Development of a Swellable and Floating Gastroretentive Drug Delivery System (sfGRDDS) of Ciprofloxacin Hydrochloride
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Qualification of Gastroretentive Capability of SGL-HPMC sfGRDDS Tablets
2.2.1. Preparation of SGL-HPMC sfGRDDS Tablets
2.2.2. Swelling Studies of SGL-HPMC sfGRDDS Tablets
2.2.3. Floating Capacities of SGL-HPMC sfGRDDS Tablets
2.3. Suitability of CIP Loaded into SGL-HPMC sfGRDDS Tablets
2.3.1. Preparation of CIP-Loaded SGL-HPMC sfGRDDS Tablets
2.3.2. Physical Characterizations
Weight Variation Test
Thickness
Tensile Strength
2.3.3. In Vitro Dissolution Studies
2.3.4. Release Kinetic Models
2.3.5. In Vivo Pharmacokinetics
Animals
Experimental Procedure
Blood Sample Preparation
Chromatography
2.4. Statistical Analysis
3. Results and Discussion
3.1. Qualification of Gastroretentive Capability of SGL-HPMC sfGRDDS Tablets
3.1.1. Swelling Studies of SGL-HPMC sfGRDDS Tablets
3.1.2. Floating Capacities of SGL-HPMC sfGRDDS Tablets
3.2. Suitability of CIP Loaded into SGL-HPMC sfGRDDS Tablets
3.2.1. Physical Characterization and Floating Capacities
3.2.2. In Vitro Dissolution Studies
3.2.3. Release Kinetic Models
3.2.4. In Vivo Pharmacokinetics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Homayun, B.; Lin, X.; Choi, H.-J. Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics 2019, 11, 129. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, W. Drug metabolism in drug discovery and development. Acta Pharm. Sin. B 2018, 8, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Lopes, C.M.; Bettencourt, C.; Rossi, A.; Buttini, F.; Barata, P. Overview on gastroretentive drug delivery systems for improving drug bioavailability. Int. J. Pharm. 2016, 510, 144–158. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, N.; Galbis, E.; Romero-Azogil, L.; Benito, E.; Lucas, R.; García-Martín, M.G.; de-Paz, M.-V. In-Depth Study into Polymeric Materials in Low-Density Gastroretentive Formulations. Pharmaceutics 2020, 12, 636. [Google Scholar] [CrossRef] [PubMed]
- Gaikwad, V.D.; Yadav, V.D.; Jadhav, P.D. Formulation and evaluation of floating matrix tablets of diltiazem hydrochloride. Asian J. Pharm. 2014, 6, 245–251. [Google Scholar] [CrossRef]
- Tripathi, J.; Thapa, P.; Maharjan, R.; Jeong, S.H. Current State and Future Perspectives on Gastroretentive Drug Delivery Systems. Pharmaceutics 2019, 11, 193. [Google Scholar] [CrossRef]
- Gaikwad, V.D.; Yadav, V.D.; Gaikwad, M.D. Novel sustained release and swellable gastroretentive dosage form for ciprofloxacin hydrochloride. J. Pharm. Investig. 2014, 4, 88–92. [Google Scholar] [CrossRef]
- Altreuter, D.H.; Kirtane, A.R.; Grant, T.; Kruger, C.; Traverso, G.; Bellinger, A.M. Changing the pill: Developments toward the promise of an ultra-long-acting gastroretentive dosage form. Expert Opin. Drug Deliv. 2018, 15, 1189–1198. [Google Scholar] [CrossRef]
