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Abstract: The development of antiviral treatment and anticancer theragnostic agents in recent
decades has been associated with nanotechnologies, and primarily with inorganic nanoparticles
(INPs) of metal and metal oxides. The large specific surface area and its high activity make it easy
to functionalize INPs with various coatings (to increase their stability and reduce toxicity), specific
agents (allowing retention of INPs in the affected organ or tissue), and drug molecules (for antitumor
and antiviral therapy). The ability of magnetic nanoparticles (MNPs) of iron oxides and ferrites
to enhance proton relaxation in specific tissues and serve as magnetic resonance imaging contrast
agents is one of the most promising applications of nanomedicine. Activation of MNPs during
hyperthermia by an external alternating magnetic field is a promising method for targeted cancer
therapy. As therapeutic tools, INPs are promising carriers for targeted delivery of pharmaceuticals
(either anticancer or antiviral) via magnetic drug targeting (in case of MNPs), passive or active (by
attaching high affinity ligands) targeting. The plasmonic properties of Au nanoparticles (NPs) and
their application for plasmonic photothermal and photodynamic therapies have been extensively
explored recently in tumor treatment. The Ag NPs alone and in combination with antiviral medicines
reveal new possibilities in antiviral therapy. The prospects and possibilities of INPs in relation to
magnetic hyperthermia, plasmonic photothermal and photodynamic therapies, magnetic resonance
imaging, targeted delivery in the framework of antitumor theragnostic and antiviral therapy are
presented in this review.

Keywords: iron oxides; nanoparticles; ferrites; magnetic hyperthermia; magnetic resonance imaging;
drug delivery; theragnostic agents of cancer; antiviral therapy; silver; gold; photodynamic therapy;
photo-thermal therapy

1. Introduction

Nowadays metal and metal oxides nanoparticles (NPs) and nanosystems (NS) have
found numerous applications and play an essential role in modern biomedicine. Nanopar-
ticles are the ultrafine objects that combine atoms of chemical elements or molecules of
organic and inorganic compounds with sizes of 1–100 nanometers (nm; 1 nm = 10−9 m) [1].
The word nano is derived from the Greek word “nanos”, which means small [2]. Nanopar-
ticles are characterized by a high surface area-to-volume ratio, enormous reactive surface
area and their properties are significantly influenced by both classical and quantum effects.
Hybrid NSs based on metal and metal oxide NPs also ordinarily include functionalized
organic ligands that can interact with surface active centers of the metal/metal oxide NPs
and form highly ordered organic coronas around the inorganic cores. These coronas protect
them against the effects of biological media, bioactive (drug) substances that can be immo-
bilized directly on the surfaces of metal/metal oxides NPs or incorporated into the soft
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organic corona structures. Consequently, these materials have unique biological, physical,
and chemical properties unlike macro-scale (bulk) materials with the same content [3].
Metallic NPs, such as Ag NPs and Au NPs, have been of significant interest in the past
decades due their therapeutic (antibacterial, anticancer, antiviral) and unique physico-
chemical properties (surface plasmon resonance (SPR), laser and microwave hyperthermia)
properties. The combination of therapeutic effects of metal/metal oxides NPs with modern
antibacterial, anticancer, antiviral drug molecules can lead to the appearance of a synergetic
rise in biomedical efficiency of such hybrid medical formulations. Magnetic nanoparticles
(MNPs) of magnetite, maghemite and ferrites could possess ferromagnetic, ferrimagnetic
and superparamagnetic properties. They exhibit a high value of the saturation field, in-
creased anisotropy contributions, high field irreversibility, shifted loops after field cooling,
and superparamagnetic properties. These features result from the limited and narrow size
distribution and surface impacts that determine the magnetic behavior of each nanoparti-
cle [4]. Inorganic nanoparticles (INPs) have shown high potential as targeted nanocarriers
for therapeutic, diagnostic, and clinical medications [5]. Their unique physicochemical
features are effective at both the molecular and cellular levels.

As per GLOBOCAN 2020, cancer lethality almost reached 10 million in 2020 with
19.3 million new cases diagnosed and up to 28.4 million cases predicted for 2040 [6].
Thus, new theragnostic approaches to the diagnosis and medicine treatment of cancer
are required. Among various medical applications, INPs of metal and metal oxides have
a special potential in cancer diagnostic and therapy. As a result of intensive research
and preclinical investment in liposomal based drug delivery systems, several products
with improved cancer treatment potential were produced and approved by the Food
and Drug Administration of United States [3,7]. Furthermore, the marketing and clinical
application of INPs-based medicines includes Ferumoxsil (Lumirem/Gastromark) and
Ferumoxytol (Rienso/Feraheme) [8–10]. Regardless, the possibilities of nanomedicine and
nanodiagnostics have not been exhausted.

Infectious diseases, along with cancer, are the leading cause of death worldwide. They
have a global impact on world health and socio-economic status. COVID-19 is a good
example of this [11]. The development of novel treatment strategies for viral diseases is
therefore required.

Currently, there are numerous proposed and developed applications of inorganic nanopar-
ticles (INPs) for the diagnosis and treatment of cancer, as well as for antiviral therapy. Most
of these applications are still in the early stages of preclinical evaluation. The use of nan-
otechnology plays a crucial role in tumor diagnostics, with MNPs of metals and their oxides
proving to be promising agents for magnetic resonance imaging(MRI). It is predicted that
these NPs will replace the more harmful gadolinium compounds in near future. The use of
MNPs in cancer treatment has yielded positive results, particularly when it comes to magnetic
hyperthermia (MHT), which increases thermal therapy’s effectiveness without the need for
surgery. Plasmonic nanomaterials offer another non-invasive form of selective thermal ther-
apy, photothermal therapy (PTT). Photosensitizers for photodynamic (PDT) cancer therapy
often include metal and metal oxide NPs. The large specific surface area of INPs, which can be
modified and loaded with medicinal substances, provides the basis for the creation of targeted
delivery systems for antiviral and antitumor drugs. Surface modification also holds promise
in reducing toxicity and increasing the bioavailability of diagnostic and drug systems based
on INPs. Ultimately, the purpose of this review is to emphasize the main possibilities of INPs
in the field of cancer theragnostic and antiviral treatment.

2. Applications of MNPs for MRI in Cancer Diagnostics

Early diagnosis is one of the key parameters that determine the effectiveness and
positive outcome of any type of therapy. Detection of stage 1 cancers is associated with a
higher than 90% 5-year survival rate [12] due to availability of curative treatment. Medical
imaging technologies have undergone explosive growth over the past few decades and
now play a central role in clinical oncology.
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Magnetic resonance imaging (MRI) has become one of the most widely used and
powerful tools for noninvasive clinical cancer diagnostics due to the high degree of soft
tissue contrast, spatial resolution and penetration depth compared to other methods. The
disadvantage of MRI is its low sensitivity and specificity (false positive rate of 8% for
breast cancer) [13]. Contrast agents to some extent allow researchers to improve the MRI
sensitivity. The potential and efficiency of MRI contrast agents could be corrected by using
cellular markers and ferrimagnetic and superparamagnetic NPs.

2.1. MRI Contrast Agents

The use of contrast agents in MRI results in a change of the relaxation times (T1 and T2)
values of water protons and, consequently, a change of signal strength in different body
parts where the agent is presented. As a result, the sensitivity and specificity of MRI images
of different tissues and organs increases. The MRI contrast agents usually reduce the rate of
all relaxation processes; however, each substance predominantly affects one of them. There
are two categories of contrast agents in MRI. Positive contrast agents, or T1-contrast agents,
tend to decrease the relaxation time of the longitudinal component of the magnetization.
On the other hand, negative contrast agents, or T2-contrast agents, primarily decrease
the relaxation time of the transverse component [14]. Enhanced contrast occurs when a
tissue exhibits greater affinity for contrast agents or higher vascularity compared to others.
Tumors and other diseased tissues differ metabolically from healthy ones, leading to varied
absorption of contrast agents and dissimilar MRI images.

2.2. T1-Contrast Agents

Organic compounds containing metal ions, such as gadolinium (Gd(III)), iron (Fe(III)),
and manganese (Mn(II)), make up paramagnetic T1 contrast agents. The majority of the
available MRI contrast agents are gadolinium chelates which elicit a “positive contrast” or
an amplified signal on T1-weighted images, while their impact on T2-weighted images is
usually insignificant [15]. In addition to the effectiveness of free gadolinium ions (Gd3+) as
a contrast agent due to good T1-weighted imaging, these ions also cause significant side
effects. The Gd3+ ions are rather toxic and induce disturbances in the functioning of all
systems: cardiovascular, gastrointestinal, nervous systems, respiratory system, skin, special
senses (lacrimation, eye pain and irritation, conjunctivitis, ear pain, taste abnormality, and
dry mouth) [15]. Therefore, it is necessary to administer gadolinium in the form that pre-
vents the release of the metal ion in vivo, such as of stable chelate complexes. Unfortunately,
this form is not efficient enough [16]. Gadolinium compounds may cause nephrogenic sys-
temic sclerosis [17], neurotoxicity [18]. Histopathological and molecular analysis showed
damage in the liver, lungs, and kidney tissues of mice treated by gadolinium-based contrast
agents [19]. For that reason, a general warning has been issued by the Food and Drug
Administration (United States) for all gadolinium-based contrast agents. Moreover, they
advised that gadolinium-based contrast agents should not be used on all patients with
acute renal insufficiency [20].

Studies on both animals and humans have revealed that Gd3+ (either free or chelated)
can persist in the tissues of individuals with normal kidney function. Gadolinium has
been detected in several organs, such as the skin, bones, and brain, for years after linear or
macrocyclic administering of chelated gadolinium. Nevertheless, the implications of this
occurrence remain unclear [21].

Contrast agents based on Gd are typically not specific and tend to rapidly escape
from the vascular space due to their molecular weight being low. After intravenous
injection, they rapidly move from the blood pool to the interstitial space, exhibiting a
distribution half-life (t1/2) of approximately 5 min. These agents are primarily excreted
by the kidneys, with an elimination t1/2 of approximately 80 min [22]. The constrained
resolution of the imaging system causes a decrease in visible activity of small areas
or objects [23]. Consequently, different varieties of MRI contrast agents were utilized
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because of the inadequate detection sensitivity, toxicity, and short blood circulation times
associated with T1 Gd-based contrast agents.

