Zeolites as Ingredients of Medicinal Products
Abstract
:1. Introduction
Factors Determining the Role of Zeolites as Drug Carriers
- −
- Si/Al ratio. Low Si/Al ratios have demonstrated to favour the adsorption of drugs via hydrogen bonds. This have proved to be important with drugs such as acetyl salicylic acid (aspirin) [15]. Extreme values of either Si or Al (Si/Al ratios close to 1) compromise zeolite stability in certain conditions such as acid environment, not being appropriate for oral administration. The Si/Al ratio of zeolites can be modified by using different techniques such as acid treatments [18,19]. This modification causes a dealumination of the zeolite framework, thus decreasing the number of charged sites in the mineral [20]. An example about the influence of Al on zeolite as a carrier was the study with probucol (a hydrophobic oral drug), which performed a higher release rate from zeolites with low aluminium content (zeolite beta) with respect to other zeolites (zeolite NaX) with higher amounts of aluminium [21].
- −
- The hydrophilicity of the zeolite, intimately related to the Si/Al ratio, has demonstrated not only to determine the adsorption capacity but also the release mechanism. High Si/Al ratios imply lower hydrophilicity. A high hydrophilicity has been associated with a greater release of drugs in vitro due to a faster hydration and contact with water molecules, which favours the dissolution and release of the corresponding active [15,17].
- −
- Isomorphic substitutions. The substitution of Si for elements other than Al such as Be, B, Ga, Ge, or P has also demonstrated to influence drug–zeolite interactions. Zeolite beta was synthetized with different boron substitutions to study the resultant structure and porosity as well as the ability to adsorb thiamine [22]. Neither porosity, texture, nor drug-sorption properties changed when all the aluminium was replaced by boron, whereas the simultaneous presence of both elements (Al and B) in the zeolite beta framework gave rise to higher specific surface area and pore diameters. The highest thiamine adsorption capacity was performed by the zeolite containing boron. Authors reported that the zeolite containing boron showed lower Brønsted acidic sites and higher amount of Lewis acid sites with respect to the Al-zeolite, which can lead to greater interactions between the zeolite surface and the drug for this case.
- −
- Pore size and geometry. According to the International Union of Pure and Applied Chemistry (IUPAC), pores are subdivided according to their internal diameter into micropores (>2 nm), mesopores (between 2 and 50 nm), and macropores (<50 nm) [23], in which zeolites generally present pores between the range of micro to mesopores. Depending on the drug molecular size, this pore opening and the geometry of the channels must be sufficient to allow access and diffusion within the zeolite structure in order to favour the encapsulation and release of different actives. In addition to porosity, surface area is an important parameter when it comes to adsorption and release of drugs. According to Esquivel–Castro et al., the increase in surface area is proportional to the amount of the drug stored in core/shell nanoparticles [24]. These properties make it possible to control the release and/or to protect certain molecules such as nucleic acids, corticosteroids, or anticancer drugs [25,26,27,28]. Nonetheless, these properties on their own usually fail to predict the drug–zeolite interaction; thus, it is necessary to consider the flexibility of the drug molecules and the zeolite framework in different conditions (such as high temperatures). In particular, Wernert and co-authors [29] observed that during hydrothermal treatment the pore volume of faujasite decreased in a directly proportional manner to the temperature, which subsequently influenced the entrance of the drug in the micropore. The use of structure-directing agents is another versatile mechanism for zeolite synthesis that uses a template molecule, organic or inorganic, as a model during the crystallization process, enabling the development of adequate porosity for the synthesized zeolite, creating a regular chain of pores and channels. After the crystallization, the template is removed. For instance, the addition of p-cresol during zeolite faujasite-Y synthesis resulted in a zeolite having an optimal pore size to retain this particular molecule (and smaller ones) [30]. In addition, several methodologies can be applied before or after the synthesis of the zeolite in order to create a secondary porosity, obtaining as a result hierarchical pores, expanding the versatility of the use of zeolites even more [31].
- −
- Particle size. The smaller the zeolite particle size, the higher the specific surface, and, therefore, the higher the surface available for possible drug–zeolite interactions [27,28,32]. The particle size is of great interest when the active sites interacting with the active molecule are on the surface of the zeolite rather than in the zeolitic channels and pores [29].
- −
- Cation exchange capacity (CEC) and cations affinity. The CEC allow zeolites to establish electrostatic interactions with cationic molecules by exchanging their naturally associated cations (such as Ca2+, Na+, Mg2+…) and positively charged molecules (ammonia and nitrate ions) with new cations or other positively charged molecules located in their surroundings [33]. Ion exchange is one of the most important property of zeolites. The isomorphic replacement of Si by elements with different charge, Al for example, become zeolite charged, which is counterbalanced by ions, called counterions. When the zeolite is immersed in a phase containing others ions in higher concentration the diffusion process is started, the initial ions diffuse out from the framework and the news ions diffuse into the solid structure [34]. This property causes zeolites to be used for the removal of toxins from wastewater, and they can be also explored for medicinal application. In fact, this property has been associated with antacid activity of clinoptilolite [35], which is able to exchange cations with the H+ of the gastric fluids. The affinity by certain types of cations should also be considered since it will determine the mobility of chemical species [36]. Moreover, different cations could alter the adsorption/desorption capacity of organic molecules. As an example, two potassium cations would be replacing one calcium, which could explain the variability in the adsorption capacity of zeolites with different exchangeable cations [29].
- −
- Origin: natural or synthetic. The use of naturally occurring zeolites implies the presence of different minerals and impurities, as well as possible contaminants that must be eliminated (or at least reduced) before their use in the pharmaceutical field. In 2016, Cerri and co-workers published an article on the characterization and purification of clinoptilolite in order to accomplish the requisites of the Japanese and European Pharmacopoeias [14]. Moreover, the purity and richness are also crucial to maximizing the interaction with drugs [33]. The synthetic zeolites can be advantageous due to the possibility of obtaining zeolites with predetermined properties depending on the synthesis process and with less impurities. The synthesis process consists of preparing a mixture containing all the specific components correlated to each zeolite structure and submitting this initial precursor mixture to hydrothermal treatment inside an autoclave at a specific temperature to enable the nucleation and growth of zeolite crystal [37].
- −
- Zeolite surface modifications. Since not all the drug molecules are prone to interact with pure zeolites, surface modifications of the inorganic ingredient can be performed. In this regard, surfactants are commonly used in the modification of minerals. To better understand this point, for example, sulfamethoxazole is less polar than metronidazole, and both antibiotics were combined with clinoptilolite after cationic surfactant modification. The results showed that the adsorption of sulfamethoxazole was enhanced by the presence of the amphiphilic molecule. On the other hand, the uptake of metronidazole was independent of the surfactant presence [20]. Therefore, the use of surfactant can also affect the nature of the drug–zeolite interactions, something that can be very useful toward optimizing the drug release process [32]. These observations can also be extended to other surface modifications or excipients combinations such as zeolite/polymer nanocomposites.
2. Zeolite as Actives
2.1. Natural Zeolites
2.2. Synthetic Zeolites
3. Zeolites as Drug Delivery Systems
3.1. Topical Treatments
3.2. Oral Formulations
3.2.1. Organomodified Zeolites
3.2.2. Zeolites and Polymers
3.3. Tissue Engineering
3.4. Zeolites for Vaccines and Other Parenteral Dosage Forms
Theranostic Systems
3.5. Anticancer
Zeolite Nanocomposites for Anticancer Drug Delivery
3.6. Miscellaneous Dosage Forms
3.7. Computational Studies in Zeolite-Drug Interactions
4. Conclusions
- −
- The application of natural or synthetic zeolites as active substances is something that already exists in our society. For this, the property of cationic exchange is what enables its commercialization, acting as regular agents of stomach acidity, adsorbent of contaminants, and as accelerators in the healing of wounds.
- −
- The possibility of inserting elements such as Zn and Ag, also associated with the retention of drugs, opens a range of possible applications as topical treatments.
