 and log BCFEPI—BCFBAF v.
3.02 modules, respectively), recommended by the US Environmental Protection
Agency [54,55] and tested on sub-groups of solutes whose experimental log Kp or log
BCF values are known (log Kp

exp, log BCFexp) [56,57]. The estimation methodology used
by DERMWIN is based on an algorithm developed by Potts [58], and the estimations
provided by BCFBAF are based on methodology developed by Meylan [59] and Arnot and
Gobas [3]. The values of log Kp

EPI and log BCFEPI obtained using EpiSuite are given in
Tables 2 and 3.

Table 2. Reference (EPI), predicted, and experimental values of log Kp.

log Kp
EPI Equation (6) Equation (7) Equation (8) Equation (9) log Kp

exp

2-Cresole −5.58 −5.71 −5.67 −5.89 −5.57 −5.36
2-Naphtol −5.26 −4.99 −5.00 −5.05 −5.26 −4.76
3-Cresole −5.57 −5.71 −5.75 −5.89 −5.65 −5.37

3-Nitrophenol −5.73 −6.22 −6.06 −6.01 −5.98 −5.81
4-Bromophenol −5.52 −5.20 −5.74 −5.30 −5.74 −5.00
4-Chlorophenol −5.39 −5.42 −5.18 −5.55 −5.09 −5.00

4-Cresole −5.58 −5.67 −5.50 −5.84 −5.39 −5.31
4-Ethylphenol −5.21 −5.39 −5.88 −5.52 −5.80 −5.01
4-Nitrophenol −5.79 −6.22 −6.15 −6.01 −6.08 −5.81

Baclofen −8.28 −7.25 −7.66 −7.23 −7.69
Chlorocresole −5.05 −5.05 −4.53 −5.12 −4.43 −4.82

Methylparaben −5.84 −5.98 −6.09 −5.94 −6.02 −5.63
Phenol −5.84 −5.71 −5.76 −5.89 −5.65 −5.61

Resorcinol −6.40 −6.43 −6.48 −6.52 −6.40 −6.63
Thymol −4.87 −4.92 −4.66 −4.97 −4.56 −4.77
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Table 2. Cont.

log Kp
EPI Equation (6) Equation (7) Equation (8) Equation (9) log Kp

exp

1,2,3-tris(1-
methylethyl)benzene −3.78 −3.73 −4.13 −3.80 −4.06

1,4-dinitrobenzene −6.29 −6.96 −6.38 −6.61 −6.32
3-(trifluoromethyl)phenol −5.19 −5.01 −5.44 −5.07 −5.38

4-cyanophenol −5.89 −5.74 −5.96 −5.68 −5.86 −5.73
4-iodophenol −5.58 −4.71 −5.64 −4.74 −5.70

Anizole −5.46 −5.59 −5.29 −5.86 −5.18
Benzamide −6.58 −6.43 −5.96 −6.50 −5.86

Benzene −5.26 −5.63 −5.22 −6.00 −5.09 −4.51
Benzonitrile −5.82 −5.94 −5.31 −6.12 −5.19

Caffeine −7.53 −6.96 −7.38 −6.91 −7.66 −7.56
Chlorobenzene −4.97 −5.17 −4.92 −5.47 −4.81

Indazole −5.44 −5.56 −5.94 −5.63 −6.11
Toluene −4.92 −5.35 −4.92 −5.68 −4.78 −3.64

Table 3. Reference, predicted, and experimental values of log BCF.

log BCFEPI Equation (10) Equation (11) Equation (12) Equation (13) log BCFexp

2-Cresole 0.95 1.13 0.97 1.01 0.98 1.03
2-Naphtol 1.45 1.47 1.48 1.43 1.45
3-Cresole 0.96 1.13 0.94 1.01 0.94 1.23

3-Nitrophenol 0.99 0.85 0.64 0.98 0.67
4-Bromophenol 1.38 1.31 1.44 1.23 1.52 1.17
4-Chlorophenol 1.24 1.14 1.29 1.03 1.37 1.42

4-Cresole 0.95 1.17 1.04 1.06 1.06
4-Ethylphenol 1.37 1.55 1.11 1.52 1.10
4-Nitrophenol 0.93 0.85 0.60 0.98 0.63 0.71