- Lin, H.-L.; Chen, L.-C.; Cheng, W.-T.; Cheng, W.-J.; Ho, H.-O.; Sheu, M.-T. Preparation and Characterization of a Novel Swellable and Floating Gastroretentive Drug Delivery System (sfGRDDS) for Enhanced Oral Bioavailability of Nilotinib. Pharmaceutics 2020, 12, 137. [Google Scholar] [CrossRef]
- Ibrahim, M.; Naguib, Y.W.; Sarhan, H.A.; Abdelkader, H. Preformulation-Assisted Design and Characterization of Modified Release Gastroretentive Floating Extrudates Towards Improved Bioavailability and Minimized Side Effects of Baclofen. J. Pharm. Sci. 2021, 110, 1227–1239. [Google Scholar] [CrossRef]
- Wannasarit, S.; Mahattanadul, S.; Issarachot, O.; Puttarak, P.; Wiwattanapatapee, R. Raft-forming gastro-retentive formulations based on Centella asiatica extract-solid dispersions for gastric ulcer treatment. Eur. J. Pharm. Sci. 2020, 143, 105204. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Ho, H.O.; Liu, D.Z.; Siow, W.S.; Sheu, M.T. Swelling/floating capability and drug release characterizations of gastroretentive drug delivery system based on a combination of hydroxyethyl cellulose and sodium carboxymethyl cellulose. PLoS ONE 2015, 10, e0116914. [Google Scholar] [CrossRef]
- Swain, K.; Pattnaik, S.; Mallick, S.; Chowdary, K.A. Influence of hydroxypropyl methylcellulose on drug release pattern of a gastroretentive floating drug delivery system using a 3(2) full factorial design. Pharm. Dev. Technol. 2009, 14, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Aldawsari, H.; Altaf, A.; Banjar, Z.; Okubo, M.; Iohara, D.; Anraku, M.; Hirayama, F.; Uekama, K. Combined use of cyclodextrins and hydroxypropylmethylcellulose stearoxy ether (Sangelose®) for the preparation of orally disintegrating tablets of type-2 antidiabetes agent glimepiride. J. Incl. Phenom. Macrocycl. Chem. 2014, 80, 61–67. [Google Scholar] [CrossRef]
- Ghosal, K.; Chandra, A.; Rajabalaya, R.; Chakraborty, S.; Nanda, A. Mathematical modeling of drug release profiles for modified hydrophobic HPMC based gels. Pharmazie 2012, 67, 147–155. [Google Scholar] [PubMed]
- Okubo, M.; Iohara, D.; Anraku, M.; Higashi, T.; Uekama, K.; Hirayama, F. A thermoresponsive hydrophobically modified hydroxypropylmethylcellulose/cyclodextrin injectable hydrogel for the sustained release of drugs. Int. J. Pharm. 2020, 575, 118845. [Google Scholar] [CrossRef] [PubMed]
- Fujii, M.; Wada, F.; Honda, N.; Miura, K.; Hashizaki, K.; Taguchi, H.; Koizumi, N.; Watanabe, Y. Characteristics of an Emulsion Obtained Using Hydrophobic Hydroxypropyl Methylcellulose as an Emulsifier and a High-Pressure Homogenizer. Chem. Pharm. Bull. 2020, 68, 1178–1183. [Google Scholar] [CrossRef]
- Yanai, R.; Kawaguchi, M. Effect of hydrophobic modification of hydroxypropyl methylcellulose on silicone oil emulsions. J. Dispers. Sci. Technol. 2017, 38, 40–45. [Google Scholar] [CrossRef]
- Zhang, G.-F.; Liu, X.; Zhang, S.; Pan, B.; Liu, M.-L. Ciprofloxacin derivatives and their antibacterial activities. Eur. J. Med. Chem. 2018, 146, 599–612. [Google Scholar] [CrossRef]