2.3. T2-Contrast Agents

The MR signal intensity is decreased by the negative (T2) contrast agents in the body
parts where they are located. The most common and the first NPs used as predominantly
negative (T2) MRI agents are the magnetic iron oxide nanoparticles (MIONPs). The MIONPs
are monocrystalline and consist of maghemite (γ-Fe2O3) or magnetite (Fe3O4). Depending
on the size of the nanoparticle core, these NPs can be either superparamagnetic or ferro-
magnetic. Superparamagnetic behavior is typical for particles smaller than 25–35 nm [24].
Iron oxide-based contrast agents are considered to have better biocompatibility and safety
profiles when compared to Gd-based agents due to the essentiality of iron in the human
body unlike gadolinium. The T2 contrast agents result in regions appearing darker in
T2-weighted images, as they produce hypo intense signals. This phenomenon may be
attributed to the heterogeneity of the magnetic field enveloping the NP. Water molecules
diffuse through this field, which then leads to dephasing of the magnetic moments of the
protons and leads to a shortening of T2.

The MIONPs exhibit excellent biomedical capabilities, primarily as MRI contrast
agents, due to their high proportion of surface atoms, biodegradability, low toxicity, chem-
ical stability in physiological conditions, and rapid response to external magnetic field
stimulation. They have been used as T2 contrast agents for more than three decades since
1987. Various compounds that include superparamagnetic iron oxide are commercially
available, such as Resovist (Schering, Berlin, Germany; Osaka, Japan), Endorem (Guerbet,
Villepinte, France), and Feridex (Berlex, Hanover, NJ, USA). These compounds are typically
utilized for detecting liver and spleen tumors [25]. Currently, new MRI contrast agents
based on MIONPs are being developed for highly selective detection of various types of
cancer. Their optimal composition and functionalization are selected in terms of efficiency
and toxicity. The optimal conditions for their use are also established.

The MIONS can accumulate in the tumor space due to increased blood flow, increased
vascular permeability, and poor lymphatic drainage of tumors. This phenomenon has
paved the way for the passive targeting of tumors and has been later termed the Enhanced
Permeability (EPR) effect [26]. This effect is used to improve the quality of MRI tumor
detection due to increased tissue density of the MNPs based contrast agent.

The Fe3O4-Au hybrid NPs were also proposed as MRI agents in [27]. The T2-weighted
images were captured before, 30 min, 6 h and 24 h after NPs injection. Detection of
octahedral-shaped Fe3O4-Au hybrid NPs accumulation was primarily observed in the
liver 30 min after injection. Subsequently, at 6 h and 24 h following the injection, a no-
ticeable improvement in tumor contrast was observed. The peak of NPs accumulation in
malignant tissues was observed at roughly 6 h following the injection. Micelles loaded
with MIONPs and coated by polyethylene glycol (PEG)-poly-caprolactone co-polymer
were used as T2-weighted MRI contrast agents for brain tumors (glioblastoma multiform
(GBM)) detection in a mouse model. The MRI-based visualization revealed an accumula-
tion of the particles in both the heterotopic flank and orthotropic brain GBM tumors and
provided reliable hypo intense MRI contrast enhancement with good delineation of tumor
borders [28].

2.4. Targeted Contrast Agents

An effective approach for enhancing the accumulation of MNPs in tumors is to con-
jugate them with targeting segments [26]. This approach can amplify sensitivity by in-
tensifying the density of MNPs in tissues, allowing for the development of tissue-specific
contrast agents. This approach can also afford an opportunity to visualize the cellular and
subcellular activities and mechanisms within living organisms non-invasively, promoting
the trend also known as molecular MRI.
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A novel type of T2-MRI contrast agent targeting the anti-human epidermal growth
factor receptor 2 (HER2) built of MIONPs conjugated with HER2 antibody derivatives has
been suggested [29]. The HER2 is closely associated with a negative prognosis and is over-
expressed in different cancers ranging from ovarian, breast to gastric cancer, whereas its ex-
pression is considerably low in specific normal tissues. In vitro, human gastric cancer cells
(N87) labeled by HER2-IONPs displayed negative contrast enhancement in T2-weighted
MR images, in which the signal significantly decreased by 44.6 ± 7.8% than that in the
control cells. In vivo, the percentage of signal decrease was 19.3 ± 5.3 and 8.4 ± 2.6%, for
HER2-IONPs in the N87 tumor and IONPs covered PEG in the N87 tumor, respectively, thus
increasing imaging sensitivity. The HER2-MIONPs successfully depicted HER2-positive
tumors (human gastric cancer cells) using MRI.

The recombinant humanized monoclonal antibody Bevacizumab (BCZM) has been
utilized to functionalize MIONPs [30]. The BCZM targets vascular endothelial growth
factor-A (VEGF-A) to inhibit angiogenesis. This medication has been approved for the
treatment of multiple types of metastatic cancers and is an optimal candidate for targeting
tumor sites using VEGF-A targeting. The tumors appeared with high signal intensity on
T2 weighted images taken 1 and 24 h after modified NPs injection. The Au coated Fe3O4
NPs were conjugated in the study [31] with epidermal growth factor receptor monoclonal
antibody cetuximab (C225). These Au-Fe3O4-C225 hybrid NPs favorably targeted human
glioma cell line U251 in vitro; they also possessed good targeting ability to xenografted
glioma on nude mice in vivo and it showed excellent negative contrast media properties
for MRI. Similarly, the prostate stem cell antigen antibody was bound to Au/MIONPs for
diagnosis of prostate cancer [32].

The use of MIONPs in combination with epidermal growth factor receptor antibodies
was explored [33] for detecting lung cancer via MRI. Results from an experiment conducted
on C57BL/6 mice using the LLC1 cell line indicated that incorporating ligand antibodies
led to greater MIONPs uptake in cancer cells, evidenced by an increase in signal intensity
as measured via atomic absorption spectrophotometry. Thus, by tagging MIONPs with a
ligand, it is possible to pinpoint cancer cells.

The MIONPs modified with short peptide sequences were proposed for the diagnosis
of colon cancer [34] and fibro-sarcoma [35]. The mechanism of contrasting of such hybrid
particles is based on the fact that peptide sequence recognizes integrin. Integrin receptors,
especially α5β3, were found to be differentially overexpressed in tumors, playing a vital
role in tumor angiogenesis [36].

Additionally, aptamers and peptides functionalization of NPs is used for liver can-
cer [37,38] visualization. The PEG coated MIONPs, and dextran (DEX)-coated IONPs
conjugating folate on their surface are perspective molecular contrast agents for lungs
cancer detection [39].

Polyethyleneimine-IONPs targeted by PNC27 peptide as a double targeting agent was
proposed by [40] for early cancer diagnosis application.

2.5. Ultrasmall Superparamagnetic Iron Oxides Nanoparticles (USSPIONPs) as T1 and T1/T2
Contrasts Agents

Radiologists have a strong inclination towards T1-contrast agents because T2-contrast
agents are known to create areas of darkness. Consequently, it is difficult to distinguish on
T2 weighted images the affected tissues from air-tissue boundaries, internal bleeding, or
other susceptibility artifacts. This in turn leads to a less precise diagnosis. Additionally, the
high susceptibility of T2 contrast agents causes distortion of the magnetic field on neigh-
boring normal tissues. This phenomenon known as a susceptibility artifact, or “blooming
effect” creates indistinct images without any background over the lesions.

The USSPIONPs smaller than 5.0 nm in core diameter have gained more prominence
as MRI contrast agents recently [41]. The decrease in size causes the USSPIONPs to have
reduced magnetization due to the spin-canting effect, enabling them to efficiently decrease
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T1 relaxation time of water protons and make them appropriate for improving T1-weighted
MRI. Additionally, their ultra-small size provides the USSPIONPs with the following benefits:

• By evading the nonspecific absorption by mononuclear phagocytes, these NPs can
circulate within the body for an extended period, making them suitable for targeted
imaging, steady-state imaging, and high-resolution imaging.

• Appropriate surface modifications enable these particles to clear through the kidneys,
which reduces the risk of iron overload in patients with iron metabolism disorders,
thereby improving biocompatibility and ensuring biosafety.

• Assembly/disassembly can be utilized to produce T2/T1 switchable contrast enhance-
ment effects, thus improving the accuracy and sensitivity of MRI, making them a
viable option.

Some USSIONPs with a size of approximately 3 nm and an ultra-thin hydrophilic shell
of about 1 nm were produced by thermally decomposing Fe(oleate)3 in the presence of
oleic acid. These particles were found to have a r2/r1 ratio of 2.0, which is lower than other
SPIONPs-based positive contrast agents, but similar to Gd-based chelates [42]. Moreover,
an in vivo MRI procedure was executed and exhibited that the contrast potency of the
NPs was suitable for application in the given context. The optimized precipitation method
produced protein-stabilized IONPs that were 2–3 nm in size, had favorable T1 and T2
relaxation times, excellent stability, and biocompatibility, indicating their potential for MRI
usage [43]. Coated with poly-glucose, sorbitol and carboxymethyl USSPMIONPs were
synthesized [44]. Average particle size ranged from 1.8 to 4 nm. The most successful
T1 MRI contrast agent included NPs with average size of 3.7 nm. Its relaxivity r1 value
was 4.11 (mmol L−1)−1 s−1 and an r2/r1 ratio during clinical 3 T MR scanning was of
7.90. Additionally, these NPs provided excellent T1 MRI contrast effects in water, cellular
environments, and blood vessels.