Baclofen 0.50 0.51 0.99 0.53 0.90
Chlorocresole 1.45 1.64 1.77 1.63 1.90

Methylparaben 0.96 1.08 0.93 1.12 0.94
Phenol 0.63 0.92 0.71 0.76 0.71

Phenylalanine 0.50 0.44 0.70 0.44 0.65
Resorcinol 0.50 0.51 0.37 0.40 0.34

Salcylic acid 0.50 0.17 0.50 0.09 0.50
Thymol 1.84 2.13 2.03 2.23 2.12 1.48

1,2,3-tris(1-
methylethyl)benzene 3.86 3.20 3.41 3.40 3.49

1,4-dinitrobenzene 0.63 0.46 0.62 0.67 0.65
3-(trifluoromethyl)phenol 1.61 1.67 1.23 1.67 1.30

4-cyanophenol 0.72 1.06 0.65 1.09 0.66 0.91
4-iodophenol 1.59 1.67 1.96 1.68 2.10

4-nitrobenzoic acid 0.50 0.27 0.21 0.37 0.15
Anizole 1.06 1.15 1.20 0.96 1.23

Benzamide 0.50 0.53 0.72 0.43 0.73
Benzene 1.07 0.84 0.98 0.53 1.00

Benzoic acid 0.50 0.16 0.66 −0.06 0.65 0.93
Benzonitrile 0.70 0.77 0.96 0.60 1.00

Caffeine 0.50 0.84 0.63 0.93 0.48
Chlorobenzene 1.54 1.19 1.45 0.95 1.52 1.34

Indazole 0.83 1.09 0.67 1.03 0.61
Toluene 1.47 1.27 1.33 1.05 1.37 1.02

2.4. Statistical Tools

Multiple linear regression (MLR) models were generated using Statistica v. 13 by
StatSoft Polska, Kraków, Poland, and this refers to the stepwise forward regression mode.

The models considered in this study were evaluated using the following procedures:

• Cross-validation was performed, with n compounds from the initial training set split
into 2 subsets, one of which was used to train a new model and the remaining one to
test it. After cross-validation, the RMSEP (root mean squared error of prediction) for
the particular N-compound test subset was calculated as follows (Equation (3)):

RMSEP =

√√√√∑N
i=1

(
ypred

i − yre f
i

)2

N
(3)

• Comparison of the predicted log Kp
pred and log BCFpred values (calculated for the

compounds, whose experimental log Kp
exp and log BCFexp data are available) was per-
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formed, and these data were analyzed using the squared coefficient of determination
(R2

exp).

3. Results
3.1. Keratin vs. IAM HPLC Skin Permeability Models

In this study, we compared the log Kp models obtained using log kIAM and TPSA
(Equation (4)) with the models including log kKER as a chromatographic parameter
(Equation (5)).

log Kp = −5.61 (±0.24) + 0.68 (±0.17) log kIAM − 0.014 (±0.005) TPSA
(n = 32, R2 = 0.63, R2

adj. = 0.63, R2
exp = 0.72, F = 25.1, p< 0.01)

(4)

log Kp = −2.56 (±0.83) +1.74 (±0.38) log kKER − 0.011 (±0.008) Mw
− 0.22 (±0.11) #ArHvAt − 0.014 (±0.005) TPSA

(n = 32, R2 = 0.68, R2
adj. = 0.63, R2

exp= 0.73, F = 14.3, p< 0.01)
(5)

It was observed that neither Equation (4), nor (5), gives satisfying results of log Kp
predictions for relatively strongly ionized solutes (compounds 14, 16, 23, and 27); when
these compounds were excluded from the analysis, Equations (6) and (7) were obtained for
a group of 28 neutral, basic, or weakly acidic compounds (Figures 1 and 2, Table 2).

log Kp = −5.70 + 0.81 (±0.17) log kIAM− 0.015 (±0.004) TPSA
(n = 28, R2 = 0.80, R2

adj. = 0.78, R2
exp = 0.73, F = 49.7, p< 0.01)

(6)

log Kp = −2.73 (±0.54) +1.80 (±0.26) log kKER − 0.015 (±0.003) Mw + 0.13 (±0.05) #HvAt − 0.27 (±0.07)

#ArHvAt − 0.020 (±0.004) TPSA

(n = 28, R2 = 0.85, R2
adj. = 0.81, R2

exp = 0.79, F = 24.8, p< 0.01)
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The likely reason for such discrepancies between the predicted (Equations (4) and (5)) and
reference values of log Kp for relatively strongly ionizable compounds is that the reference
model has also its limitations: it overestimates the results for very hydrophilic molecules,
underestimates the values for non-hydrogen bonding solutes, and fails for extremely
lipophilic compounds or solutes having a very high tendency to hydrogen bonding [60–62].