- Schacht, P.; Arcieri, G.; Branolte, J.; Bruck, H.; Chyský, V.; Griffith, E.; Gruenwaldt, G.; Hullmann, R.; Konopka, C.A.; O′Brien, B.; et al. Worldwide clinical data on efficacy and safety of ciprofloxacin. Infection 1988, 16 (Suppl. S1), S29–S43. [Google Scholar] [CrossRef]
- Campoli-Richards, D.M.; Monk, J.P.; Price, A.; Benfield, P.; Todd, P.A.; Ward, A. Ciprofloxacin. Drugs 1988, 35, 373–447. [Google Scholar] [CrossRef] [PubMed]
- Carlson, C.J.; Kracalik, I.T.; Ross, N.; Alexander, K.A.; Hugh-Jones, M.E.; Fegan, M.; Elkin, B.T.; Epp, T.; Shury, T.K.; Zhang, W.; et al. The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife. Nat. Microbiol. 2019, 4, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Nie, X.; Zou, M.; Shi, Y.; Cheng, G. Recent advances in materials for extended-release antibiotic delivery system. J. Antibiot. 2011, 64, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Vance-Bryan, K.; Guay, D.R.P.; Rotschafer, J.C. Clinical Pharmacokinetics of Ciprofloxacin. Clin. Pharmacokinet. 1990, 19, 434–461. [Google Scholar] [CrossRef]
- Olivera, M.E.; Manzo, R.H.; Junginger, H.E.; Midha, K.K.; Shah, V.P.; Stavchansky, S.; Dressman, J.B.; Barends, D.M. Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms: Ciprofloxacin Hydrochloride. J. Pharm. Sci. 2011, 100, 22–33. [Google Scholar] [CrossRef]
- Mostafavi, A.; Emami, J.; Varshosaz, J.; Davies, N.M.; Rezazadeh, M. Development of a prolonged-release gastroretentive tablet formulation of ciprofloxacin hydrochloride: Pharmacokinetic characterization in healthy human volunteers. Int. J. Pharm. 2011, 409, 128–136. [Google Scholar] [CrossRef]
- Uebbing, L.; Klumpp, L.; Webster, G.K.; Löbenberg, R. Justification of disintegration testing beyond current FDA criteria using in vitro and in silico models. Drug Des. Dev. Ther. 2017, 11, 1163–1174. [Google Scholar] [CrossRef]
- Ghanbarinia Firozjah, R.; Sadeghi, A.; Khoee, S. Ultrasonic De-cross-linking of the pH- and Magneto-Responsive PHEMA/PMMA Microgel to Janus Nanoparticles: A New Synthesis Based on “Grafting from”/“Grafting to” Polymerization. ACS Omega 2020, 5, 27119–27132. [Google Scholar] [CrossRef]
- Öztürk, A.A.; Namlı, İ.; Güleç, K.; Kıyan, H.T. Diclofenac sodium loaded PLGA nanoparticles for inflammatory diseases with high anti-inflammatory properties at low dose: Formulation, characterization and in vivo HET-CAM analysis. Microvasc. Res. 2020, 130, 103991. [Google Scholar] [CrossRef]
- Raut Desai, S.; Rohera, B.D. Formulation, in vitro evaluation and study of variables on tri-layered gastro-retentive delivery system of diltiazem HCl. Drug Dev. Ind. Pharm. 2014, 40, 380–389. [Google Scholar] [CrossRef]
- Merchant, H.A.; McConnell, E.L.; Liu, F.; Ramaswamy, C.; Kulkarni, R.P.; Basit, A.W.; Murdan, S. Assessment of gastrointestinal pH, fluid and lymphoid tissue in the guinea pig, rabbit and pig, and implications for their use in drug development. Eur. J. Pharm. Sci. 2011, 42, 3–10. [Google Scholar] [CrossRef] [PubMed]