- −
- Studies of oral administration formulations show a great interest in the use of zeolites. Additionally, in this segment, they can act protecting the drug from degradation and release in unwanted areas, as well as enabling the dissolution of those hydrophobic substances. This makes orally administered drugs for anticancer treatment widely studied and associated with zeolites since the treatment against cancer in many cases generates more severe side effects, which may be associated with immediate release or undesired location.
- −
- When it comes to drugs that naturally would not have a direct interaction with the possibilities of easily accessible and synthesized zeolites, the functionalization of their surface, either with surfactants, metals, or with polymers, is a strategy already adopted, working as well as bridge of interaction between the inorganic and organic element.
- −
- The use of computational tools that can predict the possibility of interaction between a drug and zeolites is an important strategy to enable both the reduction in experimental studies and the understanding of the adsorption mechanisms involved.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Helfard, W.H.; Cowen, D.L. Evolution of Pharmaceutical Oral Dosage Forms. Pharm. Hist. 1983, 25, 3–18. [Google Scholar]
- Maurya, R.; Kumar Sharma, P.; Malviya, R. A Review on Controlled Drug Release Formulation: Spansules. Int. J. Pharm. Sci. Res. 2014, 5, 78–81. [Google Scholar]
- Yun, Y.H.; Lee, B.K.; Park, K. Controlled Drug Delivery: Historical Perspective for the next Generation. J. Control. Release 2015, 219, 2–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, A.; Shahiwala, A. (Eds.) Novel Drug Delivery Technologies: Innovative Strategies for Drug Re-Positioning; Springer: Singapore, 2019; ISBN 9789811336416. [Google Scholar]
- Krajišnik, D.; Daković, A.; Milić, J.; Marković, M. Zeolites as Potential Drug Carriers. In Modified Clay and Zeolite Nanocomposite Materials: Environmental and Pharmaceutical Applications; Mercurio, M., Sarkar, B., Langella, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 27–55. ISBN 9780128146187. [Google Scholar]
- Khodaverdi, E.; Soleimani, H.A.; Mohammadpour, F.; Hadizadeh, F. Synthetic Zeolites as Controlled-Release Delivery Systems for Anti-Inflammatory Drugs. Chem. Biol. Drug Des. 2016, 87, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Viseras, C.; Cerezo, P.; Sanchez, R.; Salcedo, I.; Aguzzi, C. Current Challenges in Clay Minerals for Drug Delivery. Appl. Clay Sci. 2010, 48, 291–295. [Google Scholar] [CrossRef]
- García-Villén, F.; Carazo, E.; Borrego-Sánchez, A.; Sánchez-Espejo, R.; Cerezo, P.; Viseras, C.; Aguzzi, C. Clay Minerals in Drug Delivery Systems. In Modified Clay and Zeolite Nanocomposite Materials; Elsevier: Amsterdam, The Netherlands, 2019; pp. 129–166. [Google Scholar]
- Aguzzi, C.; Sandri, G.; Cerezo, P.; Carazo, E.; Viseras, C. Health and Medical Applications of Tubular Clay Minerals. In Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2016; Volume 7, pp. 708–725. ISBN 9780081002933. [Google Scholar]
- Viseras, C.; Carazo, E.; Borrego-Sánchez, A.; García-Villén, F.; Sánchez-Espejo, R.; Cerezo, P.; Aguzzi, C. Clay Minerals in Skin Drug Delivery. Clays Clay Min. 2019, 67, 59–71. [Google Scholar] [CrossRef]
- Cappelletti, P.; Colella, A.; Langella, A.; Mercurio, M.; Catalanotti, L.; Monetti, V.; de Gennaro, B. Use of Surface Modified Natural Zeolite (SMNZ) in Pharmaceutical Preparations Part 1. Mineralogical and Technological Characterization of Some Industrial Zeolite-Rich Rocks. Microporous Mesoporous Mater. 2015, 250, 232–244. [Google Scholar] [CrossRef]
- Serati-Nouri, H.; Jafari, A.; Roshangar, L.; Dadashpour, M.; Pilehvar-Soltanahmadi, Y.; Zarghami, N. Biomedical Applications of Zeolite-Based Materials: A Review. Mater. Sci. Eng. C 2020, 116, 111225. [Google Scholar] [CrossRef]
- Pina, M.P.; Mallada, R.; Arruebo, M.; Urbiztondo, M.; Navascues, N.; de la Iglesia, O.; Santamaria, J. Zeolite Films and Membranes. Emerging Applications. Microporous Mesoporous Mater. 2011, 144, 19–27. [Google Scholar] [CrossRef]
- Cerri, G.; Farina, M.; Brundu, A.; Daković, A.; Giunchedi, P.; Gavini, E.; Rassu, G. Natural Zeolites for Pharmaceutical Formulations: Preparation and Evaluation of a Clinoptilolite-Based Material. Microporous Mesoporous Mater. 2016, 223, 58–67. [Google Scholar] [CrossRef]
- Datt, A.; Ndiege, N.; Larsen, S.C. Development of Porous Nanomaterials for Applications in Drug Delivery and Imaging. ACS Symp. Ser. 2012, 1119, 239–258. [Google Scholar] [CrossRef]
- Servatan, M.; Zarrintaj, P.; Mahmodi, G.; Kim, S.J.; Ganjali, M.R.; Saeb, M.R.; Mozafari, M. Zeolites in Drug Delivery: Progress, Challenges and Opportunities. Drug Discov. Today 2020, 25, 642–656. [Google Scholar] [CrossRef]
- Pasti, L.; Sarti, E.; Cavazzini, A.; Marchetti, N.; Dondi, F.; Martucci, A. Factors Affecting Drug Adsorption on Beta Zeolites. J. Sep. Sci. 2013, 36, 1604–1611. [Google Scholar] [CrossRef]
- Hernández, M.A.; Rojas, F.; Lara, V.H. Nitrogen-Sorption Characterization of the Microporous Structure of Clinoptilolite-Type Zeolites. J. Porous. Mater. 2000, 7, 443–454. [Google Scholar] [CrossRef]
- Farías, T.; Ruiz-Salvador, A.R.; Velazco, L.; de Ménorval, L.C.; Rivera, A. Preparation of Natural Zeolitic Supports for Potential Biomedical Applications. Mater. Chem. Phys. 2009, 118, 322–328. [Google Scholar] [CrossRef]
- Farías, T.; de Ménorval, L.C.; Zajac, J.; Rivera, A. Adsolubilization of Drugs onto Natural Clinoptilolite Modified by Adsorption of Cationic Surfactants. Colloids Surf. B Biointerfaces 2010, 76, 421–426. [Google Scholar] [CrossRef]
- Karavasili, C.; Kontogiannidou, E.; Chatzitaki, A.T.; Barmpalexis, P.; Fatouros, D.G. Experimental and Molecular Dynamics Simulation Studies of an Anti-Hyperlipidemic Drug Release from Microporous Zeolites Differing in Si/Al Content. Microporous Mesoporous Mater. 2020, 305, 110343. [Google Scholar] [CrossRef]