At this point, the group of 28 studied compounds was divided into two subsets: a
training set (1 to 20) and a test set (21 to 28). Equations (8) and (9) generated for the training
set, and containing the same sets of independent variables as Equations (6) and (7), are as
follows (Table 2):

log Kp = −6.09 (±0.27) + 0.94 (±0.17) log kIAM − 0.0073 (±0.005) TPSA
(n = 20, R2 = 0.80, R2

adj. = 0.78, RMSEP = 0.51, F = 34.2, p< 0.01)
(8)

log Kp = −1.93 (±0.54) +1.85 (±0.28) log kKER − 0.017 (±0.003) Mw + 0.15 (±0.05)

#HvAt − 0.37 (±0.11)

#ArHvAt − 0.021 (±0.004) TPSA

(n = 20, R2 = 0.87, R2
adj. = 0.83, RMSEP = 0.44, F = 19.0, p< 0.01)

(9)

3.2. Keratin HPLC Models of Bioconcentration Factor

According to our earlier research, the bioconcentration factor log BCF can be predicted
using log kIAM and two additional parameters: FCsp3 and TPSA [31]. The predictive poten-
tial of Equation (10) (Figure 3) is compared to that of a model based on chromatographic
retention factors obtained using immobilized keratine as a stationary phase (Equation (11),
Figure 4).

log BCF = 0.79 (±0.11) + 0.62 (±0.07) log kIAM + 1.53 (±0.31) FCsp3
− 0.0046 (±0.0021) TPSA

(n = 32, R2 = 0.87, R2
adj. = 0.86, R2

exp = 0.41, F = 63.9, p < 0.01)
(10)

log BCF = 1.23 (±0.34) + 0.70 (±0.15) log kKER − 0.18 (±0.05)
#ArHvAt + 0.039 (±0.006) MR − 0.017 (±0.002) TPSA

(n = 32, R2 = 0.88, R2
adj. = 0.86, R2

exp = 0.69, F = 50.3, p < 0.01)
(11)
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At this point, the group of 32 studied compounds was divided into two subsets: a
training set (1 to 20) and a test set (21 to 32). Equations (12) and (13) generated for the train-
ing set, and containing the same sets of independent variables as Equations (10) and (11)
are as follows:

log BCF = 0.46 (±0.15) + 0.75 (±0.09) log kIAM + 1.84 (±0.34) FCsp3
+ 0.0010 (±0.0028) TPSA

(n = 20, R2 = 0.93, R2
adj. = 0.92, RMSEP = 0.36, F = 72.2, p < 0.01)

(12)

log BCF = 1.59 (±0.57) + 0.85 (±0.20) log kKER − 0.22 (±0.08)
#ArHvAt + 0.037 (±0.007) MR − 0.018 (±0.003) TPSA

(n = 20, R2 = 0.90, R2
adj. = 0.88, RMSEP = 0.23, F = 35.1, p < 0.01)

(13)

4. Discussion

In our study, we investigated the possibility of using log kKER in skin permeability
models, alongside additional descriptors that were either not considered or not available
when the keratin stationary phase was originally developed. We studied correlations
between log kKER and the key physico-chemical properties associated with compounds’
ability to cross biological barriers (Table 4) and discovered that log kKER encodes primarily



Pharmaceutics 2023, 15, 1172 9 of 12

lipophilicity (log Kow) and aqueous solubility (log S), which are important factors governing
the ability of compounds to cross the skin barrier, but the correlations are moderate.