2.6. Mixed Oxides as Contrasts Agents

Other nanosystems with varying magnetic cores have been developed to enhance MRI
diagnostics and improve the signal sensitivity, in addition to NPs that rely solely on iron ox-
ides for their metal core. Ferrites, which are mixed oxides resulting from substituting an iron
oxide with a different metal ion such as Mn2+, Zn2+, Co2+, or Ni2+, are an example of such
systems. The wet chemical co-precipitation method was used to prepare Co1−xMnxFe2O4
(x = 0.2, 0.4, 0.6, and 0.8) nano-ferrites that were coated with the biocompatible material,
chitosan. The ferrites were tested for their ability to detect T2-weighted MR images, and
it was found that the relaxation values decreased progressively with an increase in man-
ganese ions [45]. The best contrast enhancement was observed with the contrast agent
Co0.8Mn0.2Fe2O4. The Mn–Zn ferrites (Mn0.6Zn0.4EuxFe2−xO4, x = 0.00, 0.02, 0.04, 0.06,
0.08, 0.10, and 0.15) synthesized by the co-precipitation method and coated with citric or
pluronic acids are suitable candidates for dual-mode MRI contrast agent positions [46]. An
increase in the amount of europium to x = 0.15 results in a notable increase in the growth of
r1 relaxivity. Conversely, substituting europium led to a decrease in r2 relaxivity as there
was a decrease in saturation magnetization. The europium-free sample had an r2/r1 ratio
of 152 which decreased to 11.2 for x = 0.15. Furthermore, manganese-zinc ferrite displayed
a dual-contrast capacity, exhibiting higher longitudinal relaxivity (35.22 s−1 mM Fe−1) and
transverse relaxivity (237.94 s−1 mM Fe−1) compared to Resovist® [47]. The PEG-coated
Mn, Zn ferrite NPs having a hierarchical structure and an average dimension of about
20 nm can be deemed as a promising T2 MRI contrast agent [48].

The MRI agents discussed above are summarized in Table 1. This shows that over
the past few decades, there has been an evolution of contrast agents. The changes are
aimed at increasing the sensitivity and contrast of the method and reducing the toxic effect.
New, less toxic than Gd-chelates T2 contrast agents based on MIONPs have appeared.
Further development of the method is associated with the creation and application of
target agents that find and allow the sensitive detection of tumor cells due to targeted
accumulation. Probably, these studies will be carried out using USSPMIONPs or ferrites
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NPs due to their potential as T1 and T1/T2 MRI contrast agents (Figure 1). Research is also
ongoing to improve the effectiveness and biocompatibility of contrast agents by modifying
their surface with various coatings and vectors, changing their magnetic properties by
controlling their composition.

Table 1. Potential MRI contrast agents.

MRI Agent Core
Composition NPs Size/Shape Type of

Contrast Agent Vector (Targeting Agent) Application Test Reference

Fe3O4-Au 25 nm octahedral-
shaped T2 EPR, passive

in vitro (4T1 cancer cell
line); in vivo (breast

cancer model)
[27]

Fe3O4-Au
mixed

Au 2 nm;
Fe3O4 15 nm T2 EPR, passive in vivo (glioblastoma) [28]

MIONPs 20 nm T2 HER2 single-chain antibody

in vitro (NCI-N87 human
gastric cancer cells and

human pancreatic cancer
cells SUIT2); in vivo
(pancreatic cancer)

[29]

MIONPs T2 BCZM
in vivo (breast cancer

cells transfected with the
VEGF-165 isoform)

[30]

Au coated Fe3O4 46 nm T2 C225 in vitro and in vivo
(human glioma) [31]

Au coated Fe3O4 50 nm T2
Prostate stem cell antigen

antibody in vivo (prostate tumors) [32]

MIONPs T2
anti-epidermal growth factor

receptor antibody in vivo (lungs tumor) [33]

Fe3O4 22 nm T2

arginine-glycine-asparticacid-
tumornecrosis factor-related
apoptosis-inducing ligand

in vivo (colorectal cancer) [34]

Fe3O4/mesoporous
silica-Au 16 nm T1 and T2

peptide cyclo[Arg-Gly-Asp-D-
Phe-Lys] in vivo (fibro-sarcoma) [35]

MIONPs 10 nm T2
glypican-3 (GPC3)-specific

aptamer (AP613-1)
in vitro and in vivo (liver

cancer) [37]

Fe3O4-Au Fe3O4 2 nm
Fe3O4-Au 7 nm T1 and T2

tumor homing peptide
(LyP-1)

in vitro and in vivo
(hepatocellular

carcinoma)
[38]

MIONPS T2 folic acid in vivo (lungs cancer) [39]

MIONPS 1–3 nm T1 - in vivo (mice) [42]

Co1−xMnxFe2O4 10–50 nm T2 - in vivo (mice) [45]
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3. Applications of MNPs for Cancer Heating Therapy

Hyperthermia (HT) is a type of treatment in which body tissue is exposed to high
temperatures to damage and kill cancer cells or to make cancer cells more sensitive to
the effects of radiation and certain anticancer chemotherapeutic drugs. The term “hyper-
thermia” is derived from two Greek words, “hyper” and “therme,” meaning “rise” and
“heat,” respectively [49]. The treatment is based on the observation that tumor cells can be
destroyed by heating the cells for some time to temperatures between 43 and 46 ◦C while
healthy cells are less affected. Cancer cells’ susceptibility to high temperatures stems from
a lack of oxygen within them due to an inadequate blood supply in the affected area. By
exposing these cells to temperatures ranging between 41 ◦C and 46 ◦C for a minimum of
20–60 min, their proliferation can be curtailed [50,51]. In the cases of temperature above
46 ◦C, treatments lasting even just a few minutes can lead to the death of cancer cells. How-
ever, this is offset by the harm caused to viable cells, leading to occurrences like coagulation,
carbonization, or tissue necrosis.

3.1. HT Types

HT can be divided into several types as follows:

• Whole body (WB) HT.
• HT by wireless applicators (WA).
• HT by heating source insertion (HIS).
• Magnetic hyperthermia (MHT).

Whole body HT, carried out with the help of hot water bath, hot water blankets,
thermal chambers, is the primary method of hyperthermia. It does not allow heating
selectivity and is a commonly used metastatic cancer treatment. The WA HT is already a
local or regional method. It is associated with the use of high-intensity focused ultrasound
or electromagnetic applicators (radio frequency and microwave) for heating. The disad-
vantages of the method are the uneven distribution of heat, its insufficient penetration into
the affected area and the heating of unaffected tissues. Of all the possible implementations
of the method, microwave WA HT is the most efficient; however, even in this case, there
is no uniformity of temperature around deep-seated tumors. Inserting radio frequency
or microwave heating sources inside or around the affected area through surgery (HIS) is
recommended to reduce heterogeneity of heat distribution in cells. However, this invasive
method causes complications and discomfort for patients during and after therapy.

Hence, the HT techniques mentioned above exhibit substantial shortcomings in terms
of targeting tumors and accurately directing thermal energy. The optimal approach for HT
should be minimally invasive, targeted toward specific tissues, and capable of delivering
high-intensity heating in deeper tissues with precision. The MHT, a unique form of HT
facilitated by nanotechnology, offers a revolutionary solution that overcomes the drawbacks
and diminishes adverse effects associated with other HT methods. The application of
MHT facilitates the production of local heat at a distant location by utilizing magnetic
energy losses of MNPs (which may have been actively or passively accumulated in the
tumor), under the influence of an oscillating magnetic field (Figure 2). Thus, by converting
electromagnetic energy into heat, certain MNPs can induce temperature elevation in specific
areas of the human body where tumor cells and NPs are present. Hence, regulating the
activation of these NPs by means of an oscillating magnetic field can allow for external
control of them as nanoheaters.

3.2. Types of MNPs Suitable for HT and Their Requirements

The MNPs which have been studied for use as HT agents comprise two categories
based on their structure: magnetic metal or alloy NPs and magnetic metal oxide NPs.
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The metals commonly utilized for HT applications are nickel (Ni), iron (Fe), and cobalt
(Co) due to their magnetic features, including high saturation magnetization, large magnetic
anisotropy, and high magnetic moment. Nevertheless, these metallic magnetic NPs have
challenges that include inadequate chemical stability and biocompatibility, susceptibility
to oxidation, and pyrophoricity at room temperature. These downsides lead to partial
or complete loss of magnetization that renders them unfit for HT use. However, it is
possible to improve the resistance of the magnetic metal component towards oxidation by
incorporating additional metals into NP compositions or using alternative covers such as
polymers, organic materials, or ceramics. Furthermore, NPs of magnetic metal alloys were
used to optimize the magnetic properties. For the MHT needs, as magnetic agents Fe [52],
Co [53] NPs and Fe-Ni-Co [54], Co-Ni [55], Fe-Au [56–58], Fe-Al [59], Fe-Rh [60], Fe-Cr-Nb-
B [61], Cu-Fe and Cu-Ni [62] alloys are considered. The potential chemical instability and
toxicity of Co and Ni limit their use.

Metal oxide MNPs are highly stable when exposed to oxidation, making them fre-
quently employed for MHT purposes. Of all the metal oxide MNPs, MIONPs are the most
extensively researched due to their exceptional self-heating properties. The iron oxide
forms of magnetite and maghemite are also the most desirable options for MHT due to
their chemical stability, diminished toxicity, and biodegradability [63–66].

The replacement of ferrous iron in magnetite and the formation of a mixed oxide
makes it possible to change the properties of MNPs, for example, magnetic (Co, Ni) or
antibacterial (Zn, Cu). The MHT agents can be ferrites such as Co-Fe, Ni-Fe [67], and
Ca-Mn [68], Zn-Mn [69], Cu-Co [70], Co-Mn [45] mixed ferrites.

