Smart Design of Nanostructures for Boosting Tumor Immunogenicity in Cancer Immunotherapy
Abstract
:1. Introduction
1.1. Emerging Immunogenic Boosters for Cancer and Their Limitations
1.2. Reprogramming Tumor Immunogenicity for Enhanced Immunotherapy
1.3. Mechanism of Combined Therapy with ICB
2. Smart-Designed Nanobooster for Immunotherapy
2.1. Unique Properties of Nanomaterials for Cancer Therapy
2.2. Light-Responsive Nanomaterials for Antitumor Therapy
2.3. pH-Responsive Nanomaterial for Antitumor Therapy
2.4. Nanocatalytic Activities for Tumor Therapy
2.5. Magnetic-Responsive Nanomaterials for Remote Control Antitumor Therapy
3. Conclusions
4. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CIT | Cancer immunotherapy |
ICB | Immune checkpoint blockade |
CAR | Chimeric antigen receptor |
CLTA4 | Cytotoxic T lymphocyte antigen 4 |
PD1 | Programmed cell death 1 |
PDL1 | Programmed cell death ligand 1 |
FDA | Food and Drug Administration |
PTT | Photothermal therapy |
PDT | Photodynamic therapy |
ATP | Adenosine triphosphate |
HMGB-1 | High-motility group box 1 |
CRT | Calreticulin |
APC | Antigen-presenting cell |
DC | Dendritic cell |
NK | natural killer |
ICD | Immunogenic cell death |
PEG | polyethylene) glycol |
ROS | Reactive oxygen species |
GSH) | Glutathione |
MMP | Matrix metalloproteinase |
ZnPcs | Zinc phthalocyanine |
PLGA | polymers polylactic-co-glycolic acid) |
TPP | Lipophilic triphenylphosphonium |
DAMPs | Damage-associated molecules |
AuNS | Gold nanostars |
CRC | Colorectal Cancer |
TSCC | Tongue Squamous Cell Carcinoma |
NPt-Ca | Platinum Acetylacetonate with titania |
NIR | Near-infrared |
TLR | Toll-like receptor |
pMHC | Peptide major histocompatibility complex |
IL | Interleukin |
PEGMA | Polyethylene glycol) methacrylate |
MPC | 2-methacryloyloxyethyl phosphorylcholine |
DOX | Doxorubicin |
LA | Lactic acid |
LDHA | Lactate dehydrogenase A |
DCA | Dichloroacetate |
GOx | Glucose oxidase |
AQ4N | Banoxantrone dihydrochloride |
TCA | Tricarboxylic acid |
CHC | α-cyano-4-hydroxycinnamate |
γ-Fe2O3 | Maghemite |
Fe3O4 | Magnetite |
SPIONs | Superparamagnetic iron oxide nanoparticles |
MRI | Magnetic resonance imaging |
MH | Magnetic hyperthermia |
AMF | Alternating magnetic field |
MINP | Magnetic-responsive immunostimulatory nanoagent |
CpG ODNs | Cytosine-phosphate-guanine oligodeoxynucleotides |
PA | Photoacoustic |
ZIF-8 | Zeolitic imidazolate framework-8 |
ICG | Indocyanine green |
OVA | Ovalbumin |
cpMF | Circularly polarized magnetic field |
HCSV | Hybrid core–shell vesicle |
AA | Ascorbic acids |
IONCs | Iron oxide nanocubes |
UVB | Ultra-violet B |
mPEG | Methoxy PEG |
DSPE | 2-distearoyl-sn-glycero-3-phosphoethanolamine |
References
- Carlson, R.D.; Flickinger, J.C., Jr.; Snook, A.E. Talkin’ Toxins: From Coley’s to Modern Cancer Immunotherapy. Toxins 2020, 12, 241. [Google Scholar] [CrossRef] [PubMed]
- Ni, Q.; Zhang, F.; Liu, Y.; Wang, Z.; Yu, G.; Liang, B.; Niu, G.; Su, T.; Zhu, G.; Lu, G.; et al. A Bi-adjuvant Nanovaccine that Potentiates Immunogenicity of Neoantigen for Combination Immunotherapy of Colorectal Cancer. Sci. Adv. 2020, 6, eaaw6071. [Google Scholar] [CrossRef] [PubMed]
- Finck, A.; Gill, S.I.; June, C.H. Cancer Immunotherapy Comes of Age and Looks for Maturity. Nat. Commun. 2020, 11, 3325. [Google Scholar] [CrossRef] [PubMed]
- Adamik, J.; Butterfield, L.H. What’s Next for Cancer Vaccines. Sci. Transl. Med. 2022, 14, eabo4632. [Google Scholar] [CrossRef]
- Lynn, G.M.; Laga, R.; Darrah, P.A.; Ishizuka, A.S.; Balaci, A.J.; Dulcey, A.E.; Pechar, M.; Pola, R.; Gerner, M.Y.; Yamamoto, A.; et al. In Vivo Characterization of the Physicochemical Properties of Polymer-Linked TLR Agonists that Enhance Vaccine Immunogenicity. Nat. Biotechnol. 2015, 33, 1201–1210. [Google Scholar] [CrossRef]
- Van der Meel, R.; Sulheim, E.; Shi, Y.; Kiessling, F.; Mulder, W.J.M.; Lammers, T. Smart Cancer Nanomedicine. Nat. Nanotechnol. 2019, 14, 1007–1017. [Google Scholar] [CrossRef]
- The Two Directions of Cancer Nanomedicine. Nat. Nanotechnol. 2019, 14, 1083. [CrossRef]
- Korman, A.J.; Garrett-Thomson, S.C.; Lonberg, N. The Foundations of Immune Checkpoint Blockade and the Ipilimumab Approval Decennial. Nat. Rev. Drug Discov. 2022, 21, 509–528. [Google Scholar] [CrossRef]
- Wong, W.K.; Yin, B.; Lam, C.Y.K.; Huang, Y.; Yan, J.; Tan, Z.; Wong, S.H.D. The Interplay between Epigenetic Regulation and CD8+ T Cell Differentiation/Exhaustion for T Cell Immunotherapy. Front. Cell Dev. Biol. 2022, 9, 3839. [Google Scholar] [CrossRef]
- June, C.H.; Warshauer, J.T.; Bluestone, J.A. Is Autoimmunity the Achilles’ Heel of Cancer Immunotherapy? Nat. Med. 2017, 23, 540–547. [Google Scholar] [CrossRef]