- Brazovskaya, E.Y.; Golubeva, O.Y. Study of the Effect of Isomorphic Substitutions in the Framework of Zeolites with a Beta Structure on Their Porosity and Sorption Characteristics. Glass Phys. Chem. 2017, 43, 357–362. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Esquivel-Castro, T.A.; Ibarra-Alonso, M.C.; Oliva, J.; Martínez-Luévanos, A. Porous Aerogel and Core/Shell Nanoparticles for Controlled Drug Delivery: A Review. Mater. Sci. Eng. C 2019, 96, 915–940. [Google Scholar] [CrossRef]
- Zarrintaj, P.; Mostafapoor, F.; Milan, P.B.; Saeb, M.R. Theranostic Platforms Proposed for Cancerous Stem Cells: A Review. Curr. Stem. Cell Res. 2019, 14, 137–145. [Google Scholar] [CrossRef]
- Ipate, A.M.; Hamciuc, C.; Kalvachev, Y.; Gherman, S.; Ochiuz, L. New Cryogels Based on Polymers and Zeolite L for Controlled Enalapril Maleate Release. J. Drug Deliv. Sci. Technol. 2018, 44, 505–512. [Google Scholar] [CrossRef]
- García-Muñoz, R.A.; Morales, V.; Linares, M.; González, P.E.; Sanz, R.; Serrano, D.P. Influence of the Structural and Textural Properties of Ordered Mesoporous Materials and Hierarchical Zeolitic Supports on the Controlled Release of Methylprednisolone Hemisuccinate. J. Mater. Chem. B 2014, 2, 7996–8004. [Google Scholar] [CrossRef] [PubMed]
- Spanakis, M.; Bouropoulos, N.; Theodoropoulos, D.; Sygellou, L.; Ewart, S.; Moschovi, A.M.; Siokou, A.; Niopas, I.; Kachrimanis, K.; Nikolakis, V.; et al. Controlled Release of 5-Fluorouracil from Microporous Zeolites. Nanomedicine 2014, 10, 197–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wernert, V.; Schäf, O.; Ghobarkar, H.; Denoyel, R. Adsorption Properties of Zeolites for Artificial Kidney Applications. Microporous Mesoporous Mater. 2005, 83, 101–113. [Google Scholar] [CrossRef]
- Raharjo, Y.; Ismail, A.F.; Othman, M.H.D.; Malek, N.A.N.N.; Santoso, D. Preparation and Characterization of Imprinted Zeolite-Y for p-Cresol Removal in Haemodialysis. Mater. Sci. Eng. C 2019, 103, 109722. [Google Scholar] [CrossRef]
- Li, K.; Valla, J.; Garcia-Martinez, J. Realizing the Commercial Potential of Hierarchical Zeolites: New Opportunities in Catalytic Cracking. ChemCatChem 2014, 6, 46–66. [Google Scholar] [CrossRef]
- Nezamzadeh-Ejhieh, A.; Tavakoli-Ghinani, S. Effect of a Nano-Sized Natural Clinoptilolite Modified by the Hexadecyltrimethyl Ammonium Surfactant on Cephalexin Drug Delivery. Comptes Rendus Chim. 2014, 17, 49–61. [Google Scholar] [CrossRef]
- Farías, T.; Ruiz-Salvador, A.R.; Rivera, A. Interaction Studies between Drugs and a Purified Natural Clinoptilolite. Microporous Mesoporous Mater. 2003, 61, 117–125. [Google Scholar] [CrossRef]
- Inglezakis, V.J. The Concept of “Capacity” in Zeolite Ion-Exchange Systems. J. Colloid. Interface Sci. 2005, 281, 68–79. [Google Scholar] [CrossRef]
- Rodríguez-Fuentes, G.; Denis, A.R.; Barrios Álvarez, M.A.; Colarte, A.I. Antacid Drug Based on Purified Natural Clinoptilolite. Microporous Mesoporous Mater. 2006, 94, 200–207. [Google Scholar] [CrossRef]
- Erdem, E.; Karapinar, N.; Donat, R. The Removal of Heavy Metal Cations by Natural Zeolites. J. Colloid Interface Sci. 2004, 280, 309–314. [Google Scholar] [CrossRef]
- Zaarour, M.; Dong, B.; Naydenova, I.; Retoux, R.; Mintova, S. Progress in Zeolite Synthesis Promotes Advanced Applications. Microporous Mesoporous Mater. 2014, 189, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Bacakova, L.; Vandrovcova, M.; Kopova, I.; Jirka, I. Applications of Zeolites in Biotechnology and Medicine-a Review. Biomater. Sci. 2018, 6, 974–989. [Google Scholar] [CrossRef]
- Zakeri, N.; Rezaie, H.R.; Javadpour, J.; Kharaziha, M. Effect of PH on Cisplatin Encapsulated Zeolite Nanoparticles: Release Mechanism and Cytotoxicity. Mater. Chem. Phys. 2021, 273, 124964. [Google Scholar] [CrossRef]
- Thomassen, L.C.J.; Napierska, D.; Dinsdale, D.; Lievens, N.; Jammaer, J.; Lison, D.; Kirschhock, C.E.A.; Hoet, P.H.; Martens, J.A. Investigation of the Cytotoxicity of Nanozeolites A and y. Nanotoxicology 2012, 6, 472–485. [Google Scholar] [CrossRef]
- Laurent, S.; Ng, E.P.; Thirifays, C.; Lakiss, L.; Goupil, G.M.; Mintova, S.; Burtea, C.; Oveisi, E.; Hébert, C.; De Vries, M.; et al. Corona Protein Composition and Cytotoxicity Evaluation of Ultra-Small Zeolites Synthesized from Template Free Precursor Suspensions. Toxicol. Res. 2013, 2, 270–279. [Google Scholar] [CrossRef]
- Abd-Elsatar, A.G.; Farag, M.M.; Youssef, H.F.; Salih, S.A.; Mounier, M.M.; El-Meliegy, E. Different Zeolite Systems for Colon Cancer Therapy: Monitoring of Ion Release, Cytotoxicity and Drug Release Behavior. Prog. Biomater. 2019, 8, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Simona, M.; Camelia, T. Zeolites Applications in Veterinary Medicine. In Zeolites—New Challenges; IntechOpen: London, UK, 2020. [Google Scholar]
- Rodríguez-Fuentes, G.; Barrios, M.A.; Iraizoz, A.; Perdomo, I.; Cedré, B. Enterex: Anti-Diarrheic Drug Based on Purified Natural Clinoptilolite. Zeolites 1997, 19, 441–448. [Google Scholar] [CrossRef]
- Grce, M.; Pavelić, K. Antiviral Properties of Clinoptilolite. Microporous Mesoporous Mater. 2005, 79, 165–169. [Google Scholar] [CrossRef]
- Lamprecht, M.; Bogner, S.; Steinbauer, K.; Schuetz, B.; Greilberger, J.F.; Leber, B.; Wagner, B.; Zinser, E.; Petek, T.; Wallner-Liebmann, S.; et al. Effects of Zeolite Supplementation on Parameters of Intestinal Barrier Integrity, Inflammation, Redoxbiology and Performance in Aerobically Trained Subjects. J. Int. Soc. Sport. Nutr. 2015, 12, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anfray, C.; Komaty, S.; Corroyer-Dulmont, A.; Zaarour, M.; Helaine, C.; Ozcelik, H.; Allioux, C.; Toutain, J.; Goldyn, K.; Petit, E.; et al. Nanosized Zeolites as a Gas Delivery Platform in a Glioblastoma Model. Biomaterials 2020, 257, 120249. [Google Scholar] [CrossRef] [PubMed]
- Tomasevic Canovic, M.; Dumic, M.; Vukicevic, O.; Djuricic, M.; Jovanovic, S. Adsorption Effects of Mineral Adsorbent on the Clinoptilolite Basis, Part 2: Adsorption Behaviour in the Presence of Aminoacids and Vitamins. Acta Vet. 1996, 46, 227–234. [Google Scholar]
- Beltcheva, M.; Metcheva, R.; Topashka-Ancheva, M.; Popov, N.; Teodorova, S.; Heredia-Rojas, J.A.; Rodríguez-de la Fuente, A.O.; Rodríguez-Flores, L.E. Zeolites versus Lead Toxicity. J. Bioequiv. Availab. 2015, 7, 12–29. [Google Scholar] [CrossRef] [Green Version]
