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Abstract: Onychomycosis is a prevalent nail fungal infection, and Candida albicans is one of the most
common microorganisms associated with it. One alternative therapy to the conventional treatment
of onychomycosis is antimicrobial photoinactivation. This study aimed to evaluate for the first
time the in vitro activity of cationic porphyrins with platinum(II) complexes 4PtTPyP and 3PtTPyP
against C. albicans. The minimum inhibitory concentration of porphyrins and reactive oxygen species
was evaluated by broth microdilution. The yeast eradication time was evaluated using a time-kill
assay, and a checkerboard assay assessed the synergism in combination with commercial treatments.
In vitro biofilm formation and destruction were observed using the crystal violet technique. The
morphology of the samples was evaluated by atomic force microscopy, and the MTT technique
was used to evaluate the cytotoxicity of the studied porphyrins in keratinocyte and fibroblast cell
lines. The porphyrin 3PtTPyP showed excellent in vitro antifungal activity against the tested C.
albicans strains. After white-light irradiation, 3PtTPyP eradicated fungal growth in 30 and 60 min.
The possible mechanism of action was mixed by ROS generation, and the combined treatment with
commercial drugs was indifferent. The 3PtTPyP significantly reduced the preformed biofilm in vitro.
Lastly, the atomic force microscopy showed cellular damage in the tested samples, and 3PtTPyP
did not show cytotoxicity against the tested cell lines. We conclude that 3PtTPyP is an excellent
photosensitizer with promising in vitro results against C. albicans strains.

Keywords: photodynamic therapy; Candida albicans; onychomycosis; Pt(II) porphyrins; antibiofilm activity

1. Introduction

Onychomycosis is one of the most prevalent fungal infections among existing nail
disorders [1,2]. Yeasts of the genus Candida are emerging pathogens associated with
onychomycosis, especially in South America, Africa, and Asia, where the hot climate
favors the proliferation of these microorganisms [3–5]. Species of the genus Candida,
such as Candida albicans, are natural constituents of the human microbiota that behave
as opportunistic pathogens in the presence of homeostatic changes in the body, causing
infections [6–9]. In addition, they can form a biofilm, producing an extracellular polymeric

Pharmaceutics 2023, 15, 1511. https://doi.org/10.3390/pharmaceutics15051511 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics15051511
https://doi.org/10.3390/pharmaceutics15051511
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0002-4511-6483
https://orcid.org/0000-0002-5272-8701
https://orcid.org/0000-0003-2618-9801
https://orcid.org/0000-0003-2521-3574
https://orcid.org/0000-0002-4039-6316
https://doi.org/10.3390/pharmaceutics15051511
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics15051511?type=check_update&version=1


Pharmaceutics 2023, 15, 1511 2 of 17

matrix that firmly adheres to the solid surface, protecting the microbial population [10–15].
The usual treatments for onychomycosis are restricted to oral and topical antifungal agents.
Topical administration has the disadvantage of low penetration into the nail bed where the
microorganism develops, requiring extended periods of use and the possible recurrence of
the infection. Oral antifungals penetrate the nail bed and plate, although the commonly
reported side effects make adherence to treatment difficult [16–19].

Antimicrobial photoinactivation is an alternative therapy that combines visible light,
a photosensitizing compound (PS), and molecular oxygen. Soon after being irradiated,
the PS absorbs light and can trigger photooxidation, generating radical species or singlet
oxygen, cytotoxic products capable of causing oxidative damage to lipids, proteins, and
DNA, leading to cell death [20–22]. The use of meso-tetra-substituted porphyrins such as
PS has shown excellent results since inserting loads modulates PS activity, which interacts
better with cellular biomolecules, improving the photoinactivation efficiency [23–25].

The discovery of new antifungal drugs is moving slowly while fungal resistance is
increasing; in this context, antimicrobial photoinactivation is a possible alternative therapy
in the fight against bacterial/fungal infections because, in addition to being a non-invasive
technique, evidence has shown that it has resistance mechanisms and can be used in
comorbid individuals [1,26,27]. Thus, this study sought to evaluate, for the first time, the
in vitro antifungal and antibiofilm photodynamic activity of tetra-cationic porphyrins with
peripheral Pt(II) complexes against onychomycosis C. albicans.

2. Materials and Methods
2.1. Samples and Culture Conditions

Four clinical isolates of C. albicans from onychomycosis were provided by the My-
cological Research Laboratory of the Federal University of Santa Maria (UFSM), and
three standard American-Type Culture Collection (ATCC) strains C. albicans ATCC 24433,
C. albicans ATCC 14053, and C. albicans ATCC SC5314 were provided by the Oral Microbiol-
ogy Research Laboratory of UFSM. This study was approved by the Federal University of
Santa Maria Research Ethics Committee (CAAE no. 65409222.0.0000.5346).