- Chen, L.; Han, X. Anti–PD-1/PD-L1 Therapy of Human Cancer: Past, Present, and Future. J. Clin. Investig. 2015, 125, 3384–3391. [Google Scholar] [CrossRef] [PubMed]
- Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Immune Checkpoint Blockade: A Common Denominator Approach to Cancer Therapy. Cancer Cell 2015, 27, 450–461. [Google Scholar] [CrossRef]
- June, C.H.; Sadelain, M. Chimeric Antigen Receptor Therapy. N. Engl. J. Med. 2018, 379, 64–73. [Google Scholar] [CrossRef] [PubMed]
- June, C.H.; Maus, M.V.; Plesa, G.; Johnson, L.A.; Zhao, Y.; Levine, B.L.; Grupp, S.A.; Porter, D.L. Engineered T Cells for Cancer Therapy. Cancer Immunol. Immunother. 2014, 63, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Fesnak, A.D.; June, C.H.; Levine, B.L. Engineered T Cells: The Promise and Challenges of Cancer Immunotherapy. Nat. Rev. Cancer 2016, 16, 566–581. [Google Scholar] [CrossRef]
- Yin, B.; Ho, W.K.H.; Xia, X.; Chan, C.K.W.; Zhang, Q.; Ng, Y.M.; Lam, C.Y.K.; Cheung, J.C.W.; Wang, J.; Yang, M.; et al. A Multilayered Mesoporous Gold Nanoarchitecture for Ultraeffective Near-Infrared Light-Controlled Chemo/Photothermal Therapy for Cancer Guided by SERS Imaging. Small 2023, 19, e2206762. [Google Scholar] [CrossRef]
- Huang, J.; Yang, B.; Peng, Y.; Huang, J.; Wong, S.H.D.; Bian, L.; Zhu, K.; Shuai, X.; Han, S. Nanomedicine-Boosting Tumor Immunogenicity for Enhanced Immunotherapy. Adv. Funct. Mater. 2021, 31, 2011171. [Google Scholar] [CrossRef]
- Lam, C.Y.K.; Zhang, Q.; Yin, B.H.; Huang, Y.Y.; Wang, H.; Yang, M.; Wong, S.H.D. Recent Advances in Two-Dimensional Transition Metal Dichalcogenide Nanocomposites Biosensors for Virus Detection before and during COVID-19 Outbreak. J. Comp. Sci. 2021, 5, 190. [Google Scholar] [CrossRef]
- Wong, W.K.; Yin, B.; Rakhmatullina, A.; Zhou, J.; Wong, S.H.D. Engineering Advanced Dynamic Biomaterials to Optimize Adoptive T-Cell Immunotherapy. Eng. Regen. 2021, 2, 70–81. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, D.; Saw, P.E.; Song, E. Turning Cold Tumors Hot: From Molecular Mechanisms to Clinical Applications. Trends Immunol. 2022, 43, 523–545. [Google Scholar] [CrossRef]
- Liu, Y.T.; Sun, Z.J. Turning Cold Tumors into Hot Tumors by Improving T-Cell Infiltration. Theranostics 2021, 11, 5365–5386. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Buque, A.; Kepp, O.; Zitvogel, L.; Kroemer, G. Immunogenic Cell Death in Cancer and Infectious Disease. Nat. Rev. Immunol. 2017, 17, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, E.E.; Cano-Mejia, J.; Fernandes, R. Photothermal Therapy Generates a Thermal Window of Immunogenic Cell Death in Neuroblastoma. Small 2018, 14, e1800678. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.S.; Mellman, I. Oncology Meets Immunology: The Cancer-Immunity Cycle. Immunity 2013, 39, 1–10. [Google Scholar] [CrossRef]
- Jin, L.; Shen, S.; Huang, Y.; Li, D.; Yang, X. Corn-Like Au/Ag Nanorod-Mediated NIR-II Photothermal/Photodynamic Therapy Potentiates Immune Checkpoint Antibody Efficacy by Reprogramming the Cold Tumor Microenvironment. Biomaterials 2021, 268, 120582. [Google Scholar] [CrossRef]
- Bonaventura, P.; Shekarian, T.; Alcazer, V.; Valladeau-Guilemond, J.; Valsesia-Wittmann, S.; Amigorena, S.; Caux, C.; Depil, S. Cold Tumors: A Therapeutic Challenge for Immunotherapy. Front. Immunol. 2019, 10, 168. [Google Scholar] [CrossRef]
- Wu, S.-Y.; Fu, T.; Jiang, Y.-Z.; Shao, Z.-M. Natural Killer Cells in Cancer Biology and Therapy. Mol. Cancer 2020, 19, 120. [Google Scholar] [CrossRef]
- Schwartz, M.; Zhang, Y.; Rosenblatt, J.D. B Cell Regulation of the Anti-Tumor Response and Role in Carcinogenesis. J. Immunother. Cancer 2016, 4, 40. [Google Scholar]
- Bruno, A.; Ferlazzo, G.; Albini, A.; Noonan, D.M. A think Tank of TINK/TANKs: Tumor-Infiltrating/Tumor-Associated Natural Killer Cells in Tumor Progression and Angiogenesis. J. Natl. Cancer Inst. 2014, 106, dju200. [Google Scholar] [CrossRef]
- Yin, B.; Chan, C.K.W.; Liu, S.; Hong, H.; Wong, S.H.D.; Lee, L.K.C.; Ho, L.W.C.; Zhang, L.; Leung, K.C.; Choi, P.C.; et al. Intrapulmonary Cellular-Level Distribution of Inhaled Nanoparticles with Defined Functional Groups and Its Correlations with Protein Corona and Inflammatory Response. ACS Nano 2019, 13, 14048–14069. [Google Scholar] [CrossRef]