- Mojzis, J.; Nistiar, F.; Kovac, G.; Mojzisova, G. Preventive Effects of Zeolite in Sewer-Rat Intoxication with VX Substance [O-Ethyl-S-2-Diisopropylaminoethyl Ester of Methylthiophosphorous Acid]. Vet. Med. 1994, 39, 443–449. [Google Scholar]
- Pavelić, K.; Hadžija, M.; Bedrica, L.; Pavelić, J.; Signikić, I.C.D.; Katić, M.; Kralj, M.; Bosnar, M.H.; Kapitanović, S.; Poljak-Blaži, M.; et al. Natural Zeolite Clinoptilolite: New Adjuvant in Anticancer Therapy. J. Mol. Med. 2000, 78, 708–720. [Google Scholar] [CrossRef]
- Zarkovic, N.; Zarkovic, K.; Kralj, M.; Borovic, S.; Sabolovic, S.; Blazi, M.P.; Cipak, A.; Pavelic, K. Anticancer and Antioxidative Effects of Micronized Zeolite Clinoptilolite. Anticancer Res. 2003, 23, 1589–1595. [Google Scholar]
- Ninan, N.; Muthiah, M.; Park, I.K.; Elain, A.; Wong, T.W.; Thomas, S.; Grohens, Y. Faujasites Incorporated Tissue Engineering Scaffolds for Wound Healing: In Vitro and In Vivo Analysis. ACS Appl. Mater. Interfaces 2013, 5, 11194–11206. [Google Scholar] [CrossRef]
- Ostomel, T.A.; Stoimenov, P.K.; Holden, P.A.; Alam, H.B.; Stucky, G.D. Host-Guest Composites for Induced Hemostasis and Therapeutic Healing in Traumatic Injuries. J. Thromb. Thrombolysis 2006, 22, 55–67. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Xiao, L.; Zhou, L.; Shentu, J.; Zhang, X.; Fan, J. Hemostatic Efficiency and Wound Healing Properties of Natural Zeolite Granules in a Lethal Rabbit Model of Complex Groin Injury. Materials 2012, 5, 2586–2596. [Google Scholar] [CrossRef] [Green Version]
- Grancarić, A.M.; Tarbuk, A.; Kovaček, I. Nanoparticles of Activated Natural Zeolite on Textiles for Protection and Therapy. Chem. Ind. Chem. Eng. Q. 2009, 15, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Grancariae, A.M.; Markoviae, L.; Tarbuk, A. Active Multifunctional Cotton Treated with Zeolite Nanoparticles. Tekst. Zagreb 2007, 56, 533–553. [Google Scholar]
- Pavelić, S.K.; Micek, V.; Filošević, A.; Gumbarević, D.; Žurga, P.; Bulog, A.; Orct, T.; Yamamoto, Y.; Preočanin, T.; Plavec, J.; et al. Novel, Oxygenated Clinoptilolite Material Efficiently Removes Aluminium from Aluminium Chloride-Intoxicated Rats In Vivo. Microporous Mesoporous Mater. 2017, 249, 146–156. [Google Scholar] [CrossRef]
- Pavelić, S.K.; Micek, V.; Bobinac, D.; Bazdulj, E.; Gianoncelli, A.; Krpan, D.; Žuvić, M.; Eisenwagen, S.; Stambrook, P.J.; Pavelić, K. Treatment of Osteoporosis with a Modified Zeolite Shows Beneficial Effects in an Osteoporotic Rat Model and a Human Clinical Trial. Exp. Biol. Med. 2021, 246, 529–537. [Google Scholar] [CrossRef]
- International Zeolite Association. Available online: http://www.iza-structure.org/databases/ (accessed on 24 January 2023).
- Corma, A.; Garcia, H. Supramolecular Host-Guest Systems in Zeolites Prepared by Ship-in-a-Bottle Synthesis. Eur. J. Inorg. Chem. 2004, 2004, 1143–1164. [Google Scholar] [CrossRef]
- Cundy, C.S.; Cox, P.A. The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time. Chem. Rev. 2003, 103, 663–701. [Google Scholar] [CrossRef]
- Potgieter, W.; Samuels, C.S.; Snyman, J.R. Potentiated Clinoptilolite: Artificially Enhanced Aluminosilicate Reduces Symptoms Associated with Endoscopically Negative Gastroesophageal Reflux Disease and Nonsteroidal Anti-Inflammatory Drug Induced Gastritis. Clin. Exp. Gastroenterol. 2014, 7, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Alam, H.B.; Chen, Z.; Jaskille, A.; Querol, R.I.L.C.; Koustova, E.; Inocencio, R.; Conran, R.; Seufert, A.; Ariaban, N.; Toruno, K.; et al. Application of a Zeolite Hemostatic Agent Achieves 100% Survival in a Lethal Model of Complex Groin Injury in Swine. J. Trauma Inj. Infect. Crit. Care 2004, 56, 974–983. [Google Scholar] [CrossRef]
- Alam, H.B.; Uy, G.B.; Miller, D.; Koustova, E.; Hancock, T.; Inocencio, R.; Anderson, D.; Llorente, O.; Rhee, P. Comparative Analysis of Hemostatic Agents in a Swine Model of Lethal Groin Injury. J. Trauma 2003, 54, 1077–1082. [Google Scholar] [CrossRef]
- Paydar, S.; Noorafshan, A.; Dalfardi, B.; Jahanabadi, S.; Mortazavi, S.M.J.; Yahyavi, S.-S.; Khoshmohabat, H. Structural Alteration in Dermal Vessels and Collagen Bundles Following Exposure of Skin Wound to Zeolite–Bentonite Compound. J. Pharm. 2016, 2016, 5843459. [Google Scholar] [CrossRef]
- Wedmore, I.; McManus, J.G.; Pusateri, A.E.; Holcomb, J.B. A Special Report on the Chitosan-Based Hemostatic Dressing: Experience in Current Combat Operations. J. Trauma Inj. Infect. Crit. Care 2006, 60, 655–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Xu, C.; He, Y.; Wang, X.; Xing, F.; Qiu, H.; Liu, Y.; Ma, D.; Lin, T.; Gao, J. Zeolite/Polymer Composite Hollow Microspheres Containing Antibiotics and the In Vitro Drug Release. J. Biomater. Sci. Polym. Ed. 2011, 22, 809–822. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Shang, X.; Chen, H.; Xiao, L.; Zhu, Y.; Fan, J. A Tightly-Bonded and Flexible Mesoporous Zeolite-Cotton Hybrid Hemostat. Nat. Commun. 2019, 10, 1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldossary, H.A.; Rehman, S.; Jermy, B.R.; AlJindan, R.; Aldayel, A.; AbdulAzeez, S.; Akhtar, S.; Khan, F.A.; Borgio, J.F.; Al-Suhaimi, E.A. Therapeutic Intervention for Various Hospital Setting Strains of Biofilm Forming Candida Auris with Multiple Drug Resistance Mutations Using Nanomaterial Ag-Silicalite-1 Zeolite. Pharmaceutics 2022, 14, 2251. [Google Scholar] [CrossRef] [PubMed]
- Cerri, G.; de Gennaro, M.; Bonferoni, M.C.; Caramella, C. Zeolites in Biomedical Application: Zn-Exchanged Clinoptilolite-Rich Rock as Active Carrier for Antibiotics in Anti-Acne Topical Therapy. Appl. Clay Sci. 2004, 27, 141–150. [Google Scholar] [CrossRef]
- de Gennaro, M.; Cerri, G.; Caramella, C.M.; Bonferoni, M.C. Pharmaceutical Zeolite-Based Compositions Containing Zinc and Erythromycin, to Be Used in the Treatment of Acne. WIPO Patent WO2002100420A2, 19 December 2002. [Google Scholar]
- Guo, Y.P.; Long, T.; Song, Z.F.; Zhu, Z.A. Hydrothermal Fabrication of ZSM-5 Zeolites: Biocompatibility, Drug Delivery Property, and Bactericidal Property. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102, 583–591. [Google Scholar] [CrossRef]