2.2. Photosensitizers

Four tetra-cationic porphyrins were used (Figure 1). Two porphyrins containing Pt(II)
complexes 3PtTPyP and 4PtTPyP were previously synthesized according to the method
by Naue et al. [28] and fully characterized according to the method by Tasso et al. [29].
As a comparative study, water-soluble tetra-cationic methylated porphyrins 3MeTPyP
and 4MeTPyP were used and purchased from Frontier Scientific® (Logan, UT, USA). The
platinum(II) porphyrins tested were soluble in DMSO and stable in this solution.

2.3. Light Source

The photoinactivation assays were performed under white-light LED irradiation
(400–800 nm, visible range) with an irradiance at 50 mW/cm2 and a light dosage at
360 J/cm2 for 120 min. According to the standard protocol, the irradiated 96-well plates
were kept closed (10 cm from the light) [30]. The experiments were performed in triplicate.

2.4. Minimum Inhibitory and Fungicidal Concentrations

The minimum inhibitory concentrations (MIC) of the porphyrins and antifungal agents
ciclopirox olamine and fluconazole (Sigma-Aldrich®, St. Louis, MO, USA) were determined
by the broth microdilution technique, according to the M27-A3 protocol of the Clinical
Laboratory Standards Institute, with modifications [31]. In summary, 100 µL of Sabouraud
broth (KASVI®) was added to the wells of a microplate, and later, in column 1, 100 µL
of the tested treatment (porphyrin or antifungal) was added. From this, a serial dilution
was performed for porphyrins (concentration range of 30–0.11 µM), ciclopirox olamine
(concentration range of 241–15 µM), and fluconazole (concentration range of 836–13 µM),
except in column 11, which received only culture medium (negative control) and column
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12, which received culture medium and inoculum (positive control). The inoculums were
prepared in sterile 0.9% saline solution and standardized on a McFarland 1 scale in a
densitometer (DEN-1®), followed by a 1:50 and 1:20 dilution in Sabouraud broth. After
preparation, 100 µL of each inoculum (1:20) was added to the plate wells except for the
negative control. The plates were incubated in two ways: one plate received white-light
irradiation for 120 min with subsequent incubation of 24 h/37 ◦C, and the other plate was
incubated in the dark for 24 h/37 ◦C. The MIC value was the lowest concentration capable
of visually inhibiting fungal growth.
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Figure 1. Structural representation of the studied tetra-cationic porphyrins 3MeTPyP, 4MeTPyP,
3PtTPyP, and 4PtTPyP. The counter-ions iodide (I−) and hexafluorophosphate (PF6

−) are omitted
from the figure for more clarity.

The minimum fungicidal concentrations (MFC) were determined by seeding 1.0 µL
aliquots from each well without visible fungal growth and positive and negative controls
on Sabouraud dextrose agar plates (KASVI®) and incubating them for 24 h/37 ◦C. The
MFC was defined as the lowest concentration without fungal growth on the plate.

2.5. Cell Viability Curve Test

A cell viability curve assay was performed to determine the likely time that the
treatment inhibited C. albicans growth. For this, the MIC of the porphyrin was previously
determined against the isolates by the broth microdilution technique, as described above.
Two 96-well plates were prepared using the following concentrations: 2×MIC, MIC, and
1/2MIC, in addition to the positive growth and negative controls. Next, one plate was
exposed to white-light irradiation for 120 min at 37 ◦C, and the other plate was incubated
at 37 ◦C in the dark. Aliquots of 10 µL were removed from the wells at different times
(0, 10, 15, 30, 60, 120, and 180 min) and seeded on Sabouraud dextrose agar plates with
a Drigalski loop. Plates were incubated for 24 h/37 ◦C. Subsequently, the colonies were
manually counted, and the colony-forming units (CFU) were calculated and expressed in
Log10CFU/mL [32].

2.6. ROS Scavenger Assay

To determine the presence of reactive oxygen species (ROS) in the photoinactivation
process, five substances described in the literature as “scavengers” of ROS were used,
namely ascorbic acid (AA), which detects the presence of singlet oxygen, N-acetylcysteine
(NAC), which detects hydroperoxyl radicals, ethylene-diamine-tetra-acetic acid (EDTA),



Pharmaceutics 2023, 15, 1511 4 of 17

which is a metal ion chelator, terc-butanol (t-BuOH), which detects hydroxyl radicals,
and dimethyl sulfoxide (DMSO), which detects superoxide radical species. The MIC of
the isolated substances was determined by the microdilution assay in broth according to
the protocol in Section 2.5. Then, a serial dilution of the porphyrins was performed in a
96-well plate, which was followed by adding 10 µL of the sequestering substances at fixed
concentrations (10×1/2MIC) to the wells. Lastly, 100 µL of inoculum was added to the wells
except for the negative control that only received the culture medium. Plates were irradiated
with white light for 120 min and incubated for 24 h/37 ◦C. The ROS was determined when
the MIC of the tested porphyrin increased in the presence of a sequestering substance.
This method is well-established and easy to reproduce for identifying the photochemical
mechanism, although it does not determine the location of the substance in the microbial
cell [33].