- Wang, J.; Gu, Y.; Liu, X.; Fan, Y.; Zhang, Y.; Yi, C.; Cheng, C.; Yang, M. Near-Infrared Photothermally Enhanced Photo-Oxygenation for Inhibition of Amyloid-β Aggregation Based on RVG-Conjugated Porphyrinic Metal–Organic Framework and Indocyanine Green Nanoplatform. Int. J. Mol. Sci. 2022, 23, 10885. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Oudeng, G.; Feng, H.; Liu, S.; Li, H.W.; Ho, Y.P.; Chen, Y.; Tan, Y.; Yang, M. 2D MOF Nanosensor-Integrated Digital Droplet Microfluidic Flow Cytometry for In Situ Detection of Multiple miRNAs in Single CTC Cells. Small 2022, 18, 2201779. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.; Ho, L.W.C.; Liu, S.; Hong, H.; Tian, X.Y.; Li, H.; Choi, C.H.J. Sub-10 nm Substrate Roughness Promotes the Cellular Uptake of Nanoparticles by Upregulating Endocytosis-Related Genes. Nano Lett. 2021, 21, 1839–1847. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.H.J.; Zuckerman, J.E.; Webster, P.; Davis, M.E. Targeting Kidney Mesangium by Nanoparticles of Defined Size. Proc. Natl. Acad. Sci. USA 2011, 108, 6656–6661. [Google Scholar] [CrossRef]
- Yin, B.; Yang, H.; Yang, M. Integrating Soft Hydrogel with Nanostructures Reinforces Stem Cell Adhesion and Differentiation. J. Compos. Sci. 2022, 6, 19. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Wang, Y.; Chen, H.; Zhang, X.; Luo, C.; Zhou, W.; Li, L.; Teng, L.; Yu, H.; et al. Smart Drug delivery systems for precise cancer therapy. Acta Pharm. Sin. B 2022, 12, 4098–4121. [Google Scholar] [CrossRef]
- Zhang, Q.; Kuang, G.; Li, W.; Wang, J.; Ren, H.; Zhao, Y. Stimuli-Responsive Gene Delivery Nanocarriers for Cancer Therapy. Nanomicro Lett. 2023, 15, 44. [Google Scholar] [CrossRef]
- Yu, Z.; Shen, X.; Yu, H.; Tu, H.; Chittasupho, C.; Zhao, Y. Smart Polymeric Nanoparticles in Cancer Immunotherapy. Pharmaceutics 2023, 15, 775. [Google Scholar] [CrossRef]
- Shen, H.; Sun, T.; Hoang, H.H.; Burchfield, J.S.; Hamilton, G.F.; Mittendorf, E.A.; Ferrari, M. In Enhancing Cancer Immunotherapy Through Nanotechnology-Mediated Tumor Infiltration and Activation of Immune Cells. Semin. Immunol. 2017, 34, 114–122. [Google Scholar] [CrossRef]
- Thakur, N.; Thakur, S.; Chatterjee, S.; Das, J.; Sil, P.C. Nanoparticles as Smart Carriers for Enhanced Cancer Immunotherapy. Front. Chem. 2020, 8, 597806. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, X.; Gong, F.; Liu, T.; Liu, Z. 2D Nanomaterials for Cancer Theranostic Applications. Adv. Mater. 2020, 32, e1902333. [Google Scholar] [CrossRef]
- Wu, M.; Niu, X.; Zhang, R.; Ping Xu, Z. Two-Dimensional Nanomaterials for Tumor Microenvironment Modulation and Anticancer Therapy. Adv. Drug Deliv. Rev. 2022, 187, 114360. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer Nanotechnology: The Impact of Passive and Active Targeting in the Era of Modern Cancer Biology. Adv. Drug Deliv. Rev. 2014, 66, 2–25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Gao, S.; Yang, D.; Fang, Y.; Lin, X.; Jin, X.; Liu, Y.; Liu, X.; Su, K.; Shi, K. Influencing Factors and Strategies of Enhancing Nanoparticles into Tumors In Vivo. Acta Pharm. Sin. B 2021, 11, 2265–2285. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.K.; Wong, S.H.D.; Bian, L. Long-Term Detection of Oncogenic MicroRNA in Living Human Cancer Cells by Gold@ Polydopamine-Shell Nanoprobe. ACS Biomater. Sci. Eng. 2020, 6, 3778–3783. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.Y.; Cao, K.L.; Chen, M.; Wu, L.M. Synthesis of UV-Responsive Self-Healing Microcapsules and Their Potential Application in Aerospace Coatings. ACS Appl. Mater. Inter. 2019, 11, 33314–33322. [Google Scholar] [CrossRef]
- Zhang, J.; Wong, S.H.D.; Wu, X.; Lei, H.; Qin, M.; Shi, P.; Wang, W.; Bian, L.; Cao, Y. Engineering Photoresponsive Ligand Tethers for Mechanical Regulation of Stem Cells. Adv. Mater. 2021, 33, e2105765. [Google Scholar] [CrossRef]
- Jiang, D.; Zhang, Y.; Du, X.; Tan, Y.; Chen, W.; Yang, M. Wavelength-Regulated Switchable Photoelectrochemical System for Concurrent Detection of Dual Antibiotics. Biosens. Bioelectron. 2022, 202, 113999. [Google Scholar] [CrossRef]
- Zhang, Q.; Yin, B.; Hao, J.; Ma, L.; Huang, Y.; Shao, X.; Li, C.; Chu, Z.; Yi, C.; Wong, S.H.D. An AIEgen/Graphene Oxide Nanocomposite (AIEgen@ GO)-Based Two-Stage “Turn-On” Nucleic Acid Biosensor for Rapid Detection of SARS-CoV-2 Viral Sequence. Aggregate 2022, 4, e195. [Google Scholar] [CrossRef]
- Yin, C.; Wen, G.; Liu, C.; Yang, B.; Lin, S.; Huang, J.; Zhao, P.; Wong, S.H.D.; Zhang, K.; Chen, X.; et al. Organic Semiconducting Polymer Nanoparticles for Photoacoustic Labeling and Tracking of Stem Cells in the Second Near-Infrared Window. ACS Nano 2018, 12, 12201–12211. [Google Scholar] [CrossRef]
- Butler, H.J.; Ashton, L.; Bird, B.; Cinque, G.; Curtis, K.; Dorney, J.; Esmonde-White, K.; Fullwood, N.J.; Gardner, B.; Martin-Hirsch, P.L.; et al. Using Raman Spectroscopy to Characterize Biological Materials. Nat. Protoc. 2016, 11, 664–687. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.Y.; Zhao, X.H.; Huang, J.G.; Li, J.C.; Upputuri, P.K.; Sun, H.; Han, X.; Pramanik, M.; Miao, Y.S.; Duan, H.W.; et al. Transformable Hybrid Semiconducting Polymer Nanozyme for Second Near-Infrared Photothermal Ferrotherapy. Nat. Commun. 2020, 11, 1857. [Google Scholar] [CrossRef]