- Yassue-Cordeiro, P.H.; Zandonai, C.H.; Genesi, B.P.; Lopes, P.S.; Sanchez-Lopez, E.; Garcia, M.L.; Fernandes-Machado, N.R.C.; Severino, P.; Souto, E.B.; da Silva, C.F. Development of Chitosan/Silver Sulfadiazine/Zeolite Composite Films for Wound Dressing. Pharmaceutics 2019, 11, 535. [Google Scholar] [CrossRef] [Green Version]
- Szegedi, Á.; Popova, M.; Trendafilova, I.; Trif, L.; Mihály, J.; Makk, J.; Mavrodinova, V. Bicomponent Drug Formulation for Simultaneous Release of Ag and Sulfadiazine Supported on Nanosized Zeolite Beta. Nano-Struct. Nano-Objects 2020, 24, 100562. [Google Scholar] [CrossRef]
- Moradi, S.; Barati, A.; Tonelli, A.E.; Hamedi, H. Effect of Clinoptilolite on Structure and Drug Release Behavior of Chitosan/Thyme Oil Γ-Cyclodextrin Inclusion Compound Hydrogels. J. Appl. Polym. Sci. 2021, 138, 49822. [Google Scholar] [CrossRef]
- Kocaaga, B.; Kurkcuoglu, O.; Tatlier, M.; Batirel, S.; Guner, F.S. Low-Methoxyl Pectin–Zeolite Hydrogels Controlling Drug Release Promote In Vitro Wound Healing. J. Appl. Polym. Sci. 2019, 136, 47640. [Google Scholar] [CrossRef]
- Kocaaga, B.; Kurkcuoglu, O.; Tatlier, M.; Dinler-Doganay, G.; Batirel, S.; Güner, F.S. Pectin–Zeolite-Based Wound Dressings with Controlled Albumin Release. Polymers 2022, 14, 460. [Google Scholar] [CrossRef]
- Youssefi Azarfam, M.; Nasirinezhad, M.; Naeim, H.; Zarrintaj, P.; Saeb, M. A Green Composite Based on Gelatin/Agarose/Zeolite as a Potential Scaffold for Tissue Engineering Applications. J. Compos. Sci. 2021, 5, 125. [Google Scholar] [CrossRef]
- Wise, A.J.; Sefy, J.S.; Barbu, E.; O’Malley, A.J.; van der Merwe, S.M.; Cox, P.A. Zero-Order and Prolonged Release of Atenolol from Microporous FAU and BEA Zeolites, and Mesoporous MCM-41: Experimental and Theoretical Investigations. J. Control. Release 2020, 327, 140–149. [Google Scholar] [CrossRef]
- Souza, I.M.S.; Sainz-Díaz, C.I.; Viseras, C.; Pergher, S.B.C. Adsorption Capacity Evaluation of Zeolites as Carrier of Isoniazid. Microporous Mesoporous Mater. 2020, 292, 109733. [Google Scholar] [CrossRef]
- Souza, I.M.S.; Borrego-Sánchez, A.; Sainz-Díaz, C.I.; Viseras, C.; Pergher, S.B.C. Study of Faujasite Zeolite as a Modified Delivery Carrier for Isoniazid. Mater. Sci. Eng. C 2021, 118, 111365. [Google Scholar] [CrossRef]
- Souza, I.M.S.; Borrego-Sánchez, A.; Rigoti, E.; Sainz-Díaz, C.I.; Viseras, C.; Pergher, S.B.C. Experimental and Molecular Modelling Study of Beta Zeolite as Drug Delivery System. Microporous Mesoporous Mater. 2021, 321, 111152. [Google Scholar] [CrossRef]
- Karavasili, C.; Kokove, L.; Kontopoulou, I.; Eleftheriadis, G.K.; Bouropoulos, N.; Fatouros, D.G. Dissolution Enhancement of the Poorly Soluble Drug Nifedipine by Co-Spray Drying with Microporous Zeolite Beta. J. Drug Deliv. Sci. Technol. 2016, 35, 91–97. [Google Scholar] [CrossRef]
- Karavasili, C.; Amanatiadou, E.P.; Kontogiannidou, E.; Eleftheriadis, G.K.; Bouropoulos, N.; Pavlidou, E.; Kontopoulou, I.; Vizirianakis, I.S.; Fatouros, D.G. Comparison of Different Zeolite Framework Types as Carriers for the Oral Delivery of the Poorly Soluble Drug Indomethacin. Int. J. Pharm. 2017, 528, 76–87. [Google Scholar] [CrossRef]
- Kontogiannidou, E.; Karavasili, C.; Kouskoura, M.G.; Filippousi, M.; Van Tendeloo, G.; Andreadis, I.I.; Eleftheriadis, G.K.; Kontopoulou, I.; Markopoulou, C.K.; Bouropoulos, N.; et al. In Vitro and Ex Vivo Assessment of Microporous Faujasite Zeolite (NaX-FAU) as a Carrier for the Oral Delivery of Danazol. J. Drug Deliv. Sci. Technol. 2019, 51, 177–184. [Google Scholar] [CrossRef]
- Yaneva, Z.; Ivanova, D.; Popov, N. Clinoptilolite Microparticles as Carriers of Catechin-Rich Acacia Catechu Extracts: Microencapsulation and In Vitro Release Study. Molecules 2021, 26, 1655. [Google Scholar] [CrossRef]
- Rimoli, M.G.; Rabaioli, M.R.; Melisi, D.; Curcio, A.; Mondello, S.; Mirabelli, R.; Abignente, E. Synthetic Zeolites as a New Tool for Drug Delivery. J. Biomed. Mater. Res. A 2007, 87A, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Dyer, A.; Morgan, S.; Wells, P.; Williams, C. The Use of Zeolites as Slow Release Anthelmintic Carriers. J. Helminthol. 2000, 74, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Angiolini, L.; Cohen, B.; Douhal, A. Single Crystal FLIM Characterization of Clofazimine Loaded in Silica-Based Mesoporous Materials and Zeolites. Int. J. Mol. Sci. 2019, 20, 2859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandomierski, M.; Zielińska, M.; Voelkel, A. Calcium Zeolites as Intelligent Carriers in Controlled Release of Bisphosphonates. Int. J. Pharm. 2020, 578, 119117. [Google Scholar] [CrossRef]
- Neolaka, Y.A.B.; Darmokoesoemo, H.; Adu, A.A.; Lawa, Y.; Naat, J.; Riwu, A.A.P.; Bui, M.F.; Wila, E.C.; Fahirah, M.A.; Budiastant, T.A.; et al. Study of Mordenite Natural Zeolite Type Modified by Cu(II) Cation as an Oral Safe Drug Carrier for Ibuprofen and Meloxicam. J. Mol. Liq. 2022, 352, 118734. [Google Scholar] [CrossRef]
- Vergara-Figueroa, J.; Alejandro-Martín, S.; Pesenti, H.; Cerda, F.; Fernández-Pérez, A.; Gacitúa, W. Obtaining Nanoparticles of Chilean Natural Zeolite and Its Ion Exchange with Copper Salt (Cu2+) for Antibacterial Applications. Materials 2019, 12, 2202. [Google Scholar] [CrossRef] [Green Version]
- Khatamian, M.; Divband, B.; Farahmand-Zahed, F. Synthesis and Characterization of Zinc (II)-Loaded Zeolite/Graphene Oxide Nanocomposite as a New Drug Carrier. Mater. Sci. Eng. C 2016, 66, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Fatouros, D.G.; Douroumis, D.; Nikolakis, V.; Ntais, S.; Moschovi, A.M.; Trivedi, V.; Khima, B.; Roldo, M.; Nazar, H.; Cox, P.A. In Vitro and in Silico Investigations of Drug Delivery via Zeolite BEA. J. Mater. Chem. 2011, 21, 7789–7794. [Google Scholar] [CrossRef]
- Grund, S.; Doussineau, T.; Fischer, D.; Mohr, G.J. Mitoxantrone-Loaded Zeolite Beta Nanoparticles: Preparation, Physico-Chemical Characterization and Biological Evaluation. J. Colloid Interface Sci. 2012, 365, 33–40. [Google Scholar] [CrossRef]
- Amorim, R.; Vilaça, N.; Martinho, O.; Reis, R.M.; Sardo, M.; Rocha, J.; Fonseca, A.M.; Baltazar, F.; Neves, I.C. Zeolite Structures Loading with an Anticancer Compound as Drug Delivery Systems. J. Phys. Chem. C 2012, 116, 25642–25650. [Google Scholar] [CrossRef] [Green Version]