2.7. Checkerboard Assay

The interaction of the porphyrins with the antifungals was tested using the checker-
board technique according to the method by Vitale and collaborators [34]. In a separate
experiment, a series of two-fold dilutions of each treatment (antifungal and porphyrin) in
the corresponding solvents were performed using microtubes. Aliquots (50 µL) of each
porphyrin concentration were added to columns 2 through 11, and 50 µL aliquots of each
antifungal concentration were then added to rows B through H in a 96-well plate. In the
wells of column 1 and the wells of row A, 50 µL of the culture medium was added. Thus,
column 1 and row A only received the antifungal and porphyrin, respectively, and were
used as control wells to determine the MICs of the isolated compounds. Column 12 was
split into positive and negative controls. Lastly, 100 µL of the standardized inoculum was
seeded in each well except for the negative control. The plate was irradiated with white
light for 120 min and then incubated for 24 h/37 ◦C. The porphyrin–antifungal interaction
analysis was calculated by the fractional inhibitory concentration index (FICI) using the
following equation: FICI = MIC AB/MIC A + MIC BA/MIC B, where MIC AB and MIC BA
are the respective inhibitory concentrations of the compounds in association, and these are
divided by MIC A and MIC B (the inhibitory concentrations of the isolated compounds).
The interaction was classified as synergistic (FICI ≤ 0.5), indifferent (0.5 < FICI < 4.0), or
antagonistic (FICI ≥ 4.0).

2.8. In Vitro Biofilm Formation and Destruction

C. albicans biofilms were formed according to Krom et al. [35] and Vila et al. [36],
with some modifications. The C. albicans isolates were previously cultivated in Sabouraud
dextrose agar for 24 h/37 ◦C. Then, yeasts (2 to 3 isolated colonies) were transferred to
5 mL of trypticase soy broth (TSB) (Laborclin®, Caxias do Sul, Brazil) and incubated for
24 h/37 ◦C under constant agitation at 150 rpm. Afterwards, the culture was diluted (1:100)
in TSB supplemented with 2.0% glucose (TSB 2.0%). The inoculum was homogenized
by vortexing, and 200 µL was added to the wells of a 96-well microplate, except for the
negative control wells that received only TSB 2.0%. The plate was incubated for 90 min
at 37 ◦C under constant agitation at 150 rpm so the yeasts could adhere to the surface of
the plate (adhesion phase). The suspensions were carefully aspirated, and 200 µL of fresh
2.0% TSB was added to the wells. The plate was again incubated for biofilm maturation
for 48 h/37 ◦C under constant agitation at 150 rpm. Biomass quantification in the formed
biofilm was performed using the 1.0% crystal violet technique. The supernatant was
aspirated, the wells containing biofilm were washed with sterile 0.9% saline solution three
times to remove non-adherent cells, and the plate was dried in an oven at 60 ◦C for 60 min.
After fixation, the biofilms were stained with 200 µL of crystal violet 1.0% for 20 min,
followed by three washes with sterile 0.9% saline solution to remove excess dye. In the end,
200 µL of 95% ethanol was added for 10 min to elute the crystal violet and transferred to a
new plate where the absorbance reading was performed in a microplate reader (Bio-Rad
550®) at 570 nm [37].
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Then, to evaluate the ability of the porphyrins to reduce the preformed biofilm, the
MIC and two higher concentrations (2×MIC and 4×MIC) were used. The positive and
negative biofilm controls received no treatment. The plate was irradiated with white light
and incubated for 24 h/37 ◦C. After incubation, the biofilm biomass was quantified using
the crystal violet 1.0% technique detailed above.

2.9. Atomic Force Microscopy

Atomic force microscopy (AFM) was performed in an NX10 instrument (Park Systems,
Suwon, Republic of Korea) equipped with the SmartScan® software (version 1.0) RTM
11a. Topography and adhesion maps were acquired simultaneously using the PinPoint
nanomechanical mode. The AFM maps were obtained using a high-frequency rotated
monolithic silicon probe (TAP300-G Budget Sensors, Bulgaria) with a nominal resonance
frequency of 300 kHz and a 40 N/m force constant. All measurements were made under
ambient conditions at a room temperature of 21± 5 ◦C and a relative humidity of 50± 10%.
Images were treated offline using the XEI software (version 4.3.4,build 22, RTM1) [38–40].