- Xu, C.; Jiang, Y.; Han, Y.; Pu, K.; Zhang, R. A Polymer Multicellular Nanoengager for Synergistic NIR-II Photothermal Immunotherapy. Adv. Mater. 2021, 33, e2008061. [Google Scholar] [CrossRef]
- Hao, X.; Li, C.; Zhang, Y.; Wang, H.; Chen, G.; Wang, M.; Wang, Q. Programmable Chemotherapy and Immunotherapy against Breast Cancer Guided by Multiplexed Fluorescence Imaging in the Second Near-Infrared Window. Adv. Mater. 2018, 30, e1804437. [Google Scholar] [CrossRef] [PubMed]
- Huo, M.; Wang, L.; Wang, Y.; Chen, Y.; Shi, J. Nanocatalytic Tumor Therapy by Single-Atom Catalysts. ACS Nano 2019, 13, 2643–2653. [Google Scholar] [CrossRef] [PubMed]
- Wen, M.; Ouyang, J.; Wei, C.; Li, H.; Chen, W.; Liu, Y.N. Artificial Enzyme Catalyzed Cascade Reactions: Antitumor Immunotherapy Reinforced by NIR-II Light. Angew. Chem. Int. Ed. Engl. 2019, 58, 17425–17432. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yan, B.; Chen, L. SERS Tags: Novel Optical Nanoprobes for Bioanalysis. Chem. Rev. 2013, 113, 1391–1428. [Google Scholar] [CrossRef]
- Sau, T.K.; Rogach, A.L.; Jackel, F.; Klar, T.A.; Feldmann, J. Properties and Applications of Colloidal Nonspherical Noble Metal Nanoparticles. Adv. Mater. 2010, 22, 1805–1825. [Google Scholar] [CrossRef]
- Yin, B.; Ho, W.K.H.; Zhang, Q.; Li, C.; Huang, Y.; Yan, J.; Yang, H.; Hao, J.; Wong, S.H.D.; Yang, M. Magnetic-Responsive Surface-Enhanced Raman Scattering Platform with Tunable Hot Spot for Ultrasensitive Virus Nucleic Acid Detection. ACS Appl. Mater. Interfaces 2022, 14, 4714–4724. [Google Scholar] [CrossRef]
- Chen, S.; Lei, Q.; Qiu, W.-X.; Liu, L.-H.; Zheng, D.-W.; Fan, J.-X.; Rong, L.; Sun, Y.-X.; Zhang, X.-Z. Mitochondria-Targeting “Nanoheater” for Enhanced Photothermal/Chemo-Therapy. Biomaterials 2017, 117, 92–104. [Google Scholar] [CrossRef]
- Kato, Y.; Ozawa, S.; Miyamoto, C.; Maehata, Y.; Suzuki, A.; Maeda, T.; Baba, Y. Acidic Extracellular Microenvironment and Cancer. Cancer Cell Int. 2013, 13, 89. [Google Scholar] [CrossRef] [PubMed]
- Justus, C.R.; Dong, L.; Yang, L.V. Acidic Tumor Microenvironment and pH-Sensing G Protein-Coupled Receptors. Front. Physiol. 2013, 4, 354. [Google Scholar] [CrossRef] [PubMed]
- Estrella, V.; Chen, T.; Lloyd, M.; Wojtkowiak, J.; Cornnell, H.H.; Ibrahim-Hashim, A.; Bailey, K.; Balagurunathan, Y.; Rothberg, J.M.; Sloane, B.F.; et al. Acidity Generated by the Tumor Microenvironment Drives Local Invasion. Cancer Res. 2013, 73, 1524–1535. [Google Scholar] [CrossRef]
- Van Sluis, R.; Bhujwalla, Z.M.; Raghunand, N.; Ballesteros, P.; Alvarez, J.; Cerdan, S.; Galons, J.P.; Gillies, R.J. In Vivo Imaging of Extracellular pH Using 1H MRSI. Magn. Reson. Med. 1999, 41, 743–750. [Google Scholar] [CrossRef]
- Li, H.J.; Du, J.Z.; Liu, J.; Du, X.J.; Shen, S.; Zhu, Y.H.; Wang, X.; Ye, X.; Nie, S.; Wang, J. Smart Superstructures with Ultrahigh pH-Sensitivity for Targeting Acidic Tumor Microenvironment: Instantaneous Size Switching and Improved Tumor Penetration. ACS Nano 2016, 10, 6753–6761. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chao, Y.; Zhao, H.; Zhou, X.; Zhang, F.; Zhang, Z.; Li, Z.; Pan, J.; Wang, J.; Chen, Q.; et al. Smart Nanomedicine to Enable Crossing Blood-Brain Barrier Delivery of Checkpoint Blockade Antibody for Immunotherapy of Glioma. ACS Nano 2022, 16, 664–674. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Hamanishi, J.; Matsumura, N.; Abiko, K.; Murat, K.; Baba, T.; Yamaguchi, K.; Horikawa, N.; Hosoe, Y.; Murphy, S.K.; et al. Chemotherapy Induces Programmed Cell Death-Ligand 1 Overexpression via the Nuclear Factor-kappaB to Foster an Immunosuppressive Tumor Microenvironment in Ovarian Cancer. Cancer Res. 2015, 75, 5034–5045. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Xiao, Z.; Wang, Y.; Huang, J.; An, Y.; Wang, X.; Shuai, X. Codelivery of Anti-PD-1 Antibody and Paclitaxel with Matrix Metalloproteinase and pH Dual-Sensitive Micelles for Enhanced Tumor Chemoimmunotherapy. Small 2020, 16, e1906832. [Google Scholar] [CrossRef]
- Stephan, S.B.; Taber, A.M.; Jileaeva, I.; Pegues, E.P.; Sentman, C.L.; Stephan, M.T. Biopolymer Implants Enhance the Efficacy of Adoptive T-cell Therapy. Nat. Biotechnol. 2015, 33, 97–101. [Google Scholar] [CrossRef]
- Oh, J.; Xia, X.; Wong, W.K.R.; Wong, S.H.D.; Yuan, W.; Wang, H.; Lai, C.H.N.; Tian, Y.; Ho, Y.P.; Zhang, H.; et al. The Effect of the Nanoparticle Shape on T Cell Activation. Small 2022, 18, e2107373. [Google Scholar] [CrossRef]