- Ahali Abadeh, Z.; Saviano, G.; Ballirano, P.; Santonicola, M.G. Curcumin-Loaded Zeolite as Anticancer Drug Carrier: Effect of Curcumin Adsorption on Zeolite Structure. Pure Appl. Chem. 2020, 92, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Amani, S.; Bagheri Garmarudi, A.; Rahmani, N.; Khanmohammadi, M. The β-Cyclodextrin-Modified Nanosized ZSM-5 Zeolite as a Carrier for Curcumin. RSC Adv. 2019, 9, 32348–32356. [Google Scholar] [CrossRef] [Green Version]
- Vilaça, N.; Bertão, A.R.; Prasetyanto, E.A.; Granja, S.; Costa, M.; Fernandes, R.; Figueiredo, F.; Fonseca, A.M.; De Cola, L.; Baltazar, F.; et al. Surface Functionalization of Zeolite-Based Drug Delivery Systems Enhances Their Antitumoral Activity In Vivo. Mater. Sci. Eng. C 2020, 120, 111721. [Google Scholar] [CrossRef]
- Kwakye-Awuah, B.; Williams, C.; Kenward, M.A.; Radecka, I. Antimicrobial Action and Efficiency of Silver-Loaded Zeolite X. J. Appl. Microbiol. 2008, 104, 1516–1524. [Google Scholar] [CrossRef]
- Golubeva, O.Y.; Ul’yanova, N.Y.; Zharkova, M.S.; Shamova, O.V. Synthesis and Study of Zeolites Modified by Silver Nanoparticles and Clusters: Biological Activity. Glass Phys. Chem. 2018, 44, 586–590. [Google Scholar] [CrossRef]
- Avery, K.L.; Peixoto, C.; Barcellona, M.; Bernards, M.T.; Hunt, H.K. Lysozyme Sorption by Pure-Silica Zeolite MFI Films. Mater. Today Commun. 2019, 19, 352–359. [Google Scholar] [CrossRef]
- Khatamian, M.; Yavari, A.; Akbarzadeh, A.; Alizadeh, E. Synthesis and Characterization of MFI-Type Borosilicate Zeolites and Evaluation of Their Efficiency as Drug Delivery Systems. Mater. Sci. Eng. C 2017, 78, 1212–1221. [Google Scholar] [CrossRef]
- de Gennaro, B.; Catalanotti, L.; Cappelletti, P.; Langella, A.; Mercurio, M.; Serri, C.; Biondi, M.; Mayol, L. Surface Modified Natural Zeolite as a Carrier for Sustained Diclofenac Release: A Preliminary Feasibility Study. Colloids Surf. B Biointerfaces 2015, 130, 101–109. [Google Scholar] [CrossRef]
- Krajišnik, D.; Daković, A.; Malenović, A.; Kragović, M.; Milić, J. Ibuprofen Sorption and Release by Modified Natural Zeolites as Prospective Drug Carriers. Clay Min. 2015, 50, 11–22. [Google Scholar] [CrossRef]
- Pasquino, R.; Di Domenico, M.; Izzo, F.; Gaudino, D.; Vanzanella, V.; Grizzuti, N.; de Gennaro, B. Rheology-Sensitive Response of Zeolite-Supported Anti-Inflammatory Drug Systems. Colloids Surf. B Biointerfaces 2016, 146, 938–944. [Google Scholar] [CrossRef]
- Serri, C.; de Gennaro, B.; Quagliariello, V.; Iaffaioli, R.V.; De Rosa, G.; Catalanotti, L.; Biondi, M.; Mayol, L. Surface Modified Zeolite-Based Granulates for the Sustained Release of Diclofenac Sodium. Eur. J. Pharm. Sci. 2017, 99, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Izzo, F.; Mercurio, M.; de Gennaro, B.; Aprea, P.; Cappelletti, P.; Daković, A.; Germinario, C.; Grifa, C.; Smiljanic, D.; Langella, A. Surface Modified Natural Zeolites (SMNZs) as Nanocomposite Versatile Materials for Health and Environment. Colloids Surf. B Biointerfaces 2019, 182, 110380. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.V.; Cocarta, A.I.; Dragan, E.S. Synthesis, Characterization and Drug Release Properties of 3D Chitosan/Clinoptilolite Biocomposite Cryogels. Carbohydr. Polym. 2016, 153, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Spatarelu, C.P.; Chiriac, A.L.; Cursaru, B.; Iordache, T.V.; Gavrila, A.M.; Cojocaru, C.T.; Botez, R.E.; Trica, B.; Sarbu, A.; Teodorescu, M.; et al. Composite Nanogels Based on Zeolite-poly(Ethylene Glycol) Diacrylate for Controlled Drug Delivery. Nanomaterials 2020, 10, 195. [Google Scholar] [CrossRef] [Green Version]
- Karimi, M.; Habibizadeh, M.; Rostamizadeh, K.; Khatamian, M.; Divband, B. Preparation and Characterization of Nanocomposites Based on Different Zeolite Frameworks as Carriers for Anticancer Drug: Zeolite Y versus ZSM-5. Polym. Bull. 2019, 76, 2233–2252. [Google Scholar] [CrossRef]
- Popova, M.; Mihaylova, R.; Momekov, G.; Momekova, D.; Lazarova, H.; Trendafilova, I.; Mitova, V.; Koseva, N.; Mihályi, J.; Shestakova, P.; et al. Verapamil Delivery Systems on the Basis of Mesoporous ZSM-5/KIT-6 and ZSM-5/SBA-15 Polymer Nanocomposites as a Potential Tool to Overcome MDR in Cancer Cells. Eur. J. Pharm. Biopharm. 2019, 142, 460–472. [Google Scholar] [CrossRef]
- Altoom, N.; Adlii, A.; Othman, S.I.; Allam, A.A.; Alqhtani, H.A.; Al-Otaibi, F.S.; Abukhadra, M.R. Synthesis and Characterization of β-Cyclodextrin Functionalized Zeolite-A as Biocompatible Carrier for Levofloxacin Drug; Loading, Release, Cytotoxicity, and Anti-Inflammatory Studies. J. Solid State Chem. 2022, 312, 123280. [Google Scholar] [CrossRef]
- Pazarçeviren, E.; Erdemli, Ö.; Keskin, D.; Tezcaner, A. Clinoptilolite/PCL-PEG-PCL Composite Scaffolds for Bone Tissue Engineering Applications. J. Biomater. Appl. 2017, 31, 1148–1168. [Google Scholar] [CrossRef]
- Faraji Dizaji, B.; Hasani Azerbaijan, M.; Sheisi, N.; Goleij, P.; Mirmajidi, T.; Chogan, F.; Irani, M.; Sharafian, F. Synthesis of PLGA/Chitosan/Zeolites and PLGA/Chitosan/Metal Organic Frameworks Nanofibers for Targeted Delivery of Paclitaxel toward Prostate Cancer Cells Death. Int. J. Biol. Macromol. 2020, 164, 1461–1474. [Google Scholar] [CrossRef]
- Cursaru, B.; Radu, A.-L.; Perrin, F.-X.; Sarbu, A.; Teodorescu, M.; Gavrila, A.-M.; Damian, C.-M.; Sandu, T.; Iordache, T.-V.; Zaharia, A. Poly(Ethylene Glycol) Composite Hydrogels with Natural Zeolite as Filler for Controlled Delivery Applications. Macromol. Res. 2019, 28, 211–220. [Google Scholar] [CrossRef]
- Abasian, P.; Radmansouri, M.; Habibi Jouybari, M.; Ghasemi, M.V.; Mohammadi, A.; Irani, M.; Jazi, F.S. Incorporation of Magnetic NaX Zeolite/DOX into the PLA/Chitosan Nanofibers for Sustained Release of Doxorubicin against Carcinoma Cells Death In Vitro. Int. J. Biol. Macromol. 2019, 121, 398–406. [Google Scholar] [CrossRef]
- Akmammedov, R.; Huysal, M.; Isik, S.; Senel, M. Preparation and Characterization of Novel Chitosan/Zeolite Scaffolds for Bone Tissue Engineering Applications. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 110–118. [Google Scholar] [CrossRef]
- Davarpanah Jazi, R.; Rafienia, M.; Salehi Rozve, H.; Karamian, E.; Sattary, M. Fabrication and Characterization of Electrospun Poly Lactic-Co-Glycolic Acid/Zeolite Nanocomposite Scaffolds Using Bone Tissue Engineering. J. Bioact. Compat. Polym. 2018, 33, 63–78. [Google Scholar] [CrossRef]