2.10. Cytotoxicity

A cytotoxicity assay was performed according to the method by Mosmann et al. [40]
using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium) reduction technique.
The cells used were human keratinocytes (HaCaT) and murine fibroblast cells (L929)
purchased from the Rio de Janeiro Cell Bank. The cells were cultured in Dulbecco’s
modified eagle medium with a low glucose content, supplemented with 10% fetal bovine
serum and penicillin/streptomycin (100 U/L), and incubated at 37 ◦C in a humidified
atmosphere containing 5.0% CO2. Soon after, the cells were seeded in 96-well plates,
with 3.0 × 104 cells/well for L929 and 4.0 × 104 cells/well for HaCaT. The plates were
pre-incubated for 24 h at 37 ◦C. As soon as the treatment with different concentrations of
porphyrins (4×MIC, 2×MIC, and MIC) was added, the plates were irradiated for 120 min
(irradiance of 50 mW/cm2 and total light dosage of 360 J/cm2) and incubated again for
24 h/37 ◦C. The MTT reagent was added, and the plates were incubated for 4 h/37 ◦C.
The supernatant was aspirated, and DMSO was added to the wells to dissolve the formed
formazan crystals. The absorbance was read in a microplate reader at 570 nm.

2.11. Statistical Analysis

Statistical analysis was performed using one-way analysis of variance (ANOVA)
followed by Tukey’s test. Data were represented as mean ± standard deviation. The graph
Prism 8.01 software was used, and results were considered significant when p < 0.001.

3. Results and Discussion
3.1. General Considerations

The main advantages of antimicrobial photodynamic therapy (aPDT), a promising
alternative, include reduced side effects to the host, a minimally invasive method, a broad
microbial spectrum, and an efficacy independent of antimicrobial resistance, unlike the
antifungals used. Additionally, the development of a resistance mechanism is unlikely
because the photodynamic process is a non-selective treatment capable of simultaneously
damaging multiple targets [41,42]. Tetra-cationic porphyrins with peripheral Pt(II) com-
plexes are compounds that generate ROS when activated with adequate light irradiation,
including the radical species of the type-I mechanism (electron transfer) and mainly singlet
oxygen (cell cytotoxic product) through the type-II mechanism (energy transfer) [29,43]. In
addition, they are promising PSs of great interest in PDT, as they have adequate photophys-
ical, photobiological, and photochemical properties in the application of photodynamic
processes, are considered stable in DMSO solution (the effect of the solvent on cell viability
was discarded) and buffers, they are photostable when irradiated with white LED light,
and they do not tend to form aggregates [44–46].
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3.2. MIC and MFC Analysis

The MIC and MFC values of the 3PtTPyP, 4PtTPyP, 3MeTPyP, and 4MeTPyP against
the clinical isolates and standard C. albicans strains in the dark and under white-light irradi-
ation are listed in Table 1. In these assays, the meta isomeric porphyrin 3PtPyP showed the
best results for MIC and MFC, demonstrating excellent in vitro antifungal activity when
irradiated with white light (irradiance of 50 mW/cm2 and total light dosage of 360 J/cm2

for 120 min), resulting in the photoinactivation of the yeasts at low concentrations of the
compound. Although the mechanism of photoinactivation against C. albicans is not fully
elucidated, studies with different cationic porphyrin PSs have indicated, through fluores-
cent markers, that porphyrin binds to the yeast cell wall, and only after irradiation was
the presence of the PS in the cytosol of the yeast observed in the cell, suggesting that the
photodynamic process favors high cell permeability, causing irreversible damage [47,48].
The excellent in vitro antimicrobial activity of 3PtTPyP has been reported against my-
cobacteria, dermatophyte fungi, and viruses [30,41,49]. Photodynamic studies against
C. albicans using porphyrin meso-tetra[4-(3-N,N-dimethylaminopropoxy)phenyl] (TAPP)
and its derivatives (TAPP4+), meso-tetra-(4-N-methylpyridyl) cationic porphyrins (TMPyP),
and meso-tetra(4-sulfonated) anionic porphyrins (TPPS4−) have been found, although this is
the first study to evaluate the activity of 3PtTPyP against these yeasts [50–53]. Considering
the best MIC and MFC values obtained, the 3PtTPyP was the PS of choice for the other
photoinactivation tests.

Table 1. MIC and MFC values (in µM) of 3PtPyP and 4PtPyP against C. albicans exposed to dark and
white-light irradiation conditions of 50 mW/cm2 and total light dosage of 360 J/cm2 (120 min).