- Deeg, J.; Axmann, M.; Matic, J.; Liapis, A.; Depoil, D.; Afrose, J.; Curado, S.; Dustin, M.L.; Spatz, J.P. T Cell Activation is Determined by the Number of Presented Antigens. Nano Lett. 2013, 13, 5619–5626. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Muller, J.; Depoil, D.; Mayya, V.; Sheetz, M.P.; Dustin, M.L.; Wind, S.J. Full Control of Ligand Positioning Reveals Spatial Thresholds for T Cell Receptor Triggering. Nat. Nanotechnol. 2018, 13, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Ma, Y.; Wang, D.; Liu, J.; An, J.; Li, Y.; Ma, C.; Pei, Y.; Zhang, Z.; Liu, J.; et al. In Vivo Activation of T-Cell Proliferation by Regulating Cell Surface Receptor Clustering Using a pH-Driven Interlocked DNA Nano-Spring. Nano Lett. 2022, 22, 1937–1945. [Google Scholar] [CrossRef] [PubMed]
- Kohli, K.; Pillarisetty, V.G.; Kim, T.S. Key Chemokines Direct Migration of Immune Cells in Solid Tumors. Cancer Gene Ther. 2022, 29, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Abraham, W.D.; Zheng, Y.; Bustamante Lopez, S.C.; Luo, S.S.; Irvine, D.J. Active Targeting of Chemotherapy to Disseminated Tumors Using Nanoparticle-Carrying T Cells. Sci. Transl. Med. 2015, 7, 291ra94. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.; Shin, T.H.; Lee, J.H.; Cho, M.H.; Kim, I.S.; Kim, J.W.; Jung, K.; Lee, I.S.; Cheon, J.; Park, K.I. Design of Magnetically Labeled Cells (Mag-Cells) for in Vivo Control of Stem Cell Migration and Differentiation. Nano Lett. 2018, 18, 838–845. [Google Scholar] [CrossRef]
- Wong, S.H.D.; Wong, W.K.R.; Lai, C.H.N.; Oh, J.; Li, Z.; Chen, X.; Yuan, W.; Bian, L. Soft Polymeric Matrix as a Macroscopic Cage for Magnetically Modulating Reversible Nanoscale Ligand Presentation. Nano Lett. 2020, 20, 3207–3216. [Google Scholar] [CrossRef]
- Nie, W.; Wei, W.; Zuo, L.; Lv, C.; Zhang, F.; Lu, G.H.; Li, F.; Wu, G.; Huang, L.L.; Xi, X.; et al. Magnetic Nanoclusters Armed with Responsive PD-1 Antibody Synergistically Improved Adoptive T-Cell Therapy for Solid Tumors. ACS Nano 2019, 13, 1469–1478. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Dong, X.; Wang, Q.S.; Zhu, D.; Mei, L.; Yan, H.; Lv, F. A Platelet Intelligent Vehicle with Navigation for Cancer Photothermal-Chemotherapy. ACS Nano 2022, 16, 6359–6371. [Google Scholar] [CrossRef]
- Wojtkowiak, J.W.; Verduzco, D.; Schramm, K.J.; Gillies, R.J. Drug Resistance and Cellular Adaptation to Tumor Acidic pH Microenvironment. Mol. Pharm. 2011, 8, 2032–2038. [Google Scholar] [CrossRef]
- Choi, S.Y.; Collins, C.C.; Gout, P.W.; Wang, Y. Cancer-Generated Lactic Acid: A Regulatory, Immunosuppressive Metabolite? J. Pathol. 2013, 230, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Huber, V.; Camisaschi, C.; Berzi, A.; Ferro, S.; Lugini, L.; Triulzi, T.; Tuccitto, A.; Tagliabue, E.; Castelli, C.; Rivoltini, L. Cancer Acidity: An Ultimate Frontier of Tumor Immune Escape and a Novel Target of Immunomodulation. Semin. Cancer Biol. 2017, 43, 74–89. [Google Scholar] [CrossRef] [PubMed]
- Apostolova, P.; Pearce, E.L. Lactic Acid and Lactate: Revisiting the Physiological Roles in the Tumor Microenvironment. Trends. Immunol. 2022, 43, 969–977. [Google Scholar] [CrossRef]
- Angelin, A.; Gil-de-Gomez, L.; Dahiya, S.; Jiao, J.; Guo, L.; Levine, M.H.; Wang, Z.; Quinn, W.J.; Kopinski, P.K.; Wang, L.; et al. Foxp3 Reprograms T Cell Metabolism to Function in Low-Glucose, High-Lactate Environments. Cell Metab. 2017, 25, 1282–1293. [Google Scholar] [CrossRef] [PubMed]
- Quinn, W.J.; Jiao, J.; TeSlaa, T.; Stadanlick, J.; Wang, Z.; Wang, L.; Akimova, T.; Angelin, A.; Schafer, P.M.; Cully, M.D.; et al. Lactate Limits T Cell Proliferation via the NAD(H) Redox State. Cell Rep. 2020, 33, 108500. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, S.; Koyama, S.; Itahashi, K.; Tanegashima, T.; Lin, Y.T.; Togashi, Y.; Kamada, T.; Irie, T.; Okumura, G.; Kono, H.; et al. Lactic Acid Promotes PD-1 Expression in Regulatory T Cells in Highly Glycolytic Tumor Microenvironments. Cancer Cell 2022, 40, 201–218. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.X.; Zhao, Y.Y.; Shen, J.; Sun, X.; Liu, Y.; Liu, H.; Wang, Y.; Wang, J. Nanoenabled Modulation of Acidic Tumor Microenvironment Reverses Anergy of Infiltrating T Cells and Potentiates Anti-PD-1 Therapy. Nano Lett. 2019, 19, 2774–2783. [Google Scholar] [CrossRef]
- Kolb, D.; Kolishetti, N.; Surnar, B.; Sarkar, S.; Guin, S.; Shah, A.S.; Dhar, S. Metabolic Modulation of the Tumor Microenvironment Leads to Multiple Checkpoint Inhibition and Immune Cell Infiltration. ACS Nano 2020, 14, 11055–11066. [Google Scholar] [CrossRef]
- Tian, L.R.; Lin, M.Z.; Zhong, H.H.; Cai, Y.J.; Li, B.; Xiao, Z.C.; Shuai, X.T. Nanodrug Regulates Lactic Acid Metabolism to Reprogram the Immunosuppressive Tumor Microenvironment for Enhanced Cancer Immunotherapy. Biomater. Sci. 2022, 10, 3892–3900. [Google Scholar] [CrossRef]