- Pazarçeviren, A.E.; Dikmen, T.; Altunbaş, K.; Yaprakçı, V.; Erdemli, Ö.; Keskin, D.; Tezcaner, A. Composite Clinoptilolite/PCL-PEG-PCL Scaffolds for Bone Regeneration: In Vitro and In Vivo Evaluation. J. Tissue Eng. Regen. Med. 2020, 14, 3–15. [Google Scholar] [CrossRef]
- Alipour, M.; Aghazadeh, M.; Akbarzadeh, A.; Vafajoo, Z.; Aghazadeh, Z.; Raeisdasteh Hokmabad, V. Towards Osteogenic Differentiation of Human Dental Pulp Stem Cells on PCL-PEG-PCL/Zeolite Nanofibrous Scaffolds. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3431–3437. [Google Scholar] [CrossRef] [Green Version]
- Yazdanian, M.; Tabesh, H.; Houshmand, B.; Tebyanian, H.; Soufdoost, R.S.; Tahmasebi, E.; Karami, A.; Ghullame, S. Fabrication and Properties of ΒTCP/Zeolite/Gelatin Scaffold as Developed Scaffold in Bone Regeneration: In Vitro and In Vivo Studies. Biocybern. Biomed. Eng. 2020, 40, 1626–1637. [Google Scholar] [CrossRef]
- Wang, S.; Li, R.; Qing, Y.; Wei, Y.; Wang, Q.; Zhang, T.; Sun, C.; Qin, Y.; Li, D.; Yu, J. Antibacterial Activity of Ag-Incorporated Zincosilicate Zeolite Scaffolds Fabricated by Additive Manufacturing. Inorg. Chem. Commun. 2019, 105, 31–35. [Google Scholar] [CrossRef]
- Zakeri, N.; Rezaie, H.R.; Javadpour, J.; Kharaziha, M. Cisplatin Loaded Polycaprolactone—Zeolite Nanocomposite Scaffolds for Bone Cancer Treatment. J. Sci. Adv. Mater. Devices 2022, 7, 100377. [Google Scholar] [CrossRef]
- Ryu, E.; Shaey, K.C. Immunization of Rabbits with Zeolite Absorbed Trypanosoma Gambiense Inactive Vaccine. Int. J. Zoonoses 1981, 8, 91–96. [Google Scholar]
- Batista, A.; Quattrocchi, V.; Olivera, V.; Langellotti, C.; Pappalardo, J.S.; Di Giacomo, S.; Mongini, C.; Portuondo, D.; Zamorano, P. Adjuvant Effect of CliptoxTM on the Protective Immune Response Induced by an Inactivated Vaccine against Foot and Mouth Disease Virus in Mice. Vaccine 2010, 28, 6361–6366. [Google Scholar] [CrossRef]
- Langellotti, C.A.; Pappalardo, J.S.; Quattrocchi, V.; Mongini, C.; Zamorano, P. Induction of Specific Cytotoxic Activity for Bovine Herpesvirus-1 by DNA Immunization with Different Adjuvants. Antivir. Res. 2011, 90, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Grasso, G.; Deriu, M.A.; Prat, M.; Rimondini, L.; Vernè, E.; Follenzi, A.; Danani, A. Cell Penetrating Peptide Adsorption on Magnetite and Silica Surfaces: A Computational Investigation. J. Phys. Chem. B 2015, 119, 8239–8246. [Google Scholar] [CrossRef] [PubMed]
- Golubeva, O.Y.; Brazovskaya, E.Y.; Alikina, Y.A.; D’yachenko, S.V.; Zhernovoi, A.I. Synthesis and Study of Nanocomposites Based on Beta Zeolite and Magnetite for Targeted Drug Delivery. Glass Phys. Chem. 2019, 45, 66–73. [Google Scholar] [CrossRef]
- Vilaça, N.; Gallo, J.; Fernandes, R.; Figueiredo, F.; Fonseca, A.M.; Baltazar, F.; Neves, I.C.; Bañobre-López, M. Synthesis, Characterization and: In Vitro Validation of a Magnetic Zeolite Nanocomposite with T 2-MRI Properties towards Theranostic Applications. J. Mater. Chem. B 2019, 7, 3351–3361. [Google Scholar] [CrossRef]
- Hovhannisyan, V.; Siposova, K.; Musatov, A.; Chen, S.J. Development of Multifunctional Nanocomposites for Controlled Drug Delivery and Hyperthermia. Sci. Rep. 2021, 11, 5528. [Google Scholar] [CrossRef]
- Hu, C.M.J.; Aryal, S.; Zhang, L. Nanoparticle-Assisted Combination Therapies for Effective Cancer Treatment. Ther. Deliv. 2010, 1, 323–334. [Google Scholar] [CrossRef]
- Sağir, T.; Huysal, M.; Durmus, Z.; Kurt, B.Z.; Senel, M.; Isik, S. Preparation and In Vitro Evaluation of 5-Flourouracil Loaded Magnetite-Zeolite Nanocomposite (5-FU-MZNC) for Cancer Drug Delivery Applications. Biomed. Pharmacother. 2016, 77, 182–190. [Google Scholar] [CrossRef]
- Liao, H.; Ye, S.; Ding, J.; Yu, J.; Xv, X.; Pan, L.; Lin, P.; Wang, D. Ship-in-a-Bottle Growth of NaYF4: Yb3+/Tm3+ Upconversion Nanocrystals in Desilicated ZSM-5 Zeolite for Drug Release Monitoring. Mater. Res. Bull. 2022, 154, 111926. [Google Scholar] [CrossRef]
- Jakubowski, M.; Kucinska, M.; Ratajczak, M.; Pokora, M.; Murias, M.; Voelkel, A.; Sandomierski, M. Zinc Forms of Faujasite Zeolites as a Drug Delivery System for 6-Mercaptopurine. Microporous Mesoporous Mater. 2022, 343, 112194. [Google Scholar] [CrossRef]
- Golubeva, O.Y.; Alikina, Y.A.; Brazovskaya, E.Y.; Ugolkov, V.V. Peculiarities of the 5-Fluorouracil Adsorption on Porous Aluminosilicates with Different Morphologies. Appl. Clay Sci. 2020, 184, 105401. [Google Scholar] [CrossRef]
- Sayed, M.A.; El-Zeiny, H.M.; Khim, J.S.; Ajarem, J.S.; Allam, A.A.; Abukhadra, M.R. Insight into the Loading Properties of Na+ Green-Functionalized Clinoptilolite as a Potential Carrier for the 5-Fluorouracil Drug, Its Release Kinetics, and Cytotoxicity. ACS Omega 2022, 7, 6991–7001. [Google Scholar] [CrossRef]
- McCusker, L.B.; Olson, D.H.; Baerlocher, C. Atlas of Zeolite Framework Types; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 9780444530646. [Google Scholar]
- Wernert, V.; Schäf, O.; Faure, V.; Brunet, P.; Dou, L.; Berland, Y.; Boulet, P.; Kuchta, B.; Denoyel, R. Adsorption of the Uremic Toxin P-Cresol onto Hemodialysis Membranes and Microporous Adsorbent Zeolite Silicalite. J. Biotechnol. 2006, 123, 164–173. [Google Scholar] [CrossRef]
- Namekawa, K.; Tokoro Schreiber, M.; Aoyagi, T.; Ebara, M. Fabrication of Zeolite-Polymer Composite Nanofibers for Removal of Uremic Toxins from Kidney Failure Patients. Biomater. Sci. 2014, 2, 674–679. [Google Scholar] [CrossRef]
- Chen, S.; Popovich, J.; Zhang, W.; Ganser, C.; Haydel, S.E.; Seo, D.K. Superior Ion Release Properties and Antibacterial Efficacy of Nanostructured Zeolites Ion-Exchanged with Zinc, Copper, and Iron. RSC Adv. 2018, 8, 37949–37957. [Google Scholar] [CrossRef] [Green Version]
- Mallard, I.; Bourgeois, D.; Fourmentin, S. A Friendly Environmental Approach for the Controlled Release of Eucalyptus Essential Oil. Colloids Surf. A Phys. Eng. Asp. 2018, 549, 130–137. [Google Scholar] [CrossRef]
- Rezaee, H.; Ghorbani, M.; Nikpay, A.; Soltani, M. Tannic Acid-Coated Zeolite Y Nanoparticles as Novel Drug Nanocarrier with Controlled Release Behavior and Anti-Protozoan Activity against Trichomonas Gallinae. J. Dispers. Sci. Technol. 2019, 40, 587–593. [Google Scholar] [CrossRef]