- De Smet, J.; Boussery, K.; Colpaert, K.; De Sutter, P.; De Paepe, P.; Decruyenaere, J.; Van Bocxlaer, J. Pharmacokinetics of fluoroquinolones in critical care patients: A bio-analytical HPLC method for the simultaneous quantification of ofloxacin, ciprofloxacin and moxifloxacin in human plasma. J. Chromatogr. B 2009, 877, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Ferrua, M.J.; Singh, R.P. Modeling the fluid dynamics in a human stomach to gain insight of food digestion. J. Food Sci. 2010, 75, R151–R162. [Google Scholar] [CrossRef] [PubMed]
- Mandal, U.K.; Chatterjee, B.; Senjoti, F.G. Gastro-retentive drug delivery systems and their in vivo success: A recent update. Asian J. Pharm. Sci. 2016, 11, 575–584. [Google Scholar] [CrossRef]
- Yao, R.; Xu, J.; Lu, X.; Deng, S. Phase Transition Behavior of HPMC-AA and Preparation of HPMC-PAA Nanogels. J. Nanomater. 2011, 2011, 507542. [Google Scholar] [CrossRef]
- Ikeda, K.; Saitoh, I.; Oguma, T.; Takagishi, Y. Effect of Hydrophobically-Modified Hydroxypropyl Methylcellulose on the Crystallization from Supersaturated Solutions of Indomethacin. Chem. Pharm. Bull. 1994, 42, 2320–2326. [Google Scholar] [CrossRef]
- Gao, P.; Skoug, J.W.; Nixon, P.R.; Robert Ju, T.; Stemm, N.L.; Sung, K.-C. Swelling of Hydroxypropyl Methylcellulose Matrix Tablets. 2. Mechanistic Study of the Influence of Formulation Variables on Matrix Performance and Drug Release. J. Pharm. Sci. 1996, 85, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Krögel, I.; Bodmeier, R. Floating or pulsatile drug delivery systems based on coated effervescent cores. Int. J. Pharm. 1999, 187, 175–184. [Google Scholar] [CrossRef]
- Schiermeier, S.; Schmidt, P.C. Fast dispersible ibuprofen tablets. Eur. J. Pharm. Sci. 2002, 15, 295–305. [Google Scholar] [CrossRef]
- Bansal, A.K.; Balwani, G.; Sheokand, S. Chapter 12—Critical Material Attributes in Wet Granulation. In Handbook of Pharmaceutical Wet Granulation; Narang, A.S., Badawy, S.I.F., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 421–453. [Google Scholar] [CrossRef]
- Hiew, T.N.; Johan, N.A.B.; Desai, P.M.; Chua, S.M.; Loh, Z.H.; Heng, P.W.S. Effect of moisture sorption on the performance of crospovidone. Int. J. Pharm. 2016, 514, 322–331. [Google Scholar] [CrossRef]
- Saigal, N.; Baboota, S.; Ahuja, A.; Ali, J. Microcrystalline cellulose as a versatile excipient in drug research. J. Young Pharm. 2009, 1, 6. [Google Scholar]
- Braun, R.J.; Parrott, E.L. Influence of Viscosity and Solubilization on Dissolution Rate. J. Pharm. Sci. 1972, 61, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Sarisuta, N.; Parrott, E.L. Relationship of Dissolution Rate to Viscosity of Polymeric Solutions. J. Pharm. Sci. 1982, 71, 1375–1380. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.A.; Alam, S.; Paul, P. Development and evaluation of sustained release matrix tablets of indapamide using Methocel K15M CR. J. Appl. Pharm. Sci. 2013, 3, 085–090. [Google Scholar]
