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Abstract: Based on their drug delivery properties and activity against tumors, we combined PAMAM
dendrimers with various platinum(IV) complexes in order to provide an improved approach of
anticancer treatment. Platinum(IV) complexes were linked to terminal NH2 moieties of PAMAM den-
drimers of generation 2 (G2) and 4 (G4) via amide bonds. Conjugates were characterized by 1H and
195Pt NMR spectroscopy, ICP-MS and in representative cases by pseudo-2D diffusion-ordered NMR
spectroscopy. Additionally, the reduction behavior of conjugates in comparison to corresponding
platinum(IV) complexes was investigated, showing a faster reduction of conjugates. Cytotoxicity was
evaluated via the MTT assay in human cell lines (A549, CH1/PA-1, SW480), revealing IC50 values in
the low micromolar to high picomolar range. The synergistic combination of PAMAM dendrimers
and platinum(IV) complexes resulted in up to 200 times increased cytotoxic activity of conjugates in
consideration of the loaded platinum(IV) units compared to their platinum(IV) counterparts. The low-
est IC50 value of 780 ± 260 pM in the CH1/PA-1 cancer cell line was detected for an oxaliplatin-based
G4 PAMAM dendrimer conjugate. Finally, in vivo experiments of a cisplatin-based G4 PAMAM
dendrimer conjugate were performed based on the best toxicological profile. A maximum tumor
growth inhibition effect of 65.6% compared to 47.6% for cisplatin was observed as well as a trend of
prolonged animal survival.

Keywords: platinum(IV) complexes; PAMAM dendrimers; anticancer; drug delivery

1. Introduction

Five decades after the discovery of the anticancer activity of cisplatin, platinum(II)-
based anticancer agents still play an essential role in modern cancer treatment. The break-
through of platinum(II) complexes was further consolidated by the introduction of carbo-
platin and oxaliplatin in clinical practice [1–3]. Together, these three platinum(II) drugs are
integrated into about 50% of all cancer chemotherapies worldwide and cisplatin belongs
to the most lucrative anticancer agents [4,5]. Despite the enormous success, platinum(II)-
based cancer treatment lacks selectivity against tumor cells, leading to severe side effects,
and is further affected by intrinsic and/or acquired resistance, diminishing its clinical
efficacy [6].

The prodrug strategy, employing kinetically more inert platinum(IV) complexes,
enabled a new approach to improve selectivity and reduce systemic toxicity. The reduction
of the corresponding platinum(II) complexes, required to unleash their cytotoxic capacities,
is facilitated by the characteristic oxygen-deficient milieu of tumor tissue [7,8]. Despite
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intensive research and promising (pre)clinical studies, platinum(IV) complexes such as
tetraplatin, iproplatin, satraplatin and LA-12 could not show an overall improvement so
far compared to platinum(II)-based anticancer agents [9–11].

Consequently, in order to improve selectivity, tumor-targeting strategies have attracted
more and more attention. Passive tumor targeting exploits the enhanced permeability and
retention (EPR) effect, a characteristic of cancerous tissue. The gaps formed between
endothelial cells during tumor angiogenesis enable the infiltration of nanoparticles. Addi-
tionally, insufficient lymph drainage leads to an enhanced accumulation of macromolecules.
Therefore, the development of drug delivery molecules in the nanometer range is of special
interest [12,13].

Promising candidates can be found within the class of dendrimers, symmetrically
designed polymeric nanostructures with adjustable functionalities such as size, shape and
surface groups. The most intensively investigated representative is the poly(amidoamine)
(PAMAM) dendrimer, developed by Donald Tomalia in 1985 [14,15]. Sequences of ami-
doamine units are constituted radially around an ethylenediamine core and the dendritic
structure grows symmetrically controlled, using a two-step mechanism. Each full layer
thereby represents a full generation, with primary amines serving as terminal groups. The
surface functionalities enable covalent bonding or coordination of drugs, whereas small
bioactive molecules can be encapsulated in the interior [16–18].

The beneficial combination of platinum complexes and PAMAM dendrimers was
already shown in previous studies. Encapsulation of cisplatin led to higher anticancer
potency and improved cellular accumulation even in cisplatin-resistant cell lines [19,20].
Additionally, efficacy and biodistribution studies in mice xenografts with ovarian cancer
showed an increase in lifespan by up to 40%. Furthermore, the enhanced plasma concen-
tration and tissue accumulation could allow a lower dosage, resulting in decreased side
effects [21].