For MNPs to effectively work in MHT, various factors such as targeting, clearance, and
heating efficiency need to be taken into consideration. The heating efficiency is calculated by
assessing the specific absorption rate (SAR) which represents the MNPs’ ability to eliminate
cancer cells. The SAR value of the sample can be calculated by means the equation:

SAR = Cp,s
dT
dt

where Cp,s is the heat capacity of the imaging tissue, dT/dt is the initial slope of the time-
dependent heating curve. The heating mechanisms that contribute to SAR are attributed
to hysteresis loss in multi-domain magnetic particles that are larger than 1 µm, relaxation
loss in single-domain SPMNPs and eddy currents in magnetic particles that are larger than
1 µm. Several factors, which include saturation magnetization, size and shape of MNP
particles, TH, intensity, and frequency of the alternating current magnetic field can influence
the SAR value.
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3.3. Effect of Size and Shape on MHT Properties

To ensure effective heating of the NPs when subjected to an oscillating magnetic field,
it is important to aim for as high a saturation magnetization as possible. The MNPs exhibit
superparamagnetic traits, which are dependent on the size of the particles. By increasing
the size of the particles, the magnetization saturation values also increase, which ultimately
translates to improved MHT application performance. However, there is a critical size
threshold, also referred to as the superparamagnetic limit, that, when surpassed, renders
NPs magnetic. Additionally, the influence of particle size on the possibility of their delivery,
including the possibility of overcoming biological barriers, must also be considered. The
correlation between the size (varied from 5 nm to 110 nm) of silica-coated Fe3O4 MNPs
and the SAR value has been investigated [71]. The SAR values ranged between 137 and
1 W/g for particle sizes of 24 and 110 nm, respectively. With a shift from mono-disperse to
poly-disperse MNPs, there is a decline in the SAR value due to the decrease in particle size
uniformity, resulting in increased total heat generation. Consequently, the size distribution
significantly affects the induction heat value. Increasing the particle size of cubic cobalt
ferrite NPs from 20 to 27 nm leads to saturation magnetization growth from the value of
50 emu/g to the value of 62 emu/g. Substantial reduction in SAR values was observed
after eliminating the alternating current magnetic field, which suggests a decrease in the
heat energy that damages cancer cells while preserving magnetization [72]. Maghemite
NPs in the size range of 5–16.5 nm have shown a maximum SAR of 1650 W/g for NPs with
a size of 16.5 nm [73]. The MIONPs of different sizes ranging from 5 nm to 110 nm were
utilized by Gonzalez-Fernandez et al. [71] to determine the maximum heating efficiency.
Their experiments indicated that the most effective size was just below 30 nm. In a separate
study, Dr. Wang examined magnetite NPs with diameters of 6 nm, 8 nm, and 10 nm and
determined that the 10 nm particle exhibited the greatest efficiency [74]. Furthermore,
Gonzalez-Weimuller tested USSPIONPs ranging between 5 nm and 14 nm using a field
strength of 24.5 kA/m and a frequency of 400 kHz and found that the optimal size was
14 nm.

The particle size dependence of SAR had a maximum at a particle size of just about
or slightly less than one magnetic domain. The use of bulk particles in MHT treatment
is limited if they possess a complex domain structure as magnetization reversal occurs
when the magnetic moments flip in domains that are antiparallel to alternating magnetic
fields. Additionally, magnetic domain growth occurs in other domains at lower field
strengths [75]. The single-domain MNPs experience significantly greater power loss than
the multi-domain NPs. Therefore, if the magnetic material is fully saturated, an increase in
domain size should result in a decrease in power loss. Consequently, to reduce power loss,
it is recommended to avoid larger domain particles [74].

For biomedical applications, single-domain superparamagnetic NPs (SPNPs) are
preferred over multidomain ferri- and ferromagnetic NPs. The use of SPNPs means that
the magnetization drops to zero when the applied magnetic field is removed.

The alteration of shape has been identified as a promising approach for improving the
magnetic properties by introducing additional anisotropies and consequently increasing the
heating efficiency. It is possible to adjust the shape anisotropy of MNPs with diverse mor-
phological features to enhance their performance. Among FeO/Fe3O4 NPs, cube shaped
MNPs with superior surface anisotropy exhibited a higher SAR of 200 W/g compared to
spherical MNPs with a SAR of 135 W/g [76]. When compared to spheres (140 W/g) and
cubes (314 W/g) of equivalent volumes, iron oxide nanorods display a greater SAR value
of 862 W/g [77].

The amount of induced heat power is directly affected by changes in frequency and
amplitude of the alternating magnetic field. Typically, SAR values rises with an increase in
frequency, but caution must be taken within a restricted range.
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3.4. Effect of Coating on HT Properties

A variety of coatings are employed for MNPs to accomplish diverse tasks such as:

• Preserving MNPs’ physiochemical properties and composition.
• Enhancing MNPs’ biocompatibility while also reducing toxicity since their surface

comes into direct contact with blood and tissues.
• Inserting hydrophilic molecules on the surface to enhance the dispersity of SPMNPs,

which in turn prevents agglomeration, controls particle size, reduces the possibility of
blood capillary obstruction, and improves blood circulation by transporting SPMNPs
to targeted areas.

• Altering the surface to create a more suitable platform for further functionalization
and protein absorption.

• Preventing the SPMNPs opsonization.

When creating new magnetic agents for HT, it is important to take into account the
potential impact of the coating on the magnetic properties of MNPs.

A broad range of coatings can be utilized for MNPs, which can be classified into two
primary groups: organic and inorganic, each with subcategories. The organic category
encompasses surfactants, polymers, and biological molecules, while the inorganic group
comprises metals/non-metals, metal oxides/sulfides, and silica. The magnetization of
spherical Fe3O4 NPs in the range of 4–11 nm in diameter was investigated for in vitro
applications [78], with the aim of determining the impact of different polymer coatings
including PEG, DEX, polyvinylpyrrolidone (PVP), and bovine serum albumin (BSA). The
saturation magnetization of Fe3O4 without any coating was recorded as 64.35 emu/g
and exhibited a noticeable decrease after modification. The values were recorded as
58.42 emu/g for PEG, 56.59 emu/g for DEX, 55.70 emu/g for PVP, and 58.64 emu/g for
BSA. The Fe3O4@Ag variant demonstrating superior biocompatibility exhibited a saturation
magnetization value of 75.1 emu/g and SAR values of 76 W/g [79]. This suggests that the
MHT efficiency was not significantly diminished by the thin layer of Ag coating.

3.5. Targeting Cancer Cells with MNPs for MHT

Similarly, to how magnetic agents are used in MRI, magnetic agents infused via in-
jection for MHT that are based on MNP may gather in the tumor zone owing to the EPR
effect [80]. The magnetic qualities of MNPs enable their distribution to be externally con-
trolled by utilizing an external magnetic field to steer them towards the targeted zone [81].
Functionalizing the surface of MNPs with agents that interact with specific receptors over-
expressed by the target cells is the most reliable and commonly used method for delivering
MNPs. In the case of tumor cells, the same targeting agents used for MRI are employed.

The utilization of antibody-bound MIONPs hinted at the potential to create a targeted
thermal treatment for metastatic cancer by means of induction heating with an external
alternating magnetic field. Tests were conducted employing (111) In-ChL6 bio-probes (a
chimeric L6) in an artificial xenograft model for human breast cancer [82]. Another [83]
examination administered Herceptin (trastuzumab) to transport ferric oxide-enriched NPs
to Human Epidermal Growth Factor Receptor 2 (HER-2+) cancer cells. The effectiveness
of the application of alternating magnetic field activated Herceptin-directed NPs was
validated in the selective elimination of HER-2+ human cancer cells.

The MHT is a more effective and harm-reducing replacement for WBHT, WAHT, and
HIS HT. The use of MNPs with a size less or equal one magnetic domain, as well as taking
into the account the influence of the composition, shape of particles and their coatings
on SAR, is the next important step to further increase the potential of MHT (Figure 2).
Conjugation of the NPs with specific vector segments is also a valuable step in the further
modification of magnetic agents.
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4. Photo-Thermal Therapy and Photo-Dynamic Therapy (PTT and PDT)
4.1. PTT

The optical properties of NPs are utilized in photo-thermal therapy (PTT), which is
a platform to fight cancer by using multiplexed interactive plasmonic nanomaterials as
probes in combination with the excellent therapeutic performance of near-infrared (NIR)
light. The NPs that have SPR could convert light into heat. Induced localized temperature
increase leads to a hyperthermic response in the targeted tissue. The light absorption
wavelength can be tuned by altering the shape and size of the NPs.

The technique boasts several advantages [84], which include:

• Precise targeting of therapy to particular tissues to prevent unintended effects due to
high radiation absorption caused by the resonance wavelength of NPs.

• The ability of NPs to reach tumors located in deeper tissues through attachment of
specific agents to the surface of Au NPs that augment their specificity for selected
tumor cells.

• Possibility of merging NPs PTT with drug treatment as NPs serve as carriers for drugs
to designated tissue locations, thereby amplifying their curative potential.

For PTT, the criteria used to select NPs are based on specific traits [85]: the ability
to absorb in the NIR range (700–1000 nm), size smaller than 100 nm to maximize tissue
absorption, enhanced absorption cross-section, decreased toxicity, and improved biocom-
patibility. Gold is considered as one of the most appropriate and thoroughly investigated
plasmonic material due to its minimal harmful effects on cells [86–88], absorption in the
near-infrared spectrum [89], proficiency in transforming light into heat energy [90], and its
availability in diverse morphologies [91].

The study [92] produced mesoporous Au-Pt NPs that were labeled with a cell-targeting
ligand (folic acid), a mitochondria-targeting group (triphenylphosphine), and a photosen-
sitizer. These NPs can serve as a phototherapeutic agent with dual mode capabilities for
enhanced cancer therapy and molecular targeting of disease progression. The nanoparticles’
ability to convert laser radiation into heat can result in thermally induced cell damage.
Furthermore, the systems have demonstrated a noteworthy enhancement in the efficacy
of photodynamic therapy (PDT) with improved cellular uptake, effective generation of
mitochondrial ROS burst, and intelligent release of oxygen. Magnetic Fe3O4-Au NPs have
been utilized to combine radiotherapy (RT) and photothermal therapy (PTT) [93]. The
hybrid NPs possess exceptional surface plasmonic resonance characteristics, impressive
superparamagnetic properties, high photo-thermal conversion efficacy, and good biocom-
patibility. When subjected to near-infrared radiation for the brief period, cervical cancer
cells in vitro perish with a low concentration of Fe3O4-Au NPs. The application of RT and
PTT have demonstrated in vitro synergistic anti-cancer effects. The Fe3O4-SiO2-Au NPs
were developed [94] for treating cancer cells using MRI-guided chemo/NIR photo-thermal
therapy. The study employed two colon cancer cell lines namely SW480 and SW620 along
with a laser having a wavelength of 808 nm and a power density of 100 mW cm−2. The
Fe3O4-SiO2-Au NPs were found to be minimally toxic to cancer cells at around 10–15%.
However, upon exposure to laser irradiation, the mortality rate of the cells increased
drastically, leading to approximately 43–50% cell death.