- Anderson, N.H.; Bauer, M.; Boussac, N.; Khan-Malek, R.; Munden, P.; Sardaro, M. An evaluation of fit factors and dissolution efficiency for the comparison of in vitro dissolution profiles. J. Pharm. Biomed. Anal. 1998, 17, 811–822. [Google Scholar] [CrossRef]
- Kavanagh, N.; Corrigan, O.I. Swelling and erosion properties of hydroxypropylmethylcellulose (Hypromellose) matrices—Influence of agitation rate and dissolution medium composition. Int. J. Pharm. 2004, 279, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Siow, C.R.S.; Heng, P.W.S.; Chan, L.W. Bulk Freeze-Drying Milling: A Versatile Method of Developing Highly Porous Cushioning Excipients for Compacted Multiple-Unit Pellet Systems (MUPS). AAPS PharmSciTech 2018, 19, 845–857. [Google Scholar] [CrossRef] [PubMed]
- Faidi, A.; Lassoued, M.A.; Becheikh, M.E.H.; Touati, M.; Stumbé, J.-F.; Farhat, F. Application of sodium alginate extracted from a Tunisian brown algae Padina pavonica for essential oil encapsulation: Microspheres preparation, characterization and in vitro release study. Int. J. Biol. Macromol. 2019, 136, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef]
- Lisik, A.; Musiał, W. Conductomeric Evaluation of the Release Kinetics of Active Substances from Pharmaceutical Preparations Containing Iron Ions. Materials 2019, 12, 730. [Google Scholar] [CrossRef]
Ingredients (mg/per Tablet) | SGL 60L/HPMC 4K | SGL 60L/HPMC 15K | SGL 90L/HPMC 4K | SGL 90L/HPMC 15K | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | |
SGL 60L | 50 | 50 | 50 | 50 | 50 | 50 | - | - | - | - | - | - |
SGL 90L | - | - | - | - | - | - | 50 | 50 | 50 | 50 | 50 | 50 |
HPMC 4K | 50 | 100 | 150 | - | - | - | 50 | 100 | 150 | - | - | - |
HPMC 15K | - | - | - | 50 | 100 | 150 | - | - | - | 50 | 100 | 150 |
Crospovidone | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 |
NaHCO3 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
Total weight | 300 | 350 | 400 | 300 | 350 | 400 | 300 | 350 | 400 | 300 | 350 | 400 |
Ingredients (mg/per Tablet) | SGL 60L/ HPMC 4K | SGL 60L/ HPMC 15K | SGL 90L/ HPMC 4K | SGL 90L/ HPMC 15K | HPMC 4K | HPMC 15K | MCC | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1-CIP | F2-CIP | F3-CIP | F4-CIP | F5-CIP | F6-CIP | F7-CIP | F8-CIP | F9-CIP | F10-CIP | F11-CIP | F12-CIP | F13-CIP | F14-CIP | F15-CIP | F16-CIP | F17-CIP | F18-CIP | F19-CIP | F20-CIP | F21-CIP | |
CIP 1 | 291 | 291 | 291 | 291 | 291 | 291 | 291 | 291 | 291 | 291 | 291 | 291 | 291 | 291 | 291 | 291 | 291 | 291 | 291 | 291 | 291 |
SGL 60L | 50 | 50 | 50 | 50 | 50 | 50 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
SGL 90L | - | - | - | - | - | - | 50 | 50 | 50 | 50 | 50 | 50 | - | - | - | - | - | - | - | - | - |
HPMC 4K | 50 | 100 | 150 | - | - | - | 50 | 100 | 150 | - | - | - | 100 | 150 | 200 | - | - | - | - | - | - |
HPMC 15K | - | - | - | 50 | 100 | 150 | - | - | - | 50 | 100 | 150 | - | - | - | 100 | 150 | 200 | - | - | - |
Crospovidone | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | - | - | - |
NaHCO3 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | - | - | - |
MCC | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 300 | 350 | 400 |