Besides encapsulation, attachment of cisplatin and doxorubicin to the surface of
PAMAM dendrimers enabled a more efficacious treatment of breast cancer in animal
experiments. Due to the improved accumulation of the conjugate in cancerous tissue,
further tumor growth was prevented without noticeable adverse effects [22].

Previously, our group reported on significantly increased cytotoxicity achieved by
the formation of amide bonds between oxaliplatin-based platinum(IV) complexes and
full-generation PAMAM dendrimers [23].

Hence, we continue investigations into the potential of platinum(IV) compounds
in combination with PAMAM dendrimers as anticancer agents in the present work. In
total, 24 conjugates with various platinum(IV) complexes and PAMAM dendrimers of
generation 2 (G2) and 4 (G4) were synthesized and characterized by multinuclear NMR
spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS). Cytotoxicity
of the conjugates was compared to that of the corresponding platinum(IV) complexes
and unloaded PAMAM dendrimers via the MTT assay in three human cancer cell lines.
Finally, biodistribution and anticancer activity were investigated in a murine CT26 solid
tumor model.

2. Materials and Methods
2.1. Materials

All chemicals and solvents were purchased from commercial suppliers and were used
without further purification. K2[PtCl4] was acquired from Johnson Matthey (assay: 46.69%
Pt) (Zurich, Switzerland), whereas G2 (20 wt.% in methanol) and G4 PAMAM dendrimers
(10 wt.% in methanol) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Addi-
tionally, the following chemicals were used as received: succinic anhydride (≥99%) (Sigma-
Aldrich, Steinheim, Germany), absolute DMF (99.8%, extra dry, water <50 ppm) (Acros
Organics, Geel, Belgium), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochlo-
ride (EDC·HCl) (>98%) (TCI Europe, Zwijndrecht, Belgium), N-hydroxysuccinimide (NHS)
(98%) (Sigma-Aldrich, Steinheim, Germany).



Pharmaceutics 2023, 15, 1515 3 of 23

Trial Kit Spectra/Por® 7 (MWCO 1.0 kDa) and Spectra/Por® 3 (MWCO 3.5 kDa) dialy-
sis tubings were supplied by Carl Roth (Karlsruhe, Germany). Milli-Q water (18.2 MΩ cm,
Milli-Q Advantage) was used for aqueous solutions as well as for preparative RP-HPLC
purifications. All reactions involving platinum complexes were performed under light
protection and with glass-coated magnetic stirring bars.

2.2. Preparative RP-HPLC

An Agilent 1200 Series system controlled by ChemStation® software was used for
purifications by preparative RP-HPLC. A XBridge® Prep C18 10 µm OBDTM Column
(19 mm × 250 mm) from Waters served as the stationary phase, whereas different ratios of
Milli-Q water, acetonitrile and methanol with the addition of 0.1% formic acid were used
as eluents.

2.3. Elemental Analysis

The Microanalytical Laboratory of the Faculty of Chemistry at the University of Vienna
performed the elemental analyses of the platinum(IV) compounds, using an Eurovector
EA3000 elemental analyzer. All obtained values are in the range of ±0.4% of the calculated
values, therefore confirming purity of at least 96%.

2.4. NMR Spectroscopy

NMR spectra were recorded on a Bruker AVANCE NEO 500 MHz spectrometer at
500.32 (1H), 125.81 (13C), 50.70 (15N), 470.56 (19F), and 107.38 MHz (195Pt) or an AVANCE III
HD 700 MHz spectrometer at 659.03 MHz (19F) at 25 ◦C. The solvent resonances were used
as internal references for 1H (d6-DMSO, δ = 2.50 ppm; d7-DMF, δ = 2.75 ppm (high field
signal); D2O, δ = 4.79 ppm) and 13C (d6-DMSO, δ = 39.51 ppm; d7-DMF, δ = 29.76 ppm
(high field signal)), 19F chemical shifts are given relative to CCl3F, whereas NH4Cl and
K2[PtCl4] served as external reference for 15N and 195Pt NMR spectroscopy.

DOSY experiments were measured with a standard Bruker DOSY pulse sequence
without sample spinning in D2O at 298 K. The diffusion coefficient D, obtained from the
spectra, was used for the estimation of the diameter of PAMAM dendrimers and conjugates
by assuming a spherical size and using the Stokes–Einstein equation:

R0 =
kBT

6πηD

R0 is the (hydrodynamic) radius, kB the Boltzmann constant (JK−1), T the tempera-
ture [K], η the viscosity of the liquid (1.095 × 10−3 Pa·s) and D the diffusion coefficient
[m2s−1] [23].