4.2. PDT

Photo-dynamic therapy is a two-step treatment that uses a photosensitizer drug to
eliminate cancerous and precancerous cells after the activation by the light. The photo-
sensitizer is activated by a laser, typically emitting a specific wavelength of light energy.
To carry out PDT, the first step is to inject a photosensitizer into the specific tissue that
is to be treated. The next step is to apply a certain wavelength of light that triggers the
photosensitizer to produce reactive oxygen species (ROS) through energy transfer, thereby
leading to cellular apoptosis. Gold containing NPs are used not only as PTT agents, but
also as PDT photosensitizer or photosensitizer carrier.
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A hybrid system of Au-NPs and methylene blue, a well-known photosensitizer, was
created by utilizing an intermolecular interaction between a polystyrene-alt-maleic acid
(PSMA) layer on the Au-NPs and methylene blue. The resulting Au-PSMA-methylene blue
hybrid NPs exhibited a high quantum yield of singlet oxygen molecules, exceeding 50%
of that of free methylene blue, when excited by dark red-light at 660 nm, without causing
any significant dark toxicity. To improve selectivity towards cervical cancer tumor (HeLa)
cells in comparison to mouse embryonic fibroblasts (3T3 fibroblasts), the hybrid NPs were
conjugated with transferrin. By subjecting the Au-PSMA- methylene blue—transferrin NPs
to a single hand-held laser treatment (32 mW/cm) lasting for 4 min, the PDT efficiency
doubled [95].

To achieve synergistic drug therapy and PDT, Akram, M. W. developed Au-TiO2 NPs
bound with doxorubicin [96]. These hybrid systems, comprising Au-TiO2 and doxorubicin,
can easily infiltrate the vicinity of the tumor due to the acidic nature of core tissue. When
exposed to an optimal amount of ultraviolet light, Au-TiO2 stimulates doxorubicin to act
as a photosensitizing agent. The production of significant ROS by pure Au-TiO2 has the
ability to eliminate around 70% of cancerous cells (specifically breast malignancy cells).
However, when subjected to laser irradiation, the percentage rises to 82% for Au-TiO2-
doxorubicin. Based on the findings, the combination of doxorubicin with Au-TiO2 shows
greater potential and efficiency compared to using only pure Au-TiO2.

Additionally, Au–Bi bimetallic nanoparticles, which have a size of 5 nm, have been
found to be effective agents for near infrared light-induced phototherapy for cancer treat-
ment [97]. This is due to their ability to generate 1O2 while exhibiting exceptional photo-
thermal conversion efficiency (η = 34.2%) under 808 nm laser irradiation. Other promising
candidates for photosensitizers include Au-CoFe2O4 nanostructures with a spiky gold
layer [98], silica-Au-PEG-doxorubicin [99], and Pd-tipped Au nanorods [100]. For PTT and
PDT application, 4-carboxyphenyl porphyrin-conjugated silica-coated gold nanorods were
synthesized in [101].

The application of NPs and nanotechnologies is also linked to the development and
execution of cancer therapies like PDT and PTT. However, also as for MHT, these treatments
still have ample opportunities for refinement. Altering the size, shape, coating, and
composition of nanoparticles, as well as the characteristics of the vectors, can decrease
toxicity and improve the efficiency of these treatments.

5. Applications of INPs for Drug Delivery
5.1. NPs Based Delivery Systems

The main disadvantage of most chemotherapeutic agents is their relative non-specificity
and therefore potential side effects on healthy tissues. Therefore, in the field of pharma-
cology, special attention is paid to the delivery of drugs and the control of the release of
therapeutic substances in localized targets, especially in the field of cancer treatment.

The NPs of metals and their oxides are among the most promising drug carriers, due
to their biocompatibility and diverse drug loading possibilities. They can not only be easily
loaded with a medicinal substance, but also functionalized with target agents, and provide
localization of drug nanosystems to a diseased tissue. Of particular value as carriers of
medicinal systems are ferro-, ferri- and superpara- magnetic NPs. Due to their magnetic
properties, they can increase the effectiveness and reduce the systemic toxicity of drug systems.

The primary benefits of MNPs include their ability to be:

• Visualized (utilizing ferro-, ferri-, and superparamagnetic NPs for MRI).
• Controlled or fixed in position via a magnetic field.
• Subjected to a magnetic field for heat-induced drug release or tissue hyperther-

mia/ablation.

In general, this targeted delivery process involves attaching a cytotoxic drug to biocom-
patible carriers—NPs or MNPs, introducing these hybrid systems into the body, or localizing
to a pathological site, and releasing a therapeutic agent. While this seems simple, there are
many variables that make this technique difficult to perform. It is necessary to consider such
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parameters as the physicochemical properties of NPs-based hybrid systems, their biocompati-
bility, toxicity, interaction with the body’s immune system, the depth of the target tissue, the
optimal method of targeting tumor or virus cells, blood flow velocity and vascular supply, the
optimization of the time and place of drug molecules’ release and more.

Therefore, a drug delivery system should include INPs (as carriers), a medicinal
component and agents that provide targeting the affected organ. Coatings or linkers are
also needed to link the various parts of the hybrid system. Coatings can also act as stabilizer,
improve biocompatibility, and reduce toxicity in hybrid systems (Figure 3). In a case when
the INPs are also MNPs they can perform not only the function of a carrier, but also be a
magnetic vector, an agent for imaging (MRI) or MHT.
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5.2. Delivery Strategies for Drug Systems
5.2.1. Passive Targeting

For drug delivery, nanocarriers could be accumulated in the tumor by passive targeting
via EPR. Passive drug targeting leverages the biophysical features of tumors to enhance the
extravasation of NPs into the tumor microenvironment [102]. As per the EPR effect, the
shape, size, and surface charge of the drug largely govern the drug transport in cancer [103].
However, due to the heterogeneous nature of solid tumors, the EPR-mediated passive drug
targeting leads to non-uniform distribution of the drug, thereby increasing the chances of
local cancer recurrence [104].

5.2.2. Magnetic Targeting

The problem of non-specificity of most chemotherapeutic agents can be solved by
means of magnetic drug targeting [105]. This strategy is based on the attraction of magnetic
nanocarriers to an external magnetic field.

The procedure consists of the following stages:

• Fastening a biocompatible MNPs carrier to a cytotoxic drug.
• Infusing these hybrid nanosystems as a colloidal suspension through an intravenous

injection.
• Employing a magnetic field gradient to steer these hybrid nanosystems towards the

affected area.
• Directed release the medical substance from the drug system.

The effectiveness of magnetic drug delivery is affected by the physicochemical charac-
teristics and composition of the carriers involved. Improved magnetization plays a critical
role in simplifying the administration of medication. Superparamagnetic NPs are favored
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because they are magnetized by an external magnetic field and readily lose their magnetism
once the field is no longer applied. Magnetic iron oxides are more often considered as
magnetic carriers due to their low toxicity.

Research conducted on a rabbit model demonstrated [106] that tumors can be effec-
tively infused with the chemotherapeutic drug mitoxantrone using a magnetic carrier
system comprised of MIONPs (hydrodynamic particles with a diameter under 200 nm).
Magnetic targeting experiments revealed that the highest drug accumulation (57.2%) was
observed in the tumor region, while lower accumulations were found in the liver (14.4%)
and kidneys (15.2%) relative to the recovery from all examined tissues. Passive targeting
yielded different results, with the tumor region accounting for 0.7%, liver for 14.4%, and
kidneys for 77.8%. Through magnetic targeting and utilizing only 5–10% of the typical
chemotherapy dosage, the treatment led to full tumor remission. In a single dose of these
minimal amounts, complete tumor remission was observed in approximately 25% of the
animals treated, with no significant local or systemic side effects.

Despite that colloidal MIONPs loaded with epirubicin and targeted towards solid
tumors were shown to exhibit accumulation in the intended target more than two decades
ago [107], magnetic targeted delivery systems have not yet reached the pharmaceutical’s
market due to the numerous issues that have arisen. The extent to which the magnetic
gradient weakens as the target’s distance increases is the primary constraint of magnetic
drug delivery. This constraint is closely linked to the maximum strength of the external
field that could be administered to acquire the required magnetic gradient, which deter-
mines the duration of NPs’ habitation within the intended space or initiates medication
release. To align with the International Commission of Non-ionizing Radiation Protection’s
recommendation [108] for clinical employment, patients must not receive magnetic flux
densities exceeding 400 mT in any bodily region. Magnetic drug delivery has been utilized
in preclinical research magnetic fields with intensities ranging between 0.1 T and 1.5 T [109].
Delivery effectiveness is significantly impacted by both the distance between the magnet
and the targeted delivery site, as well as the magnet’s geometry. Effective magnetic field
depths of up to 5–15 cm in the body can be achieved by utilizing Permanent Nd-Fe-B mag-
nets along with SPION, which exhibit outstanding magnetic properties [109,110]. However,
delivering therapeutic agents to deep tissues in vivo remains a significant challenge in
magnetic drug delivery because MNPs can be efficiently controlled in the superficial tissue
layers while the target regions remain unreachable.

A further restriction concerns the size of MNPs, which must be small to achieve
superparamagnetic behavior and prevent magnetic clumping when the magnetic field is
withdrawn. However, this small size results in a weaker magnetic response that makes it
challenging to manipulate the particles and maintain their proximity to the target while
resisting the force of blood flow [111]. Moreover, magnetic delivery should consider many
factors, such as toxicity and biocompatibility of magnetic carriers, blood flow velocity and
vascular supply, timeliness of drug release.