Total weight | 591 | 641 | 691 | 591 | 641 | 691 | 591 | 641 | 691 | 591 | 641 | 691 | 591 | 641 | 691 | 591 | 641 | 691 | 591 | 641 | 691 |
Floating Capacities | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
FLT 1 (s) | 4 ± 1 | 3 ± 1 | 2 ± 1 | 2 ± 1 | 2 ± 1 | 2 ± 1 | 2 ± 1 | 2 ± 1 | 2 ± 1 | 2 ± 1 | 2 ± 1 | 2 ± 1 |
TFT 2 (h) | >24 | >24 | >24 | >24 | >24 | >24 | >24 | >24 | >24 | >24 | >24 | >24 |
Formulations | Average Weight (mg) | Thickness (mm) | Tensile Strength (N) | Floating Capacities 1 | ||
---|---|---|---|---|---|---|
6 h | 12 h | 24 h | ||||
F1-CIP | 601.70 ± 0.79 | 9.69 ± 0.01 | 115.00 ± 0.61 | ο | ο | ο |
F2-CIP | 646.20 ± 7.22 | 10.06 ± 0.09 | 120.83 ± 1.94 | ο | ο | ο |
F3-CIP | 696.80 ± 6.22 | 10.69 ± 0.02 | 123.60 ± 0.35 | ο | ο | ο |
F4-CIP | 599.13 ± 1.61 | 9.24 ± 0.06 | 122.63 ± 1.29 | ο | ο | ο |
F5-CIP | 651.90 ± 3.12 | 10.04 ± 0.10 | 121.03 ± 2.38 | ο | ο | ο |
F6-CIP | 705.83 ± 0.68 | 10.91 ± 0.09 | 119.47 ± 1.62 | ο | ο | ο |
F7-CIP | 602.27 ± 4.77 | 9.33 ± 0.17 | 121.93 ± 2.87 | ο | ο | ο |
F8-CIP | 644.77 ± 6.91 | 9.88 ± 0.12 | 124.77 ± 0.68 | ο | ο | ο |
F9-CIP | 703.67 ± 0.31 | 10.64 ± 0.08 | 124.40 ± 1.28 | ο | ο | ο |
F10-CIP | 595.37 ± 5.72 | 9.73 ± 0.18 | 114.67 ± 3.16 | ο | ο | ο |
F11-CIP | 640.83 ± 3.21 | 9.76 ± 0.06 | 126.03 ± 0.76 | ο | ο | ο |
F12-CIP | 694.87 ± 10.12 | 10.60 ± 0.07 | 123.47 ± 1.00 | ο | ο | ο |
F13-CIP | 598.27 ± 1.32 | 9.36 ± 0.12 | 122.27 ± 2.06 | ο | ο | ο |
F14-CIP | 643.57 ± 2.84 | 9.79 ± 0.05 | 125.53 ± 0.83 | ο | ο | ο |
F15-CIP | 695.93 ± 2.05 | 10.64 ± 0.01 | 120.87 ± 5.00 | ο | ο | ο |
F16-CIP | 596.30 ± 1.06 | 9.21 ± 0.11 | 124.07 ± 0.78 | ο | ο | ο |
F17-CIP | 643.10 ± 0.78 | 9.64 ± 0.05 | 127.10 ± 0.36 | ο | ο | ο |
F18-CIP | 695.13 ± 5.50 | 10.56 ± 0.04 | 124.80 ± 1.93 | ο | ο | ο |
F19-CIP | 588.40 ± 0.96 | 7.79 ± 0.01 | 142.97 ± 0.57 | × | × | × |
F20-CIP | 638.40 ± 0.20 | 8.45 ± 0.25 | 142.97 ± 3.00 | × | × | × |
F21-CIP | 689.13 ± 0.40 | 8.98 ± 0.01 | 142.63 ± 0.91 | × | × | × |
Groups | Formulations | Zero-order | First-order | Higuchi | Korsmeyer–Peppas | Hixson–Crowell | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
K0 | R2 | K1 | R2 | KH | R2 | KKP | n | R2 | KHC | R2 | ||
SGL 60L/ HPMC 4K | F1-CIP | 7.069 | −46.0369 | 1.264 | 0.8671 | 31.269 | −14.9395 | 83.114 | 0.080 | 0.7500 | 0.070 | −14.7455 |
F2-CIP | 5.318 | 0.0141 | 0.141 | 0.9183 | 21.355 | 0.9636 | 26.039 | 0.418 | 0.9933 | 0.039 | 0.8463 | |
F3-CIP | 4.361 | 0.6620 | 0.083 | 0.9620 | 16.955 | 0.9883 | 14.778 | 0.556 | 0.9963 | 0.023 | 0.9291 | |
SGL 60L/ HPMC 15K | F4-CIP | 6.882 | −6.0014 | 0.567 | 0.9779 | 29.662 | −0.7998 | 61.733 | 0.190 | 0.7832 | 0.068 | −0.4621 |
F5-CIP | 4.773 | 0.2028 | 0.106 | 0.8514 | 18.991 | 0.9839 | 21.808 | 0.443 | 0.9967 | 0.029 | 0.7655 | |
F6-CIP | 4.020 | 0.7694 | 0.070 | 0.9768 | 15.475 | 0.9741 | 11.969 | 0.604 | 0.9977 | 0.020 | 0.9525 | |
SGL 90L/ HPMC 4K | F7-CIP | 6.976 | −15.4187 | 0.785 | 0.8634 | 30.431 | −3.7967 | 71.680 | 0.134 | 0.8282 | 0.069 | −3.4228 |