- Strzempek, W.; Korzeniowska, A.; Kowalczyk, A.; Roth, W.J.; Gil, B. Detemplated and Pillared 2-Dimensional Zeolite ZSM-55 with Ferrierite Layer Topology as a Carrier for Drugs. Molecules 2020, 25, 3501. [Google Scholar] [CrossRef]
- Datt, A.; Fields, D.; Larsen, S.C. An Experimental and Computational Study of the Loading and Release of Aspirin from Zeolite HY. J. Phys. Chem. C 2012, 116, 21382–21390. [Google Scholar] [CrossRef]
Zeolite Type | Pharmaceutical Uses | Treatment | Ref |
---|---|---|---|
Clinoptilolite | Active substance | Anti-diarrhoeic (Enterex®) | [44] |
Clinoptilolite | Active substance | Antacid (Neutacid®) | [35] |
Clinoptilolite | Active substance | Gastroesophageal reflux disease (AbsorbatoxTM) | [63] |
Clinoptilolite | Active substance | Antiviral | [45] |
Clinoptilolite | Active substance | Anticancer | [51,52] |
Clinoptilolite | Active substance | Osteoporosis | [59] |
Clinoptilolite | Carrier of zinc and erythromycin | Anti-acne | [71,72] |
Clinoptilolite | Carrier for Acacia Catechu extract | gastrointestinal tract treatment | [87] |
Clinoptilolite/ Mordenite | Carriers of copper ions | Antimicrobial activity | [93] |
Faujasite | Danazol | Endometriosis, fibrocystic breast disease | [86] |
Zn-clinoptilolite/ graphene oxide | Doxorubicin | Anticancer | [94] |
Zeolite Y | Pyrantel pamoate and fenbendazole | Anthelmintic | [89] |
Zeolite Beta | Salbutamol, theophylline | pulmonary disease | [95] |
Zeolite Beta | Mitoxantrone | Anticancer | [96] |
Zeolite Beta | Nifedipine | Hypertension and angina | [84] |
Zeolite X and Y | Diclofenac sodium, piroxicam | Anti-inflammatory treatment | [6] |
Zeolite X and zeolite A co-crystallization | Ketoprofen carrier | Inflammatory gastrointestinal tract treatment; reduce gastric side effects | [88] |
Zeolite Beta, ZSM-5 and NaX | Indomethacin | Anti-inflammatory treatment of musculoskeletal disorders | [85] |
Faujasite, zeolite A | α-Cyano-4-hydroxycinnamic acid | Anticancer | [97] |
Zeolite 5A | Curcumin | Anticancer | [98] |
ZSM-5 | Curcumin | Anticancer | [99] |
Zeolite Beta, NaX-FAU | 5-Fluorouracil | Anticancer | [28] |
ZSM-5, zeolite A, NaX | 5-Fluorouracil | Anticancer | [42] |
NaY-Faujasite, Lynde Type | 5-Fluorouracil | Anticancer | [100] |
Faujasite | O2 and CO2 | Anticancer | [47] |
MCM-41, SBA-15, FDU-12, SBA-16, h-ZSM-5, h-BETA | Methylprednisolone hemisuccinate | Rhinosinusitis | [27] |
Zeolite X | Silver | Antimicrobial activity | [101] |
Zeolite Beta, MFI and NaX | Probucol | Antilipidemic | [21] |
Zeolite Beta, zeolite Rho, Paulingite | Silver | Antimicrobial, antitumor activity | [102] |
Calcium-rich zeolite A and X | Risedronate | Osteoporosis treatment | [91] |
NaX, NaY and HY | Clofazimine | Leprosy treatment | [90] |
MFI | Lysozyme | Antimicrobial prophylaxis for implantable devices | [103] |
MFI borosilicate | Doxorubicin | Anticancer | [104] |
Zeolite Type | Polymer | Active Substance | Drug-Loading Method | Ref |
---|---|---|---|---|
Clinoptilolite | Chitosan | Diclofenac sodium, indomethacin | Solvent evaporation | [111] |
Clinoptilolite | Chitosan, Polyvinil alcohol | Thymol | Coprecipitation | [76] |
Clinoptilolite | poly(ε-caprolactone)-poly(ethyleneglycol)-poly(ε-caprolactone) | Bone tissue regeneration scaffold | - | [115] |
Linde type L | poly-L-lysine | 5-fluorouracil | Mixing | [110] |
Zeolite Y and ZSM-5 | Polyethylene glycol | Curcumin | Mixing | [112] |
ZSM-5/KIT-6 and ZSM-5/SBA-15 | Chitosan and carrageenan | verapamil | Impregnation | [113] |
Zeolite-A | β-cyclodextrin | levofloxacin | Mixing | [114] |
Zeolite Y and ZSM-5 | Chitosan, poly lactic co-glycolic acid | Paclitaxel | Mixing | [116] |
Natural zeolite type B | Poly(ethylene glycol) diacrylate | 5-Fluorouracil | Immersion and ultrasonicated | [111] |
Natural zeolite type B | Poly(ethylene glycol) diacrylate | Rose Canine extract | Stirring and sonicated | [117] |
NaY | Chitosan | AgSD | Impregnation | [74] |
NaX | PLA/Chitosan | Doxorubicin | Stirring | [118] |
HZSM-5 | Gelatin/agarose/zeolite | Pomegranate peel extract | Mixing | [79] |
Zeolite A | Chitosan | Biomaterial scaffold for tissue engineering | - | [119] |
Zeolite Type | Scope | Scaffold Production Technique | Zeolite Performance | Ref |
---|---|---|---|---|
not specified | Bone regeneration | Electrospinning | Mechanical properties were improved | [120] |
clinoptilolite | Bone regeneration | Solvent-free powder compression/particulate leaching | Improved the mechanical properties | [115] |
clinoptilolite | Bone regeneration | Particulate leaching/compression molding | Improve bone regeneration and promote repair | [121] |
not specified | Bone regeneration | Electrospinning | Key role in osteoblastic physiology | [122] |
ZSM-5 | Bone regeneration | Freeze-drying | Superior mechanical, radiographic and histological properties | [123] |
Zeolite-A | Bone Tissue | Freeze-drying | Better cell attachment and survival | [119] |
VPI-7 | Bone Tissue | extrusion 3D printer | Mechanical properties and antibacterial activity | [124] |
Faujasite Y | In situ drug delivery and bone regeneration | Particulate leaching-freeze drying approach | Improved the scaffold mechanical characteristics, providing a pH-sensitive and a drug sustained release | [125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, I.M.S.; García-Villén, F.; Viseras, C.; Pergher, S.B.C. Zeolites as Ingredients of Medicinal Products. Pharmaceutics 2023, 15, 1352. https://doi.org/10.3390/pharmaceutics15051352
Souza IMS, García-Villén F, Viseras C, Pergher SBC. Zeolites as Ingredients of Medicinal Products. Pharmaceutics. 2023; 15(5):1352. https://doi.org/10.3390/pharmaceutics15051352
Chicago/Turabian StyleSouza, Iane M. S., Fátima García-Villén, César Viseras, and Sibele B. C. Pergher. 2023. "Zeolites as Ingredients of Medicinal Products" Pharmaceutics 15, no. 5: 1352. https://doi.org/10.3390/pharmaceutics15051352
APA StyleSouza, I. M. S., García-Villén, F., Viseras, C., & Pergher, S. B. C. (2023). Zeolites as Ingredients of Medicinal Products. Pharmaceutics, 15(5), 1352. https://doi.org/10.3390/pharmaceutics15051352