5.2.3. Active Targeting

As mentioned earlier, MNPs can be attached to target agents to enhance the targeted
delivery of NPs in diseased tissue. Ligands typically employed for targeting tumor cells
include small molecules (e.g., proteins (such as asialoglycoprotein receptor), folic acid
for cancer [111,112]), peptides (such as R-Tf-D-LP4, voltage-dependent anion channel 1
(VDAC1) based peptide), and nanoantibodies [113,114].

The strategies discussed above find applications in the creation of both antitumor and
antiviral targeted delivery drugs.
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6. Applications of Metal and Metal Oxides NPs for Delivery of Anticancer Agents
6.1. Targeted Delivery Systems of Different Anticancer Agents Based on MNPS
6.1.1. Conventional Chemotherapeutic Agents

Magnetic nanoparticles have been evaluated as drug carriers for a variety of
chemotherapeutic agents, first of all traditional drugs. Carriers can be designed with
specific characteristics to enhance the efficacy of these therapeutic agents over that
achieved by typical systemic delivery. Characteristics such as loading capacity and drug
release profiles can now be tailored by controlling the structural features and chemical
bonding in the MNP conjugate.

Yang et al. utilized magnetite NPs coated with poly(ethyl-2-cyanoacrylate) (PECA)
to incorporate the anticancer agents cisplatin and gemcitabine. The release of cisplatin
was more gradual due to its hydrophobic nature, while the hydrophilic gemcitabine had a
more rapid release [115]. Alternatively, Kheiri loaded the anticancer drug 5-fluorouracil
(5-FLU) into Fe3O4@ chitosan-polyacrylic acid nanogel particles with a chitosan-polyacrylic
acid shell [116]. Drug release tests were performed in two different conditions; simulated
physiological environment (pH 7.4) and tumor tissue conditions (pH 4.5) to evaluate the
release behavior of nanoparticles. The results showed an elevated release rate of 5-FLU
from the core-shell NPs in tumor tissue conditions.

Smart magnetic nanocarriers containing doxorubicin were created using flower-
shaped magnetite NPs with average size 16.4 nm, which were enclosed within a poly
(N-vinyl caprolactam-co-acrylic acid) copolymer that is responsive to changes in tem-
perature and pH-value. The system was successful in controlling drug release to a high
degree [117], as proven by its ability to achieve encapsulation efficiency of over 96%
when loaded with doxorubicin at neutral pH-value. An almost complete release of the
drug was seen in acidic pH during high-temperature conditions, whereas a minimal
amount of doxorubicin was let out in neutral pH at body temperature. The doxorubicin
anticancer drug was loaded into nanocarriers containing surface-altered MIONPs with
crosslinked Pluronic F127 and branched poly-ethylenimine [118]. At a pH of 5.4, a high
rate of 54.8% doxorubicin release was observed within 48 h, and at 42 ◦C (pH 7.4), a
release rate of 51.0% was observed. Obtained delivery systems indicated a high cellular
uptake enhanced by alternating magnetic field. The Fe3O4 MNPs coated with silica
and covalently modified with [(3-triethoxysilyl)-propyl]-succinic acid–polyethylene gly-
col exhibited high levels of doxorubicin loading. The study assessed the effectiveness
of removing drugs from nanomaterial surfaces using an alternating magnetic field in
both acidic and neutral environments. It was found that the optimal pH for efficiently
removing doxorubicin was 5.8 [119].

The Fe3O4–oxaliplatin @ chitosan core–shell and Fe3O4–irinotecan @ chitosan
core–shell hybrid nanosystems are proposed for colorectal cancer cells therapy [120].
Magnetic poly-(D, L-lactide-co-glycolic acid) (PLGA) microspheres loaded with an
anticancer drug 5-FLU were prepared [121] via solvent evaporation from a water-in-
oil-in-water ternary emulsion system. The magnetic nanoparticulate system exhibited
pH-dependent release of 5-FLU.

Testing of new drug systems takes place not only in vitro but also on animal models.
Multilayered polymer microcapsules loaded with magnetite and doxorubicin and modified
with designed Ankyrin repeat protein were proposed [122] for targeted lung cancer ther-
apy. In vivo and ex vivo bio-distribution studies in mouse models showed that the carrier
surface modification with the protein changed the bio-distribution of the capsules toward
epithelial cells. In particular, the capsules accumulated substantially in the lungs. Magnetic
silica nanocomposites decorated with Pluronic F127 and loaded with doxorubicin were
tested for hepatocellular carcinoma therapy. The hybrid composites exhibited a significant
therapeutic effect against human liver cancer (HepG2) cells. Mice tumors treated with the
composites exhibited the highest level of cell necrosis with membrane and vacuole de-
struction compared to free doxorubicin. Mice treated with magnetic nanosystems without
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drug molecules possessed tumors with large regions of viable cancerous cells and immense
vascular structures [123].

Previously covered examples of anticancer prodrug candidates are shown in Table 2.

6.1.2. Genes

Due to its capacity to revolutionize medicine, gene therapy has been a subject of
intense inquiry in recent years. For cancer gene therapy to be effective, a smart gene
delivery system is needed for both protecting therapeutic genes from degradation in
circulation and enabling robust gene expression at the tumor sites. The potential for
effective delivery of genes to tumor tissues, compatibility with biological systems, magnetic
response, and adaptability through surface modification make MNPs a promising platform
for gene-delivery systems. This approach involves loading IONPs with negatively charged
genetic drugs through electrostatic adsorption [124].

Table 2. Anticancer targeted drug delivery systems.

INPs Core NPs Size/Shape Covering Drug Substance Application Tests Reference

Fe3O4 9 nm PECA Cisplatin
and Gemcitabine

In vitro experiments of drug
release and magnetic mobility [115]

Fe3O4 6 nm chitosan-polyacrylic acid 5-FLU In vitro drug loading and
release studies [116]

Flower-shaped
magnetite 16 nm poly (N-vinylcaprolactam-co-

acrylic acid) Doxorubicin4

In vitro drug release (pH and
temperature dependent).

Cytotoxicity assay and cellular
uptake study: MCF-7 (breast

cancer cell line) and A375
(melanoma cell line)

[117]

MIONPs 10–20 nm Pluronic F127 and branched
polyethylenimine Doxorubicin In vitro cellular uptake studies

(HepG2) [118]

Fe3O4 13 nm

silica and covalently modified
with [(3-triethoxysilyl)-

propyl]-succinic
acid–polyethylene glycol

Doxorubicin

Cytotoxicity Assay (epithelial,
human breast cancer

cell—MDA-MB231, HepG2,
animal model for stage IV

human breast cancer-4T1, colon
carcinoma CT26, and

melanoma—B16)

[119]

Fe3O4 25–40 nm chitosan Oxaliplatin,
Irinotecan - [120]

MIONPs PLGA 5-FLU pH-dependent release of 5-FLU [121]

Fe3O4 1–10 nm polyarginine hydrochloride,
DEX Doxorubicin

In vivo and ex vivo
biodistribution studies; Flow

cytometry (MCF-7)
[122]

A local chemotherapy agent relying on IONPs was introduced by Zhang et al. to
manage glioblastoma in postoperative patients, targeting ferroptosis and apoptosis. The
porous configuration of IONPs with attached carboxyl groups was used as a carrier for
codelivery of cisplatin and small interfering ribonucleic acid (siRNA) targeting glutathione
peroxidase 4 (GPX4) and exhibited significant drug loading efficiencies. The hybrid systems
that were created had a significant impact on glioblastoma cells in U87MG and P3#GBM,
whereas their impact on normal human astrocytes was minimal. The mechanism by
which the tumor cells were affected was complex. The ROS were produced through the
interaction of Fe2+ and intracellular H2O2, leading to ferroptosis initiation. Additionally, the
co-released si-RNA suppressed GPX4 expression, while cisplatin caused damage to nuclear
deoxyribonucleic acid (DNA) and mitochondrial DNA, thereby inducing apoptosis [125].

One more illustration of the capability and success of utilizing IONPs for simultaneous
administration of gene drugs and chemotherapeutic drugs can be found in [126]. The
MIONPs coated with polyethyleneimine and polyethylene were employed to transport
both microRNA-21 antisense oligonucleotide and gemcitabine to pancreatic cancer cells.
This concurrent delivery approach efficiently suppressed the proliferation and spreading
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of cancerous cells by hindering the epithelial-mesenchymal transition and enhancing the
activity of tumor suppressor genes PTEN and PDCD4.

The application of MNPs with curcumin-coated chitosan and MNPs with pCEM-
TRAIL plasmid-coated chitosan was studied in inducing apoptosis in B16F10 tumor cells.
This was done either alone or in combination with the aim of overexpressing the receptors
required for apoptosis induction. Results revealed a significant increase in cellular death
within 48 h when using a combination of TRAIL gene-based and drug-based systems
compared to each nanocomplex individually, indicating a synergistic effect [127].

The introduction of exogenous gene-drug-carrying IONPs into the body can trigger
the immune response. As a result of this immune activation, a synergistic response may be
induced, allowing for the identification and elimination of tumors [128].

6.1.3. Proteins and Peptides

Magnetic nanoparticles have been explored not only as transporters of drug molecules
but also for therapeutic proteins and peptides. Tumor-penetrating peptide (iRGD) coated
IONPs showed effectiveness against brain metastasis of breast cancer supported by the
tumor-penetrating nature of this peptide. Tumor progression suppression was observed in
a mouse model by administering medical systems intravenously. The study [129] showed
that administering a single dose of the preparation early in the tumor development stage
can have a noteworthy impact on the progression of metastatic tumors and the retention
of nonproliferative cancer cells. Magnetic nanoparticles conjugated with Herceptin™
(trastuzumab) act as a monoclonal antibody targeting agent [130]; however, they also have
a therapeutic effect in reducing cell proliferation by inducing cell arrest during the G1
phase of the cell cycle [131].