Microorganism

3PtTPyP

MIC (µM) MFC (µM)

Dark Light Dark Light

C. albicans CI 1 03 15.0 0.11 15.0 0.22
C. albicans CI 1 44 15.0 0.11 15.0 0.11
C. albicans CI 1 45 15.0 0.90 15.0 0.90
C. albicans CI 1 49 15.0 0.45 15.0 0.90

C. albicans ATCC 24433 15.0 0.45 30.0 0.45
C. albicans ATCC SC5314 15.0 0.45 30.0 0.45
C. albicans ATCC 14053 15.0 0.90 30.0 0.90

Microorganism

4PtTPyP

MIC (µM) MFC (µM)

Dark Light Dark Light

C. albicans CI 1 03 15.0 7.50 15.0 15.0
C. albicans CI 1 44 15.0 15.0 15.0 15.0
C. albicans CI 1 45 15.0 15.0 30.0 15.0
C. albicans CI 1 49 15.0 7.50 15.0 7.50

C. albicans ATCC 24433 15.0 15.0 15.0 15.0
C. albicans ATCC SC5314 15.0 7.50 15.0 7.50
C. albicans ATCC 14053 7.50 7.50 15.0 15.0

1 Clinical isolate.

The porphyrins 4PtTPyP, 3MeTPyP, and 4MeTPyP were less efficient in terms of
photoinactivation, presenting low cytotoxicity to the fungal cells (Table 1), with little or no
difference in photoinactivation in the dark or white-light irradiation cycles. The MIC and
MFC values under white-light conditions were not satisfactory, as the necessary dose of the
compound available for the photoinactivation process was high.

The values found for the 3MeTPyP and 4MeTPyP porphyrins may be related to the
higher solubility of the compound in an aqueous solution, given that these porphyrins were
diluted with water, which would hinder the interaction and permeability in the complex cell
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wall of fungi [22]. Although the 4PtTPyP porphyrin is practically equivalent to 3PtTPyP
in terms of ROS generation, the Pt(II) complex coordinated to the N-pyridyl position in
the molecule’s structure makes it slightly less soluble in water, DMSO, buffer solution,
and others. It can form aggregates, decreasing its bioavailability for the photoinactivation
process and corroborating the results obtained from the MIC and MFC values in this
study [46]. The MIC value for the antifungal ciclopirox olamine was 15 µM for all the
C. albicans strains tested in this study, and the MIC for the antifungal fluconazole was
52 µM for all the clinical isolates tested and C. albicans SC5314, while for C. albicans ATCC
14053, the MIC was 13 µM. The MIC remained the same under white-light irradiation and
in dark conditions, proving that the antimicrobial agents tested were not photosensitive.

3.3. Cell Viability Curve Test

The cell viability curve assay was performed to determine the kinetics of the in vitro
fungicidal activity of 3PtPyP against two standard strains of C. albicans. The results were
expressed by the viable cell count on a logarithmic scale compared with the positive growth
control (without contact with the treatment) under white-light irradiation and in dark
conditions (Figures 2 and 3). After treatment with the selected porphyrin at the previously
defined concentrations, we observed that photoinactivation of the C. albicans ATCC 14053
strain occurred within the first 60 min of exposure to a white-light source, causing the
complete eradication of the tested microorganism (Figure 2a), and as expected, the concen-
tration of 1/2MIC did not inhibit or reduce the CFU/mL−1, the samples remaining with
viable cells even after 180 min. The test also showed that the presence of porphyrin in dark
conditions led to the complete inhibition of fungal growth only at the highest concentration
of 3PtTPyP tested (30 µM) and in the longest time tested (180 min). Furthermore, it did not
demonstrate antifungal activity at MIC and 1/2MIC (Figure 2b).
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The standard strain C. albicans ATCC SC5314 was also tested to assess cell viability after
porphyrin treatment (Figure 3). The photoinactivation process for this strain occurred in
the first 30 min of exposure to a white-light source (Figure 3a), leading to fungal eradication
at low PS concentrations (0.45 and 0.22 µM). In dark conditions, the result was similar to
that obtained for the C. albicans ATCC 14053, in which only the concentration of 2×MIC
(30 µM) could inhibit the microorganism growth (Figure 3b).

The results clearly showed that the inactivation was dependent on the irradiation
source, and with the association of a PS, light and molecular oxygen could inhibit the
fungal growth quickly. Basso and collaborators tested the action of 3PtTPyP against
enveloped viruses and reported the complete inactivation of the microorganism at low PS
concentrations within 30 and 60 min when irradiated [49]. In addition, Rossi and coworkers
described the bactericidal action of porphyrin 3PtTPyP against mycobacteria in the first
24 h after irradiation [38].