Table 4. Correlations ® between chromatographic and calculated parameters (n= 32).

log
kKER

log
kIAM

Mw #HvAt #ArHvAt FCsp3 #FRB #HA #HD MR TPSA log Kow log S

log kKER 1.00 0.75 0.48 0.26 0.33 0.15 −0.07 −0.15 −0.25 0.45 −0.16 0.57 −0.67
log kIAM 0.75 1.00 0.20 0.00 0.06 0.26 −0.19 −0.42 −0.31 0.26 −0.54 0.81 −0.85

Mw 0.48 0.20 1.00 0.77 0.12 0.43 0.57 0.43 0.18 0.80 0.39 0.01 −0.09
#HvAt 0.26 0.00 0.77 1.00 0.25 0.62 0.75 0.56 0.13 0.89 0.54 −0.08 0.11

#ArHvAt 0.33 0.06 0.12 0.25 1.00 0.03 −0.24 −0.02 −0.09 0.24 0.02 −0.09 −0.05
FCsp3 0.15 0.26 0.43 0.62 0.03 1.00 0.46 −0.09 −0.12 0.75 −0.16 0.21 −0.13
#FRB −0.07 −0.19 0.57 0.75 −0.24 0.46 1.00 0.49 0.25 0.66 0.48 −0.18 0.30
#HA −0.15 −0.42 0.43 0.56 −0.02 −0.09 0.49 1.00 0.38 0.18 0.87 −0.45 0.45
#HD −0.25 −0.31 0.18 0.13 −0.09 −0.12 0.25 0.38 1.00 0.00 0.37 −0.42 0.40
MR 0.45 0.26 0.80 0.89 0.24 0.75 0.66 0.18 0.00 1.00 0.23 0.16 −0.14

TPSA −0.16 −0.54 0.39 0.54 0.02 −0.16 0.48 0.87 0.37 0.23 1.00 −0.57 0.57
log Kow 0.57 0.81 0.01 −0.08 −0.09 0.21 −0.18 −0.45 −0.42 0.16 −0.57 1.00 −0.96

log S −0.67 −0.85 −0.09 0.11 −0.05 −0.13 0.30 0.45 0.40 −0.14 0.57 −0.96 1.00

Predictive models of log Kp, involving retention parameters obtained on immobi-
lized keratin (Equations (7) and (9)), have similar (or, in fact, slightly better) statisti-
cal parameters compared to those reported for models based on IAM chromatography
(Equations (6) and (8)). Log Kp values predicted using Equation (7) are in a slightly closer
agreement with experimental log Kp

exp data available for a subset of 18 compounds than
those calculated using Equation (6). It must be noted, however, that, in the process of
descriptors’ selection by forward stepwise regression, chromatographic parameters log
kKER and log kIAM behave differently. Log kIAM (Equation (6)) is selected first, and it
accounts for ca. 66% of total log Kp variability; log kKER (Equation (7)) is selected second
(after TPSA), and it accounts for just 16% of total log Kp variability.

The significance of log kKER as an independent variable is much higher in models of
bioconcentration factor log BCF. In Equation (11), log kKER is the most important indepen-
dent variable, accounting for 39% of total log Kp variability; further variables (selected as
follows: TPSA, MR, and #ArHvAt) account for 24, 18, and 7% of total log Kp variability,
respectively. In the IAM chromatography-based model of log BCF (Equation (10)), log kIAM
accounts for 73%, and other independent variables (FCsp3 and TPSA) account for 12 and
2% of total log Kp variability, respectively. The keratin chromatographic retention-based
model (11) has statistical parameters similar to those of Equation (10), derived from IAM
chromatography; however, Equation (11) seems to fit the experimental data (log BCFexp)
reported for a subset of 10 compounds better than Equation (10).

5. Conclusions

Immobilized keratine-based chromatographic stationary phase was developed in the
late 1990s to help in in vitro investigations of compounds’ transdermal absorption. A
new model of a skin permeability coefficient was developed in the current study, which
involves the chromatographic retention factor measured on the immobilized keratine
sorbent (log kKER) and four additional independent variables (Equation (7)). This model
has slightly better statistical parameters and is in a better agreement with experimental
log Kp data than the model derived from IAM chromatography (Equation (6)); both
models are applicable primarily to non-ionized compounds (with carboxylic acids removed
from Equations (4) and (5)). Based on the MLR analyses conducted in this study, it was
concluded that immobilized keratin chromatographic support is a moderately useful tool
for skin permeability assessment. However, similarly to IAM chromatography in the
past, chromatography on immobilized keratin may serve a different purpose; designed for
applications in pharmacokinetic studies, it may also be of use in the realm of environmental
science, in studies of compounds’ bioconcentrations in aquatic organisms.
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30. Sobańska, A.W. Immobilized Artificial Membrane-Chromatographic and Computational Descriptors in Studies of Soil-Water
Partition of Environmentally Relevant Compounds. Env. Sci. Pollut. Res. 2022, 30, 6192–6200. [CrossRef]
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