6.2. Targeted Delivery Systems of Different Anticancer Agents Based on Non-Magnetic NPS

Non-magnetic INPs are also utilized for both passive and active targeting of tumor
tissue [86,132]. Silver NPs with a diameter of 30–40 nm, capped with epirubicin, were
synthesized using a one-pot method in which epirubicin served as both the reducing agent
and functional drug. These NPs exhibited an IC50 (half maximal inhibitory concentration)
of 1.92 µg/mL against Hep G2 cells [133]. Spherical-shaped Ag NPs of 6 nm size were
produced using Aerva javanica extracts and loaded with the anti-cancer drug gefitinib.
According to research, the use of Ag NPs in combination with gefitinib results in a reduction
of over 50% MCF-7 cell viability and increased apoptosis in cancer cells, compared to the
use of gefitinib alone [134]. Similar benefits have been observed in other cases where
drugs were incorporated into compositions with Ag NPs. Thus, alendronate showed
limited effectiveness in inhibiting cancer cell growth, with an inhibition maximum of 47%
at a concentration of 500 µM. The hybrid systems of Ag NPs and alendronate exhibited
remarkable potency with an IC50 of 10.1 µM, possibly owing to their elevated lipophilicity
and enhanced cellular uptake in comparison to free alendronate [135]. In addition, Ag NPs
that were coated with PEG and contained methotrexate, exhibited stronger anti-cancer
properties towards MCF-7 cells, with an IC50 of 258.6 µg/mL, whereas the drug alone had
IC50 of 512.7 µg/mL. Probably, the increased antitumor activity of combinations of Ag NPs
and antitumor drugs is because silver NPs themselves exhibit antitumor activity [136].

Due to their desirable qualities of size, stability in various conditions, hydrophilicity,
and biocompatibility, Au NPs have gained attention as potential drug-delivery agents.
Bovine serum albumin was used as both a reducing and capping agent to create gold NPs
with an average diameter of 50 nm, which were then used to deliver the anticancer drug
methotrexate. The study found that the drug was released faster at pH 4 than at pH 7.4.
The nanosystems that were acquired demonstrated greater cytotoxic effects on MCF-7 cells
than an equivalent amount of free methotrexate. This heightened effectiveness is believed
to be the result of the MCF-7 cells’ preferential absorption of the hybrid particles, due to the
presence of BSA that supplies nutrients and energy to the cells that are rapidly proliferating.
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Additionally, the methotrexate drug’s ability to target the over-expressed folate receptors
on MCF-7 cells contributes to the improved absorption and effectiveness of the drug [137].

To conduct loading and release experiments on two promising copper(I)-based an-
titumor compounds, [Cu(PTA)4] + [BF4] (compound A; PTA stands for 1,3,5-triaza-7-
phosphadamantane) and [HB(pz)3Cu(PCN)] (compound B; HB(pz)3 stands for tris
(pyrazolyl)borate, PCN stands for tris-(cyanoethyl)phosphane, gold NPs) were employed.
The results indicated that the drug loading achieved 90% in case of gold NPs-A and 65% in
case of gold NPs-B. For gold NPs-A conjugated systems, a release study in water solution
was conducted over 4 days, which displayed a slow release of up to 10% [138].

The utilization of Au NPs capped with L-cystine methylester hydrochloride, combined
with the incorporation of p53 plasmid DNA, leads to the increase of p53 expression levels,
induction of apoptosis in A549 cells, and ultimately hinders their proliferation. This
approach does not result in any adverse cytotoxic effects on normal lung cells [139].

Magnetic nanoparticles are frequently utilized as carriers in the development of
targeted delivery systems for anticancer drugs. This preference is not only attributed
to their magnetic vector potential, but also due to their ability to incorporate additional
therapies and diagnostic processes. Plasmonic nanoparticles are similarly favored as
carriers in targeted delivery systems for comparable reasons.

7. INPs in Antiviral Therapy
7.1. INPs Antiviral Application

Some metal based INPs are effective antiviral agents even when used in their original
form. In this way, antiviral activity is possessed by NPs of silver, gold, and zinc, titanium,
and iron oxides [140–142].

The exact mechanism of action of INPs on viruses has not yet been determined,
however, it is supposed to involve several different simple mechanisms. It is proposed
that, metal or metal oxide NPs interfere with the functions of viral enzymes, similar to
conventional antiviral drugs. Furthermore, the mechanisms by which viral particles are
degraded/inactivated by NPs may also include the breaking of disulfide bonds (which
maintain the structure of viral particles) [143] or the release of metal ions. The interaction
between viral envelopes and metal ions results in the formation of ROS. These ROS,
which contain unpaired electrons, are known for their instability and quick reaction with
biomolecules in electron exchange reactions. As a result, oxidative damage occurs, leading
to changes in the structure of key biological macromolecules such as polysaccharides,
proteins, lipids, and nucleic acids in viruses [144]. The prevention of viral attachment and
entry into host cells can be achieved through the binding or disruption of viral surface
structures such as spike glycoproteins by NPs. In therapeutic applications, the use of NPs
can also assist in enhancing the host’s antiviral immune response and hinder the activity
of viral enzymes [145]. Photodynamic and photocatalytic nanomaterials (like TiO2 NPs
or coatings) can provide effective broad-spectrum and long-lasting pathogen kills (due
to photocatalytic production of ROS) and offer a potential way to sterilize surfaces when
exposed to light [146]. Multiple groups have showed photocatalytic virus inactivation
activity of TiO2 coating materials. The TiO2 showed virucidal efficacy against human
norovirus and a few norovirus surrogates (murine norovirus, bacteriophage MS2, and
feline calicivirus) [147]), human influenza A (A/PR8/H1N1) [148], and herpes simplex
virus 1 (HSV-1) [149].

Silver NPs are commonly regarded as an antiviral agent compared to other metals
and their oxides. Research has indicated that silver NPs of sizes 2–15 nm strongly inhibited
SARS-CoV-2 at concentrations between 1 and 10 ppm, with a noticeable cytotoxic effect
above 20 ppm. Furthermore, the luciferase-based pseudovirus entry assay demonstrated
that silver NPs significantly impeded viral entry by disrupting the virus’s integrity [150].
Porcine epidemic diarrhea virus could be suppressed by Ag nanorods coated with Au.
Their mode of action in antiviral activity involves hindering the entry of the virus and
reducing the mitochondrial membrane potential and caspase-3 activity [151]. The PVP-
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functionalized Ag NPs were also found to exhibit antiviral properties against respiratory
syncytial virus as well as immunomodulatory activities [152].

The ability of silver NPs to interact with viruses can be modified by producing them
in various sizes. The Ag-chitosan composites including Ag NPs with different average
diameters (3.5, 6.5, and 12.9 nm) were prepared in [153]. As the amount of Ag NPs
increased in the Ag-chitosan composites, the antiviral activity against H1N1 influenza
A virus increased for all tested sizes of Ag NPs. Neat chitosan was found to be devoid
of antiviral activity, indicating the indispensability of Ag NPs for the antiviral activity of
these composites. In contrast, composites comprising smaller Ag NPs manifested stronger
antiviral activity at equivalent concentrations of Ag NPs. The size of Ag NPs also plays a
significant role in their effectiveness against HSV-2. In a study conducted by P. Orlowski,
the interaction between tannic acid-modified Ag NPs and the glycoprotein spikes on the
virion surface of the virus was investigated [154]. The microscopy analysis revealed that
these spikes had a center-to-center spacing ranging from 9 to 13 nm and a height varying
from 10 to 25 nm. The results of the study showed that the smaller Ag NPs (13 nm) exhibited
a greater binding efficiency compared to the larger ones (33 and 46 nm).

Green synthesized by means of Glaucium flavum leaf extract Au NPs showed effective
antiviral function against Influenza A/Puerto Rico/8/34 (H1N1) virus [141]. The 50% inhi-
bition of viral replication was observed at Au NPs concentration of 210 µg/mL. Enhancing
the concentration to 250 µg/mL led to the attainment of 60% antiviral activity [144].

The antiviral activity of bare ZnO NPs with a diameter of 20–50 nm and PEG-modified
ones with a size ranging from 16–20 nm, against influenza H1N1 virus, was evaluated. The
maximum biocompatible concentrations of bare ZnO NPs (75 ppm) and PEGylated ZnO
NPs (200 ppm) demonstrated viral inhibition of 52.2% and 94.6%, respectively. Reduction in
H1N1 occurred only when the virus was internalized in host cells [155]. The ZnO NPs with
hexagonal and spherical shapes, measuring 11.50 nm, were observed to interact with host
cell angiotensin-converting enzyme2 receptors, which prevented the entry of SARS-CoV-2
viruses as well as inhibiting the RNA replication and protease activity of said viruses in
lung fibroblast cells [156].

The replication process of Newcastle disease virus in eggs was restrained by spherical
TiO2 NPs with a concentration between 6.25–100 µg/mL, as determined by the hemagglu-
tination assay. The likely mechanism for this inhibition involves the impairment of the
glycoproteins’ spikes followed by the interception of viral attachment to host cells [157].

Antiviral properties have been observed for iron oxide NPs. A study conducted
on silica showed that both Fe2O3 and Fe3O4 NPs can modify the conformation of HCV
glycoproteins (E1 and E2) and the spike protein’s receptor binding domain (RBD) of SARS-
CoV-2. Furthermore, Fe3O4 NPs can build a stable complex with SARS-CoV-2 RBD and
Hepatitis C E1 and E2 [158]. It has also been reported that iron oxide nanozymes (200 nm)
can neutralize influenza A viruses by creating ROS, which promote viral lipid envelope
peroxidation [159].

7.2. INPs-Based Nanomaterials for Antiviral Drug Delivery

Gold and silver NPs have been widely employed for the purpose of the controlled
release of drugs against viral infections.

Oseltamivir-modified Ag NPs with antiviral properties against influenza H1N1 in-
fluenza was obtained in [160]. In comparison to free oseltamivir and silver, the Ag NPs
modified with oseltamivir exhibited a remarkable ability to hinder the H1N1 infection.
Through experiments conducted on Madin–Darby canine kidney cells, it was determined
that the Ag oseltamivir hybrid systems effectively prevented DNA fragmentation, chro-
matin condensation, and the activity of caspase-3. Furthermore, the systems prevented
the accumulation of ROS by the H1N1 virus and the activation of protein kinase B and p53
phosphorylation, indicating their strong antiviral activity.