- Wang, C.; Yang, J.; Dong, C.; Shi, S. Glucose Oxidase-Related Cancer Therapies. Adv. Ther. 2020, 3, 2000110. [Google Scholar] [CrossRef]
- Pelicano, H.; Carney, D.; Huang, P. ROS Stress in Cancer Cells and Therapeutic Implications. Drug Resist. Updat. 2004, 7, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Hu, J.; Gao, W. Glucose Oxidase-Polymer Nanogels for Synergistic Cancer-Starving and Oxidation Therapy. ACS Appl. Mater. Interfaces 2017, 9, 23528–23535. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Feng, L.; Dong, Z.; Wang, L.; Liang, C.; Chen, J.; Ma, Q.; Zhang, R.; Chen, Q.; Wang, Y.; et al. Glucose & Oxygen Exhausting Liposomes for Combined Cancer Starvation and Hypoxia-Activated Therapy. Biomaterials 2018, 162, 123–131. [Google Scholar]
- Hui, S.; Ghergurovich, J.M.; Morscher, R.J.; Jang, C.; Teng, X.; Lu, W.; Esparza, L.A.; Reya, T.; Le, Z.; Yanxiang Guo, J.; et al. Glucose Feeds the TCA Cycle via Circulating Lactate. Nature 2017, 551, 115–118. [Google Scholar] [CrossRef]
- Yu, J.; Wei, Z.; Li, Q.; Wan, F.; Chao, Z.; Zhang, X.; Lin, L.; Meng, H.; Tian, L. Advanced Cancer Starvation Therapy by Simultaneous Deprivation of Lactate and Glucose Using a MOF Nanoplatform. Adv. Sci. 2021, 8, e2101467. [Google Scholar] [CrossRef] [PubMed]
- Alphandery, E.; Faure, S.; Seksek, O.; Guyot, F.; Chebbi, I. Chains of Magnetosomes Extracted from AMB-1 Magnetotactic Bacteria for Application in Alternative Magnetic Field Cancer Therapy. ACS Nano 2011, 5, 6279–6296. [Google Scholar] [CrossRef] [PubMed]
- Day, N.B.; Wixson, W.C.; Shields, C.W. Magnetic Systems for Cancer Immunotherapy. Acta Pharm. Sin. B 2021, 11, 2172–2196. [Google Scholar] [CrossRef]
- Guo, Y.; Ran, Y.; Wang, Z.; Cheng, J.; Cao, Y.; Yang, C.; Liu, F.; Ran, H. Magnetic-Responsive and Targeted Cancer Nanotheranostics by PA/MR Bimodal Imaging-Guided Photothermally Triggered Immunotherapy. Biomaterials 2019, 219, 119370. [Google Scholar] [CrossRef]
- Ridolfi, R.; Riccobon, A.; Galassi, R.; Giorgetti, G.; Petrini, M.; Fiammenghi, L.; Stefanelli, M.; Ridolfi, L.; Moretti, A.; Migliori, G.; et al. Evaluation of In Vivo Labelled Dendritic Cell Migration in Cancer Patients. J. Transl. Med. 2004, 2, 27. [Google Scholar] [CrossRef]
- Jin, H.L.; Qian, Y.; Dai, Y.F.; Qiao, S.; Huang, C.; Lu, L.S.; Luo, Q.M.; Chen, J.; Zhang, Z.H. Magnetic Enrichment of Dendritic Cell Vaccine in Lymph Node with Fluorescent-Magnetic Nanoparticles Enhanced Cancer Immunotherapy. Theranostics 2016, 6, 2000–2014. [Google Scholar] [CrossRef]
- Zhang, C.; Bu, W.B.; Ni, D.L.; Zhang, S.J.; Li, Q.; Yao, Z.W.; Zhang, J.W.; Yao, H.L.; Wang, Z.; Shi, J.L. Synthesis of Iron Nanometallic Glasses and Their Application in Cancer Therapy by a Localized Fenton Reaction. Angew. Chem. Int. Ed. 2016, 55, 2101–2106. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.Y.; Liu, T.; Li, Y.; Lau, J.; Yang, Z.; Fan, W.P.; Zhou, Z.J.; Shi, C.R.; Ke, C.M.; Bregadze, V.I.; et al. Fenton-Reaction-Acceleratable Magnetic Nanoparticles for Ferroptosis Therapy of Orthotopic Brain Tumors. ACS Nano 2018, 12, 11355–11365. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Choi, B.S.; Li, W.G.; Kim, D.H. Magnetic Field Boosted Ferroptosis-Like Cell Death and Responsive MRI Using Hybrid Vesicles for Cancer Immunotherapy. Nat. Commun. 2020, 11, 3637. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.L.; Coukos, G.; Kandalaft, L.E. Whole Tumor Antigen Vaccines: Where Are We? Vaccines 2015, 3, 344–372. [Google Scholar] [CrossRef]
- Tanyi, J.L.; Bobisse, S.; Ophir, E.; Tuyaerts, S.; Roberti, A.; Genolet, R.; Baumgartner, P.; Stevenson, B.J.; Iseli, C.; Dangaj, D.; et al. Personalized Cancer Vaccine Effectively Mobilizes Antitumor T Cell Immunity in Ovarian Cancer. Sci. Transl. Med. 2018, 10, eaao5931. [Google Scholar] [CrossRef] [PubMed]
Compounds | Claims | Cancer Types | Patent No. and Published Year |
---|---|---|---|
Nanoparticles core consisting of metal/semiconductor atoms such as Au, Ag, Cu, Pd, Pt, Gd, and/or Fe and bear specific peptide sequence, FKLQTMVKLFNRIKNNVA and other antigens | At least one adjuvant can stimulate the immune system (T helper cells) response for the prevention and treatment of cancer. | Colon, pancreas, gut, lung, liver, ovary, or bladder cancer | JP2008514686A, 2008 |
A nanoparticle consists of a polypeptide, FAEKFKEAVKDYFAKFWDGSGLTVSFWYLTVSPWY, with a cholesterol lipid-modified fluorescent dye molecule (DiR-BOA or Fluo-B0A) | The nanoparticle shows synergistic targeting, diagnosis, and treatment of nasopharyngeal cancer by the specific peptide sequence, LTVSPWYLTVSPWY, and fluorescent imaging with enhanced NK cell activity in the tumor environment. | Nasopharyngeal carcinoma | WO2013181934A1, 2013 |