2.5. Reduction Behavior

The reduction of platinum(IV) complexes and representatives of each series of conju-
gates by ascorbic acid was observed by 1H NMR spectroscopic measurements at ambient
temperature. An amount of 1 mM solutions of platinum(IV) complexes 1–3, 5–7 as well
as of the conjugates C2, C11, C13, C22–C24 referred to their corresponding platinum units
were prepared in a D2O phosphate-buffered solution (50 mM) at physiological pD = 7.4.
Afterwards, ascorbic acid was added as a reducing agent (25 mM, 25 eq.) and 1H NMR
measurements were performed for several days. The reduction behavior for substances
1–3, 5, 6, C2, C11, C13, C22, C23 was monitored by the resulting decrease in intensity of the
acetato signal (release of acetic acid). The percentage of reduced species was determined
by using the integration ratios of these two signals. Contrarily, ratios of signals of the
succinato ligands and free succinic acid were consulted for the reduction determination of
substances 7 and C24. However, the reduction half-time of C24 could not be obtained due
to the superimposition of the succinato peaks with other signals.
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2.6. ICP-MS

Digestion of all conjugates (0.5–1.5 mg) was performed in 2 mL of HNO3 (20%)
and 0.1 mL of H2O2 (30%) with a temperature-controlled heating plate of graphite from
Labter. After dilution (1:10,000) of digested samples with HNO3 (3%), the total platinum
amount was determined with an Agilent 7800 ICP-MS instrument. For each sample,
10 measurements were performed and the obtained data were analyzed with the Agilent
MassHunter software package (Workstation Software, Version C.01.04, 2018, Agilent, Santa
Clara, CA, USA).

2.7. Cytotoxicity Tests

Culture of and 96 h cytotoxicity tests in the human cell lines CH1/PA-1 (ovarian
teratocarcinoma), SW480 (colon carcinoma) and A549 (non-small cell lung cancer) were
performed as described previously [24], with the exception that test compounds were
dissolved either in sterile water or supplemented MEM and then serially diluted in the
latter medium.

The MTT assay in the murine cell line CT26 was performed as described in [25].

2.8. In Vivo Experiments and Organ Distribution

Female and male BALB/c mice, bread in-house (originally Janvier), were kept in a
controlled environment under pathogen-free conditions. By the toxicity tests, non-tumor-
bearing female BALB/c mice were treated intravenously at a dose: G4 PAMAM dendrimer
at 0.058 mg/20 g, C11 at 0.17 mg/20 g, C12 at 0.075 mg/20 g and 0.15 mg/20 g, C13 at
0.91 mg/20 g and C22 at 0.52 mg/20 g three times in the first week. All drugs were dissolved
in 0.9% NaCl. For the efficacy study, CT26 (5 × 105 in 50 µL serum-free RMPI medium)
murine colon cells were injected into the right flank (subcutaneously) of female BALB/c
mice. When all tumors were measurable (at day 5), animals were treated intravenously
with solvent (0.9% NaCl, 100 µL/20 g), C12 (7.5 mg/kg in 0.9% NaCl, 100 µL/20 g) and
cisplatin (3 mg/kg in 0.9% NaCl, 100 µL/20 g) twice a week for two weeks. Tumor volume
and size (measured by caliper) and body weight were evaluated every working day; the
animals were sacrificed by cervical dislocation upon a loss in body weight, tumor size or
other indications of deteriorated health. In vivo experiments were done according to the
regulations of the Ethics Committee for the Care and Use of Laboratory Animals at the
Medical University Vienna (proposal number BMBWF-V/3b 2020-0.380.502).

Organs and tumors for platinum content/distribution were harvested 24 h after the
second application of C12 (7.5 mg/kg in 0.9% NaCl, 100 µL/20 g) and cisplatin (3 mg/kg
in 0.9% NaCl, 100 µL/20 g) in male CT26-allograft-bearing BALB/c mice. Blood was taken
after 30 min and 24 h after the first application from the facial vein and terminally by
cardiac puncture 24 h after the second application. To separate serum from blood pellet,
blood was twice spun down at 900 g for 10 min at 4 ◦C. The platinum amount of all samples
was measured by ICP-MS.

2.9. Synthesis
2.9.1. Platinum(IV) Complexes

Acetatohydroxidoplatinum(IV) complexes serving as precursors for substances 1–6 as
well as substance 7 were synthesized according to previously published procedures [23,26–28].