3.4. ROS Scavenger Assay

ROS determination was carried out to evaluate which sequestering substances were
part of the photooxidation process. In this way, each substance is directly related to ROS
generation. These reactive species can damage proteins, lipids, nucleic acids, and induce
structural changes that lead to a loss of cell function, cell apoptosis, or fungal virulence
inhibition [50–54].

Given the results of the MIC values obtained in the absence and the presence of ROS
scavengers shown (Table 2), we concluded that the mechanism involved in the photooxi-
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dation of C. albicans tested with the 3PtTPyP porphyrin was mixed (type I + type II), that
is, the type-I mechanism with the increased MIC in the presence of NAC (hydroperoxyl
scavenger species—•OOH), showing hydroperoxyl radical production, and the type-II
mechanism with the increased MIC in the presence of AA (singlet oxygen scavenger
species—1O2), revealing singlet oxygen production, formed by the energy transfer process,
to be a phototoxic product of the fungal cells.

Table 2. MIC values (µM) of microorganisms tested for the porphyrin 3PtTPyP in the absence and
presence of ROS scavengers under white-light irradiation conditions (50 mW/cm2 and total light
dosage of 360 J/cm2) at 120 min.

Microorganism

3PtTPyP

MIC 2 (µM)

Absence AA 3 NAC 4 EDTA 5 t-BuOH 6 DMSO 7

C. albicans CI 1 03 0.11 7.50 7.50 0.05 0.11 0.11
C. albicans CI 1 44 0.11 7.50 7.50 0.11 0.11 0.11
C. albicans CI 1 45 0.90 7.50 7.50 0.45 0.45 0.90
C. albicans CI 1149 0.45 7.50 7.50 0.11 0.45 0.45

C. albicans ATCC 24433 0.45 7.50 7.50 0.22 0.22 0.45
C. albicans ATCC SC5314 0.45 7.50 7.50 0.22 0.45 0.45
C. albicans ATCC 14053 0.90 7.50 7.50 0.45 0.45 0.90

1 Clinical isolate; 2 minimum inhibitory concentration; 3 ascorbic acid; 4 N-acetylcysteine; 5 ethylenediamine
tetra-acetic acid; 6 terc-butanol; 7 dimethyl sulfoxide.

The tetra-cationic porphyrins containing the peripheral platinum(II) complexes tested
in this study are PSs that considerably absorb light from the visible spectrum and, in the
presence of molecular oxygen, become more bioavailable, producing ROS, thus ensuring
photophysical properties. Furthermore, they slightly tend to form aggregates and are
stable in solution, making them a target of photochemical interest as a possible alternative
in treating cutaneous and subcutaneous infections. Its applications in photooxidative
processes have already been reported elsewhere [29,43,55]. Other studies have shown a
mechanism of action involving singlet oxygen production for 3PtTPyP and other cationic
porphyrins against bacteria, mycobacteria, and dermatophytes [22,45,49,56]. Singlet oxygen
species are the main photoinactivation products of tetra-cationic porphyrins, especially
those of Pt(II) bipyridyl complexes. They are highly reactive and oxidizing species that act
on cellular targets such as the cell wall, outer membrane, and intracellular components
such as DNA [28,57].

3.5. Checkerboard Assay

The MIC values obtained for the porphyrin 3PtPyP in the presence of ciclopirox
olamine and fluconazole drugs are shown in Table 3. For the C. albicans ATCC SC5314
strain, the combination of the compounds (porphyrin + drug) reduced the MIC values
obtained separately for each compound. However, this reduction was not enough to
generate a synergistic interaction effect, keeping the effect indifferent in the presence of the
other. The strain C. albicans ATCC 14053 showed a different behavior in the association of
the compounds, as only the MIC of the antifungal in the presence of 3PtTPyP decreased.
In contrast, the MIC of the 3PtTPyP in the presence of antifungals remained the same as
the isolated compound. Nevertheless, the interaction was indifferent.

The association of antifungal compounds versus porphyrin using PDT against yeasts
is insufficient to establish the best combination of agents. The number of studies is limited,
and the techniques used are diverse. This is in addition to the specificities of each microor-
ganism, making direct comparisons difficult. However, the synergistic effect of fluconazole
and meso-tetra(N-methyl-4-pyridyl)porphyrin tetratosylate (TMP) and the indifferent effect
of miconazole with TMP against yeasts has already been described elsewhere [58,59].
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Table 3. MIC values (µM) of porphyrin 3PtTPyP in interaction with ciclopirox olamine and flucona-
zole against standard strains of C. albicans under white-light irradiation conditions (50 mW/cm2 and
total light dosage of 360 J/cm2) at 120 min.