Zinc phthalocyanine (ZnPcs) and polymers poly(lactic-co-glycolic acid) (PLGA), polyethyleneglycol (PEG), and a lipophilic triphenylphosphonium (TPP) cation nanoparticles loaded with mitochondrial-targeted moiety | This nanoparticle can target TPP moiety in cancer and induce PDT for the production of reactive oxygen species (ROS) under laser stimulation to activate dendritic cells. | Breast cancer | US20150374714A1, 2015 |
Nanoparticles based on human serum albumin that encapsulates chlorin and catalase and bond with pegylated anti-HER2 nano antibody | The nanoparticle can improve tumor hypoxia and promote immunogenic PDT to treat and inhibit ovarian tumor cells through enhanced immunogenic signals such as damage-associated molecules (DAMPs). | Ovarian cancer | CN113855788A, 2021 |
Gold nanostars (AuNS) with the anti-PDL1 antibodies | Primary tumors and metastatic cancer sites can be targeted by plasmonics-active (plasmon peak at 600 to 1000 nm) AuNS with a mean tip-to-tip diameter from 10–200 nm and treated with laser-mediated PTT. The co-administration of anti-PDL1 targets the costimulatory molecules (e.g., PD-1 and PD-L1). | Metastatic breast cancer and/or bladder cancer | WO2016209936A1, 2022 |
Compounds | Type of Disease | Number, Age and Sex of Participants | Purpose | Primary/Secondary Outcome Measures | Clinicaltrials.gov Identifier and Last Update Year |
---|---|---|---|---|---|
Ethylcellulose polymer encapsulating Cetuximab and decorated with somatostatin analog | Colorectal Cancer (CRC) | 30 adults from 20 years to 60 years with all sexes | To present a novel formulation for targeting and treating CRC safely in patients in a high dose with reduction of side effects to noncancer cells | Establishing pharmacokinetics parameters of Cetuximab in the target cells; determining the bioavailability of Cetuximab after oral and i.v. administration; determining the optimized formulation of Cetuximab | NCT03774680, 2019 (Recruiting) |
Nano-scintillator fiber-optic dosimeter | Cancer of the Gastrointestinal, Genitourinary, or Gynecologic Systems | 13 adults and older adults of all sexes | To examine the real-time dosimetric monitoring of external beam radiotherapy | Dosimetric accuracy of the device with reference to a commercially available dosimeter; feasibility of clinical application of the nanomaterials for dosimetric monitoring of external beam radiotherapy | NCT02407977, 2018 (Completed) |
Quercetin-encapsulated PLGA-PEG nanoparticles | Tongue Squamous Cell Carcinoma (TSCC) | 1,000,000 children, adults, and older adults of all sexes | To investigate the anticancer effects of Quercetin, either free or encapsulated by nanoparticles in TSCC cell line | Cytotoxicity, apoptosis, and the gene expression of BCL-2, Bax, and PI3K | NCT05456022, 2022 (Not yet recruiting) |
Platinum Acetylacetonate with titania (NPt-Ca) | High-grade, recurrent brain tumor (brainstem glioma) in the central nervous system | 8 children (5–14 years old years) of all sexes | To study the enhanced therapeutic effect of NPt-Ca on carriers of the diagnosis of glioma brain stem that shows no response to conventional therapy, including surgery, radiation and chemotherapy | Change in the quality of life; Change in tumor size measured by brain magnetic resonance | NCT03250520, 2023 (Completed) |
Components | Functions | Therapeutic Outcomes | Dosage | Ref. |
---|---|---|---|---|
Light-controlled materials | ||||
poly(benzobisthiadiazole-alt-thiophene), silicon 2,3-naphthalocyanine bis(trihexylsilyloxide), poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol), and 4T1 cell- and DC-derived membranes | NIR-II fluorescent imaging; Fused membrane to target 4T1 tumors and activate DCs and T cells; NIR-II photoirradiation to trigger PTT | SPNE directly accumulated in lymph nodes and tumors to exert dual vaccination effects; populations of mature DCs and activated T cells were higher; no recurrence in both primary and distant tumors 30 days post-treatment in 4T1-bearing Balb/c mice | 200 µg mL−1; 200 µL per mouse | [53] |
Ag2Se and Ag2S QDs, heparin, DOX, mPEG-DSPE and SDF-1α | NIR-II fluorescent imaging; chemo- and immunotherapy; long-term tracking of NK-92 cells; attraction of NK-92 to tumors by chemotaxis | Significantly slowed down the regrowth of MDA-MB-231 tumors in nude mice | 1 mg mL−1; 200 µL per mouse | [54] |