Gold NPs were considered as carriers for loading drugs (abacavir and lamivudine) for
human immunodeficiency virus (HIV) treatment [161]. To obtain the prodrug candidate,
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the primary hydroxy groups of the drugs were functionalized with 11-mercaptoundecanoic
acid. This resulted in an ester group that can be easily hydrolyzed, allowing the drug to be
released from the Au NPs through enzymatic or pH-mediated hydrolysis. The drugs were
released in acidic conditions and exhibited similar IC50 values as the free drugs (less than
10 µM) in cellular assays, indicating their ability to inhibit viral replication.

The MNPs can be used as carriers not only for antitumor, but also for antiviral therapy.
Spherical γ-Fe2O3@SiO2-zidovudine MNPs with a core–shell structure and with an average
diameter of 25 nm were obtained for magnetic guided drug targeting and biological
application in [162]. The anticancer and cytotoxic properties of these MNPs surpassed
those of the drug zidovudine by several orders of magnitude. Additionally, Fe3O4/NH2-
Ag was employed as a superparamagnetic nanohybrid carrier for acyclovir, whereby the
material offered controlled delivery and sustained release behavior lasting for several hours.
The kinetics of drug release depended on pH [163].

By coupling a triazine-based dendrimer onto a magnetic nanomaterial, a
Fe3O4@SiO2@TAD-G3 dendritic nanostructure was generated [164]. The resulting
product was loaded with two drugs, Favipiravir and Zidovudine, and boasted a
substantial drug-loading potential. Totals of 63.2% of Favipiravir and 76.5% Zidovu-
dine were absorbed by the dendritic structure. Under pH conditions of 1.5 and 6.8,
Fe3O4@SiO2@TAD-G3 released 90.8% and 80.2% (for Favipiravir) and 95.5% and 83.4%
(for Zidovudine), respectively, over 600 min at a temperature of 37 ◦C.

Glycine-modified magnetic nanoparticles, ranging in size from 10 to 15 nm, showed
activity against the pandemic influenza strain A/H1N1/Eastern India/66/PR8-H1N1. In
experiments, 50% cell viability (TD50) was observed when administering 4.25 ± 0.2 pg of
IONPs [165]. The NPs were able to inhibit the replication of the influenza H1N1 virus at the
transcript level of viral RNA, with as little as 7 pg/mL of FeO NPs within a 24-h timeframe,
reducing the viral genomic copies by 100-fold.

Graphene oxide and chitosan functionalized IONPs has potential to be used against
coronaviruses. The observed effect is connected both with the exploitation of graphene ox-
ide and chitosan. Analyses of the receptor-binding domain of SARS-CoV-2 and the binding
of human angiotensin-converting enzyme 2 through the surrogate virus neutralization test
indicated inhibition of SARS-CoV-2 virus (86%) for synthesized nanostructures [166].

Previously covered examples of antiviral drugs delivery systems are shown in Table 3.

Table 3. Antiviral targeted drug delivery systems.

INPs Core NPs Size/Shape Covering Drug Substance Virus Reference

Ag 2–3 nm Oseltamivir influenza H1N1 [160]

Au 3 nm Glucose Abacavir and
Lamivudine HIV [161]

γ-Fe2O3 25 nm SiO2 Zidovudine - [162]

Fe3O4@SiO2/NH2-Ag 150–400 nm - Acyclovir - [163]

Fe3O4@SiO2 15–35 nm Dendrimer Favipiravir and
Zidovudine - [164]

Fe3O4 10–15 Glycine Glycine influenza H1N1 [165]

Fe3O4 25 nm Graphene oxide
and chitosan SARS-CoV-2 [166]

When it comes to antiviral treatment, inorganic nanoparticles are deemed as potent
agents for eradicating viruses while also serving as a useful drug carrier. Consequently, the
selection of a suitable drug carrier in this scenario is based on its antiviral efficacy.

8. The Effect of Protein Corona on Targeted Theragnostic Nanosystems

The successful creation of functional theragnostic nanosystems is associated not only
with the accumulation of agents in target tissues and the subsequent performance of their
function for the prolonged release of therapeutic molecules, and heat generation or imaging.
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It is also necessary to reduce their accumulation outside the target and excrete them from
the body. These complications are related to a phenomenon called “protein corona” (PC)
formation that occurs when NPs interact with different types of plasma proteins [167,168].

Proteins, such as immunoglobulin G (IgG) and fibrinogen, give therapeutic nanosys-
tems new physicochemical properties different from the original ones, and therefore change
the therapeutic effect. This process changes their intended functionality and biological
fate. In this way, the PC can influence highly specific biological complexes such as ex-
osomes [169] and viruses [170] through unpredictable tissue distribution. The PC has a
dynamic composition that shifts over time. Comprehending the formation of the biocorona
is crucial in predicting the conduct of NPs in biological applications, such as nanotoxicology,
and for creating nanoscale drug delivery platforms.

The creation of a PC is contingent upon the physical and chemical traits of both NPs
and their biological setting [171]. As different NPs may be administered through varying
routes, the composition of the PC fluctuates depending on the sort of biological fluid (e.g.,
blood, pulmonary, or intestinal) and protein concentration [172]. The characteristics and
composition of PC are impacted by a range of physicochemical properties of NPs, including
size, shape, morphology, surface chemistry, surface charge, conjugated targeting ligands,
and coatings [173,174].

Two methods can be implemented to prevent undesired effects linked to PCs. First,
the NP surface can be endowed with particular functionalities by incorporating diverse
chemical groups that serve to conceal the NP from the detection of immune cells. Second,
application of a polymer coating, such as PEG, (a.k.a. PEGylation), can hinder detection of
the NP by the reticuloendothelial system [175].

The PC should not be viewed as something to avoid at all times, as it is considerably
impacted by certain ailments in patients from whom the plasma is derived. As a result,
the individual PC has emerged as a compelling method to screen protein biomarkers in
plasma for the timely identification and management of cancer ailments. This approach
could have a significant impact on the field of cancer immunotherapy, as evidenced by
recent research [176]. The combination of checkpoint inhibitors with radiotherapy forms
the basis of these therapies. The joint treatment triggers the production of pro-inflammatory
proteins induced by radiation, leading to immune stimulation. Additionally, it elevates the
exposure of cancer-specific antigens by releasing them from cancerous cells that die due
to radiotherapy [177,178]. Consequently, NPs may be utilized to capture these antigens,
which are linked to the tumor, and convey them to antigen-presenting cells to stimulate
anti-cancer immunity [179].

It is possible that after using the PC to reach the target cells, it will not interfere with
the therapeutic effect of the nanoparticles and associated therapeutic molecules. A study
by Hahn et al. shows the possibility of selective separation of carboxyl-functionalized
polystyrene NPs and their overlying PC (produced from the murine plasma proteins) after
cellular uptake by means of endosomal sorting [180].

Further exhaustive research needs to be conducted to establish the connection between
the shape, modification of nanoparticles, their pathways in the body, and the attributes of
the protein crown created on them. Another crucial area of study is how the PC interacts
with the immune system and the cells in targeted tissues. These outcomes will lay the
foundation for the creation of advanced nanomaterials that possess personalized PCs. This
new strategy will overcome the previous hindrances related to PCs and transform them
into valuable assets.

Moreover, the acquired information will make a major contribution to the enhancement
of the effectiveness of targeted drug delivery systems, along with magnetic agents for
diagnosing and treating tumor diseases. The knowledge obtained will also serves as
significant stimulus for the advancement of nano-immunotherapy.
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9. Conclusions

The use of INPs raises great hopes in terms of the effectiveness of antiviral and anticancer
treatment and cancer early diagnosis. There are numerous possibilities for their use. Drug
delivery based on INPs allows a wide variety of substances (chemotherapeutic and antiviral
drugs, nucleic acids, peptides etc.) to be transported and gradually released in a targeted tissue.
Such hybrid drug-based nanosystems will reduce the toxicity of drugs for healthy organs;
facilitate the administration of drugs by reducing the number of their uses, and to reduce the
oscillations of drug molecules concentration acting on the affected organ. Combining drug
delivery with HT as an adjuvant therapy can enhance the desired anticancer effects, while INPs
may facilitate local HT alone specifically utilizing MNPs or plasmonic NPs. Laser-activated
interaction of Au-NPs with tumor is a platform for photodynamic therapy enhancement. The
treatment process can be tracked by MRI imaging with high accuracy, due to the presence of
magnetic theragnostic agents directly in the targeted tissues. The USSPIONPs will possibly
improve the efficiency of early cancer detection without exhibiting high toxicity as contrast
agents based on complexes of Gd3+ ions.

One characteristic of incorporating NPs and nanotechnology in medicine and phar-
macology is the interdependence between the advancement of treatment and diagnosis.
Instead of operating separately, these areas are highly interconnected and synchronized.
Beyond merely using the resulting material across various sectors, highly intricate and
intelligent drug therapy substances are emerging and becoming refined (Figure 4). Con-
sequently, multiple forms of therapy and diagnostics can be combined, and treatment
efficiency can be carefully monitored [27,28,181–184].
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Such systems contain NPs with different properties (magnetic or plasmonic), which,
due to their properties, can be used as agents for MRI, MHT, and PDT. Furthermore, these
NPs should have a high surface area that can be modified with various coatings and agents.
Hybrid inorganic NPs can serve as the core. The combination of various inorganic materials
will make it possible to give magnetic systems more properties and, accordingly, more
functions. Additional possibilities (targeted delivery and treatment) will be provided by
conjugated agents, which may also be of more than one type. The use of various functional
coatings will expand the functionality of future drug systems and increase their efficiency.
The creation of such systems is a complex but interesting challenge for today’s researchers,
which will allow us to create drugs of the future with increased efficiency and lower toxicity
(than several different drugs with different functionality).

However, the development of complex systems and their precursors is not as fast
as desired.
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