Microorganism
3PtTPyP

3PtTPyP
(A)

CO 1

(B)
MIC 2

A/B
MIC
B/A FICI 3 Int. 4

C. albicans ATCC SC5314 0.45 15.0 0.22 1.56 1.0 I 5

C. albicans ATCC 14053 0.90 15.0 0.90 1.56 1.5 I

Microorganism 3PtTPyP
(A)

FLU 1

(B)
MIC 2

A/B
MIC
B/A FICI 3 Int. 4

C. albicans ATCC SC5314 0.45 52.0 0.22 8.0 1.0 I 5

C. albicans ATCC 14053 0.90 13.0 0.90 2.0 1.5 I
1 Ciclopirox olamine or fluconazole; 2 minimum inhibitory concentration; 3 fractional inhibitory concentration
index; 4 interaction; 5 indifferent.

The indifferent effect reported in some studies corroborates our findings, although a
synergistic effect of combined therapy in vitro has not been proven. The additive effect
suggests that the associated use of antifungal versus photodynamic therapy does not
generate an antagonistic effect, which is undesirable.

3.6. In Vitro Biofilm Formation and Destruction

The formation of the C. albicans biofilm occurs in a complex and orchestrated way,
requiring controlled steps to develop. The main step in forming the C. albicans biofilm is the
adhesion to the surface phase, where physicochemical interactions and the initial formation
of microcolonies occur due to agitation. The biofilm is formed as soon as the cells begin to
produce an extracellular polymeric matrix (maturation), which takes 48 to 72 h. To develop
a biofilm formation, different culture media (Sabouraud broth, TSB, Mueller Hinton broth)
supplemented with different concentrations of glucose (0, 1.0, and 2.0%) were tested for
three incubation times (24, 48, and 72 h) in a static form and under stirring at 150 rpm. After
the analyses, the best culture medium, supplementation, time, and conditions were TSB
2.0% glucose for 48 h under agitation. To evaluate the capacity of the porphyrin 3PtTPyP
to destroy the preformed biofilm, we used 4×MIC, 2×MIC, and MIC values. The results
can be seen in Figure 4.

Given the results obtained after the biomass quantification by the crystal violet tech-
nique, it was evident that the 3PtTPyP porphyrin could significantly reduce the preformed
biofilm compared to the positive control. For the strain C. albicans ATCC 14053 (Figure 4a),
the formed biofilm was reduced by 94.3% using 4×MIC, 89.7% when using to 2×MIC,
and by 88.9% at MIC. As for C. albicans ATCC SC5314 (Figure 4b), the treatment reduced
the biofilm by 83.7% when using 4×MIC, 77.9% when using to 2×MIC, and reduced the
biofilm by 79.1% at MIC. Although the mechanism of the destruction of the PDT biofilm
with porphyrins has not yet been entirely described, studies using photoinactivation with
other non-porphyrin PSs suggest that the antibiofilm action can occur in different ways by
binding the PS activated by light to the biofilm matrix and thus generating ROS, causing
oxidative damage, as well as by destabilizing this matrix, increasing the permeability of the
PS to the intracellular environment, causing damage to cytoplasmic components [60,61].
Corroborating our findings, Vila et al. developed a biofilm of C. albicans and Fusarium
oxysporum on a nail model using aluminum and yttrium laser therapy and pulsed light
and observed a reduction of approximately 60% of the biofilm for C albicans and 92%
for Fusarium oxysporum [34]. In addition, an assay performed with cationic porphyrins
affected the preformed biofilm of Escherichia coli, Staphylococcus aureus, and C. albicans
strains [62]. Although in vitro assays cannot predict the representation of an antibiofilm
response in vivo, we consider it a relevant tool for initial tests.
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3.7. Atomic Force Microscopy Study

Representative 2D and 3D AFM maps for C. albicans ATCC 14053 under different treat-
ments (with white-light conditions) are shown in Figure 5. Even under white-light exposure,
the AFM maps displayed the common morphology of the C. albicans yeast strain [63], with
the surface composed of relatively uniform packed cells with some protrusions (Figure 5a).
In this case, the unicellular budding yeast had a spheroid shape with a diameter in the
2.0 to 3.0 µm range, which was also observed in previous AFM results [64]. The 3PtTPyP
porphyrin treatment (for both 1

2 MIC and MIC) completely inhibited the C. albicans growth
(Figure 5b,c), and no cell was found after many AFM runs. Although the unicellular bud-
ding yeast could be seen under optical microscopes at a 1

2 MIC concentration, the sample
preparation for the AFM map acquisition was a much more inhospitable environment for
the C. albicans yeast strain growth. Moreover, the results from the adhesion force maps
(Figure 6) showed that the porphyrin treatment increased the adhesive forces between the
tip and the sample surface. The adhesion forces for all the treatments are shown in Table 4.
Under white-light conditions, the average value of the surface adhesion force was 0.358 µN,
increasing with the 3PtTPyP porphyrin treatment to 0.381 and 0.510 µN for the 1/2MIC and
MIC concentrations, respectively.