General procedure 1: carboxylation of unsymmetrically oxidized platinum(IV) com-
plexes (1–6):

The corresponding precursor platinum(IV) complex and succinic anhydride were
stirred overnight in absolute DMF under argon atmosphere at 50 ◦C. The solvent was
removed under reduced pressure. Purification was performed by using preparative RP-
HPLC. Finally, the product was freeze-dried.

1. (OC-6-44)-Acetatodiammine(3-carboxypropanoato)dichloridoplatinum(IV) (1)
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The reaction was performed according to general procedure 1. Acetatodiamminedichlo-
ridohydroxidoplatinum(IV) (5.171 g, impure, 13.75 mmol, 1 eq.), succinic anhydride (5.502 g,
55.00 mmol, 4 eq.), absolute DMF (100 mL). Preparative RP-HPLC (isocratic, MeOH: Milli-Q
water = 5:95 + 0.1% formic acid). Yield: 1.555 g. 1H NMR (d6-DMSO): δ = 6.51 (b, 6H,
NH3), one of the CH2 signals of the succinato ligand is in part overlapping with the DMSO
solvent peak, 2.34–2.38 (m, 2H, CH2, succinato), 1.90 (s, 3H, CH3) ppm. Elemental analysis:
C6H14Cl2N2O6Pt·H2O; calcd. C 14.58, H 3.26, N 5.67, found C 14.40, H 3.14, N 5.64.

2. (OC-6-44)-Acetaodiammine(3-carboxypropanoato)(cyclobutane-1,1-dicarboxylato)
platinum(IV) (2)

The reaction was performed according to general procedure 1. Acetaodiammine
(cyclobutane-1,1-dicarboxylato)hydroxidoplatinum(IV) (2.260 g, impure, 5.05 mmol, 1 eq.),
succinic anhydride (2.021 g, 20.21 mmol, 4 eq.), absolute DMF (40 mL). Preparative RP-
HPLC (isocratic, MeOH: Milli-Q water = 17:83 + 0.1% formic acid). Yield: 524 mg. 1H NMR
(d6-DMSO): δ = 6.34 (t, 1J(14N, 1H) = 50.5 Hz, 6H, NH3), CH2-C signal of the cyclobutyl
moiety and one of the CH2 signals of the succinato ligand are in part overlapping with
the DMSO solvent peak, 2.35 (m, 2H, CH2, succinato), 1.89 (s, 3H, CH3), 1.80 (p, 3J(1H,
1H = 8.2 Hz), 2H, CH2, cyclobutyl) ppm. Elemental analysis: C12H20N2O10Pt·H2O; calcd.
C 25.49, H 3.92, N 4.95, found C 25.80, H 3.66, N 5.12.

3. (OC-6-44)-Acetato(3-carboxypropanoato)(1R,2R-cyclohexane-1,2-diamine)
oxalatoplatinum(IV) (3)

The reaction was performed according to general procedure 1. Acetato(1R,2R-
cyclohexane-1,2-diamine)hydroxidooxalatoplatinum(IV) (7.845 g, impure, 16.64 mmol,
1 eq.), succinic anhydride (6.666 g, 66.71 mmol, 4 eq.), absolute DMF (130 mL). Preparative
RP-HPLC (isocratic, ACN: Milli-Q water = 5:95 + 0.1% formic acid). Yield: 2.988 g. Crystals
suitable for X-ray diffraction were obtained from a methanol solution by slow evaporation
at room temperature. 1H NMR (d6-DMSO): δ = 12.13 (b, 1H, OH), 8.29 (m, 4H, NH2),
2.53–2.62 (m, 2H, CH, DACH), one of the CH2 signals of the succinato ligand is overlapping
with the DMSO solvent peak, 2.35–2.41 (m, 2H, CH2, succinato), 2.06–2.14 (m, 2H, CH2,
DACH), 1.95 (s, 3H, CH3), 1.47–1.54 (m, 2H, CH2, DACH), 1.33–1.47 (m, 2H, CH2, DACH)
1.08–1.21 (m, 2H, CH2, DACH) ppm. Elemental analysis: C14H22N2O10Pt·H2O; calcd. C
28.43, H 4.09, N 4.74, found C 28.08, H 4.00, N 4.91.