Cu2–xTe and DSPE-PEG | NIR-II induced PTT; enzyme-like activities to emulate glutathione oxidase for GSH depletion and peroxidase for ROS generation to kill tumor cells and boost immunomodulation of tumor-associated immune cells | 18.6% maturation ratio of DCs; the populations of tumor-infiltrating T helper cells and cytotoxic T lymphocytes were 10- and 11-fold higher than the control group; the growth of distant the tumor was delayed by 64%; the survival rate of mice was over 80% of 4T1-bearing Balb/c mice | 2.5 mg kg−1 | [56] |
pH-responsive materials | ||||
poly(ethylene glycol)-b-poly(2-azepane ethyl methacrylate)-modified polyamidoamine dendrimer with platinum prodrug conjugation | pH-dependent dissociation for enhanced NP penetration and drug delivery in an acidic environment | Enhanced platinum drug accumulation in BxPC-3 bearing Balb/c nude mice after intravenous injection | 40 μg of platinum per mouse bearing a BxPC-3 xenograft tumor | [65] |
Choline analogue 2-methacryloyloxyethyl phosphorylcholine presenting poly(ethylene glycol) with conjugation of anti-PD-1 via 3-(bromomethyl)-4-methyl-2,5-furandione | Crossing blood–brain barrier; pH-dependent release of anti-PD-1 for ICB immunotherapy | Promoted antibody accumulation in tumor and survival; enhanced tumor infiltrated CD8+ and CD4+ T cell proliferation (Ki67+); increased sera cytokine level (TNF-α and IFN-γ) in LCPN glioma bearing C57BL/6 mice after intravenous injection | 0.8 mg anti-PD-L1 per kg of mice | [66] |
Interlocked DNA nanospring, conjugated with anti-CD3 and anti-CD28 | Activating T cells in an acidic environment for immunotherapy | Inhibited tumor growth; increased tumor-infiltrating CD8+ T cell population in B16F10-bearing C57BL/6 mice after intratumoral injection | 0.2 nmol DNA nanospring per mice; 50 µg BMS-1 (a PD-1/PD-L1 ICB drug) per mice | [73] |
Metabolically modulating materials | ||||
Liposome for delivery of lonidamine and syrosingopine | Inhibition of lactate production in tumors for tumor control and immunomodulation | Inhibited tumor growth; prolonged survival; increased infiltrated M1-type macrophage and NK cell; reduced infiltrated M2-type macrophage and Treg cell in 4T1 tumor-bearing Balb/c mice after intravenous injection | 2.5 mg lonidamine and 1 mg syrosingopore per kg body weight | [89] |
Separate liposomes for delivery of glucose oxidase and banoxantrone dihydrochloride | Glucose starvation, H2O2 generation and hypoxia-activated prodrug-mediated therapy | Inhibited tumor growth in 4T1 tumor bear balb/c nude mice after intravenous injection | 2 mg glucose oxidase and 5 mg banoxantrone dihydrochloride per kg body weight | [93] |
Magnetic-responsive materials | ||||
cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODN), superparamagnetic iron oxide nanoparticles, and monomethoxypoly (ethylene glycol)-poly(lactic-co-glycolic acid)-poly-l-lysine (mPEG-PLGA-PLL) triblock copolymers | NIR-I (660 nm) mediated photoacoustic imaging and PTT to guide tumor therapy; contrast agents for MRI; load adjuvant to activate DCs via Toll-like receptor 9 | The size of primary and distant tumors decreased with a survival period over 60 days post-treatment; DC maturation level and | 5 mg per mouse | [98] |
1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine, 1-myristoyl-2-hydroxy-sn-glycero-3-phosphocholine, ICG, OVA peptide, α-APgp100 peptide and superparamagnetic oxide NPs | efficient delivery of indocyanine green/iron oxide/ovalbumin antigen to DCs and enhance the activation and migration efficiency of DCs to lymph nodes under magnetic control | 13.2% of the injected DC successfully migrated to lymph nodes by magnetic field compared to 2.6% of the control group; death rates of tumor cells reached 69%; inhibition efficiency of tumor growth was 96% | i.v. injection of 1.2 × 106 DCs treated with the nanoplatforms (16 µg/mL) in 50 µL PBS | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, B.; Wong, W.-K.; Ng, Y.-M.; Yang, M.; Leung, F.K.-C.; Wong, D.S.-H. Smart Design of Nanostructures for Boosting Tumor Immunogenicity in Cancer Immunotherapy. Pharmaceutics 2023, 15, 1427. https://doi.org/10.3390/pharmaceutics15051427
Yin B, Wong W-K, Ng Y-M, Yang M, Leung FK-C, Wong DS-H. Smart Design of Nanostructures for Boosting Tumor Immunogenicity in Cancer Immunotherapy. Pharmaceutics. 2023; 15(5):1427. https://doi.org/10.3390/pharmaceutics15051427
Chicago/Turabian StyleYin, Bohan, Wai-Ki Wong, Yip-Ming Ng, Mo Yang, Franco King-Chi Leung, and Dexter Siu-Hong Wong. 2023. "Smart Design of Nanostructures for Boosting Tumor Immunogenicity in Cancer Immunotherapy" Pharmaceutics 15, no. 5: 1427. https://doi.org/10.3390/pharmaceutics15051427
APA StyleYin, B., Wong, W. -K., Ng, Y. -M., Yang, M., Leung, F. K. -C., & Wong, D. S. -H. (2023). Smart Design of Nanostructures for Boosting Tumor Immunogenicity in Cancer Immunotherapy. Pharmaceutics, 15(5), 1427. https://doi.org/10.3390/pharmaceutics15051427