As seen in the AFM images, the C. albicans yeast strain samples underwent remark-
able change after the 3PtTPyP porphyrin treatment, with their growth being completely
inhibited or the cells being destroyed. We recall that porphyrin treatments are highly
effective against many microorganisms, such as bacteria strains [36], although most the
AFM images only revealed bacteria deformation and/or cells growth reduction. In ad-
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dition, nanomechanical imaging is a powerful tool to elucidate the adhesive properties
of C. albicans [65,66]. Force–distance curves have been used to obtain the adhesion forces
between bacterium–fungus pairs [67] and even visualize the main steps of the C. albicans–
macrophage interaction [68,69]. Here, we showed that, although the C. albicans yeast strain
was absent from the sample surface after the treatment, the adhesive forces were increased
so that the residual mass was stuck to the surface, which could help to prevent future cell
growth in this area (Table 4).
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Figure 6. Adhesion force maps of C. albicans ATCC 14053 exposed to different protocols of photody-
namic therapy using 3PtTPyP porphyrin with an irradiance of 50 mW/cm2 and a total light dosage
of 360 J/cm2 for 120 min.
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Table 4. Adhesion force values of C. albicans ATCC 14053 exposed to different protocols of photody-
namic therapy using 3PtTPyP porphyrin with an irradiance at 50 mW/cm2 and a total light dosage
of 360 J/cm2 for 120 min.

Conditions Adhesion Force (µN)

Whitelight 0.358 ± 0.018
Whitelight + 3PtTPyP ( 1

2 MIC) 0.381 ± 0.050
Whitelight + 3PtTPyP (MIC) 0.510 ± 0.069

3.8. Cytotoxicity

The porphyrin 3PtTPyP was diluted in DMSO and tested at three different concentra-
tions defined from the highest MIC obtained among the tested yeasts, that is, the inhibitory
concentrations obtained for the C. albicans strain ATCC 14053 (4×MIC—3.75 µM, 2×MIC—
1.8 µM, and MIC—0.9 µM). Hydrogen peroxide (H2O2) was used as a positive control of cell
death against HaCaT and L929 cells. After white-light irradiation for 120 min (50 mW/cm2

and total light dosage of 180 J/cm2), we observed that the DMSO compound and the H2O2
control significantly reduced the cell viability of the HaCaT cells compared to the positive
growth control; however, the different porphyrin concentrations tested increased the cell
viability of the cells not showing cytotoxicity (Figure 7a). In the L929 cells, only the cell
death control (H2O2) effectively reduced the cell viability. Although the DMSO reduced
the viability, it did not cause significant damage compared to the positive growth control
(Figure 7b). Furthermore, the tested porphyrin concentrations stimulated cell proliferation.
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Vizzotto et al. evaluated the cytotoxicity of a tetra-ruthenated cationic porphyrin
(H2RuTPyP), where, after white-light irradiation, the PS caused cell death in a melanoma
cell line without reducing the viability of the HaCaT cells tested, which was in line with our
study, evidencing the promising use for porphyrins (e.g., PS) [70]. In 2022, Urquhart et al.
showed that the PS they tested, in addition to not showing cytotoxicity, stimulated the
viability of HaCaT and L929 cells, which was in line with our findings [71]. With this, we
can state that the porphyrin 3PtTPyP, in addition to being an excellent PS against yeasts,
also did not damage human cells in vitro, making it a compound of great interest to be
studied as an alternative therapy against infections.

4. Conclusions

For the first time, this study evaluated the in vitro antifungal and antibiofilm activity
of tetra-cationic porphyrins containing peripheral Pt(II) complexes against C. albicans aimed
at treating onychomycosis. We observed that a low concentration of the porphyrin 3PtTPyP
showed high antifungal potential when irradiated against C. albicans yeasts. The compound
could eradicate yeast growth after a short period of irradiation. The possible mechanism
of cellular phototoxicity was mixed with hydroperoxyl radical and singlet oxygen species
production (a mixed mechanism). The association of 3PtTPyP with antifungals showed
indifferent activity under white-light irradiation. Preformed biofilms were significantly
reduced when treated with different 3PtTPyP concentrations. Atomic force microscopy
revealed morphological damage in the C. albicans strains after white-light irradiation, and
the compound did not show cytotoxicity against the tested HaCaT and L929 cells. Therefore,
tetra-cationic porphyrins containing Pt(II) complexes are excellent photosensitizers and
promising compounds in aPDT against superficial fungal infections.
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