F8-CIP | 4.811 | 0.3180 | 0.107 | 0.9113 | 19.080 | 0.9934 | 20.805 | 0.464 | 0.9980 | 0.030 | 0.8446 | |
F9-CIP | 4.060 | 0.7156 | 0.073 | 0.9723 | 15.723 | 0.9834 | 12.990 | 0.578 | 0.9977 | 0.021 | 0.9373 | |
SGL 90L/ HPMC 15K | F10-CIP | 6.767 | −6.3842 | 0.497 | 0.8403 | 28.943 | −0.7270 | 59.166 | 0.197 | 0.9126 | 0.067 | −0.4322 |
F11-CIP | 4.476 | 0.6313 | 0.088 | 0.9657 | 17.448 | 0.9874 | 15.580 | 0.546 | 0.9930 | 0.025 | 0.9320 | |
F12-CIP | 3.964 | 0.8120 | 0.068 | 0.9827 | 15.183 | 0.9648 | 11.041 | 0.629 | 0.9983 | 0.020 | 0.9649 | |
HPMC 4K | F13-CIP | 6.927 | −2.8559 | 0.429 | 0.9570 | 29.363 | 0.1929 | 53.245 | 0.250 | 0.8384 | 0.067 | 0.4487 |
F14-CIP | 4.779 | 0.6861 | 0.097 | 0.9653 | 18.544 | 0.9892 | 15.851 | 0.564 | 0.9994 | 0.027 | 0.9465 | |
F15-CIP | 4.447 | 0.8544 | 0.081 | 0.9873 | 16.937 | 0.9523 | 11.419 | 0.659 | 0.9989 | 0.023 | 0.9869 | |
HPMC 15K | F16-CIP | 6.064 | −0.1063 | 0.198 | 0.9652 | 24.529 | 0.9121 | 30.884 | 0.405 | 0.9537 | 0.054 | 0.9406 |
F17-CIP | 4.404 | 0.8226 | 0.081 | 0.9915 | 16.843 | 0.9551 | 11.910 | 0.640 | 0.9933 | 0.023 | 0.9858 | |
F18-CIP | 4.133 | 0.8604 | 0.072 | 0.9938 | 15.722 | 0.9477 | 10.427 | 0.665 | 0.9974 | 0.021 | 0.9876 |
Pharmacokinetic Parameters | Commercial Tablets | SGL 60L/ HPMC 15K | SGL 90L/ HPMC 15K | HPMC 15K |
---|---|---|---|---|
F4-CIP | F10-CIP | F16-CIP | ||
Cmax (µg/mL) | 0.86 ± 0.24 | 2.49 ± 0.20 *,# | 2.77 ± 0.38 *,# | 1.60 ± 0.36 |
Tmax (h) | 1.33 ± 0.29 # | 1.33 ± 0.29 # | 1.33 ± 0.29 # | 2.0 ± 0.0 |
MRT (h) | 3.71 ± 0.71 | 2.85 ± 0.53 | 3.78 ± 0.91 | 4.18 ± 0.99 |
AUC0−t (µg/mL/h) | 3.30 ± 0.63 | 7.87 ± 1.52 | 12.78 ± 3.25 * | 8.16 ± 1.50 |
AUC0−∞ (µg/mL/h) | 4.72 ± 0.85 # | 8.71 ± 1.32 | 14.33 ± 4.28 * | 13.21 ± 4.33 * |
Relative bioavailability 1 (%) | − | 238.35 ± 45.94 | 387.33 ± 98.43 | 247.34 ± 45.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.-K.; Cheng, W.-T.; Chen, L.-C.; Sheu, M.-T.; Lin, H.-L. Development of a Swellable and Floating Gastroretentive Drug Delivery System (sfGRDDS) of Ciprofloxacin Hydrochloride. Pharmaceutics 2023, 15, 1428. https://doi.org/10.3390/pharmaceutics15051428
Liang Y-K, Cheng W-T, Chen L-C, Sheu M-T, Lin H-L. Development of a Swellable and Floating Gastroretentive Drug Delivery System (sfGRDDS) of Ciprofloxacin Hydrochloride. Pharmaceutics. 2023; 15(5):1428. https://doi.org/10.3390/pharmaceutics15051428
Chicago/Turabian StyleLiang, Yu-Kai, Wen-Ting Cheng, Ling-Chun Chen, Ming-Thau Sheu, and Hong-Liang Lin. 2023. "Development of a Swellable and Floating Gastroretentive Drug Delivery System (sfGRDDS) of Ciprofloxacin Hydrochloride" Pharmaceutics 15, no. 5: 1428. https://doi.org/10.3390/pharmaceutics15051428
APA StyleLiang, Y. -K., Cheng, W. -T., Chen, L. -C., Sheu, M. -T., & Lin, H. -L. (2023). Development of a Swellable and Floating Gastroretentive Drug Delivery System (sfGRDDS) of Ciprofloxacin Hydrochloride. Pharmaceutics, 15(5), 1428. https://doi.org/10.3390/pharmaceutics15051428