4. (OC-6-44)-Acetato(3-carboxypropanoato)(1R,2R-cyclohexane-1,2-diamine)(13C2)
oxalatoplatinum(IV) (4)

The reaction was performed according to general procedure 1. Acetato(1R,2R-
cyclohexane-1,2-diamine)(13C2)hydroxidooxalatoplatinum(IV) (677 mg, impure, 1.42 mmol,
1eq.), succinic anhydride (570 mg, 5.70 mmol, 4 eq.), absolute DMF (30 mL). Preparative
RP-HPLC (isocratic, ACN: Milli-Q water = 5:95 + 0.1% formic acid). Yield: 188 mg. 1H
NMR (D2O): δ = 2.83–2.95 (m, 2H, DACH), 2.64–2.69 (m, 2H, succinato), 2.59–2.63 (m,
2H, succinato), 2.27–2.34 (m, 2H, DACH), 2.07 (s, 3H, CH3), 1.53–1.70 (m, 4H, DACH),
1.20–1.32 (m, 2H, DACH) ppm. 13C NMR (D2O): δ = 181.9 (C=O, succinato), 181.4 (C=O,
acetato), 177.2 (C=O, succinato), 166.4 (13C=O, oxalato), 164.5–165.5 (smaller 13C=O signals,
impurities), 61.8 (CH, DACH), 61.3 (CH, DACH), 30.8 (CH2, DACH), 30.7 (CH2, succinato),
29.7 (CH2, succinato), 23.42 (CH2, DACH), 23.38 (CH2, DACH), 22.1 (CH3) ppm. 195Pt
NMR (D2O): δ = 3214 ppm. Elemental analysis: C12

13C2H22N2O10Pt·1.5H2O; calcd. C
28.00, H 4.20, N 4.67, found C 27.91, H 3.82, N 4.89.

5. (OC-6-54)-Acetato(3-carboxypropanoato)(13C2)oxalato(1R,2R,4R/1S,2S,4S)-(4-
trifluoromethyl-cyclohexane-1,2-diamine)platinum(IV) (5)

The reaction was performed according to general procedure 1. Acetatohydroxido(13C2)
oxalato(1R,2R,4R/1S,2S,4S)-(4-trifluoromethyl-cyclohexane-1,2-diamine)platinum(IV) (2.588 g,
impure, 4.76 mmol, 1 eq.), succinic anhydride (1.192 g, 11.91 mmol, 2.5 eq.), absolute DMF
(40 mL). Preparative RP-HPLC (isocratic, MeOH: Milli-Q water = 15:85 + 0.1% formic
acid). Yield: 113 mg. 1H NMR (d6-DMSO): δ = 12.11 (b, 1H, OH), 8.27–8.57 (m, 2H, NH2),
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7.96–8.27 (m, 2H, NH2), 2.81 (m, 1H, CH, DACH), 2.73 (m, 1H, CH, DACH), one CH2 signal
of the succinato ligand and one CH signal of the DACH ligand is overlapping with the
DMSO solvent peak, 2.34–2.43 (m, 2H, CH2, succinato), 2.20–2.28 (m, 1H, CH2, DACH),
2.13–2.20 (m, 1H, CH2, DACH), 1.96+1.95 (b, 3H, CH3), 1.71–1.78 (m, 1H, CH2, DACH),
1.48–1.63 (m, 2H, CH2, DACH), 1.28–1.40 (m, 1H, CH2, DACH) ppm. 13C NMR (d6-DMSO):
δ = 179.5 + 179.2 (C=O, succinato), 178.4 + 178.2 (C=O, acetato), 173.85 + 173.75 (C=O,
succinato), 163.34 + 163.32 (13C=O, oxalato), 162.7–165.8 (smaller 13C=O (coupling) signals
based on the asymmetry of labeled oxalate), 126.9 (q, 1J (19F, 13C) = 278.6 Hz, CF3), 59.9 (CH,
DACH), 59.3 (CH, DACH), 59.2 (CH, DACH), 30.64 + 30.58 (CH2, succinato), 29.8 + 29.7
(CH2, succinato), 29.1 + 29.0 (CH2, DACH), 28.1 + 28.0 (CH2, DACH), 23.0 + 22.9 (CH3),
22.48 + 22.45 (CH2, DACH) ppm. 15N NMR (d6-DMSO): δ = −8.4 (NH2) ppm. 19F NMR (d6-
DMSO): δ = −71.37/−71.39 (2d, 3J(1H, 19F) = 8.6 Hz, 3F, CF3) ppm. 195Pt NMR (d6-DMSO):
δ = 3260 (major), 3234 (minor) ppm. Elemental analysis: C13

13C2H21F3N2O10Pt·2H2O;
calcd. C 26.59, H 3.73, N 4.14, found C 26.58, H 3.42, N 4.31.

6. (OC-6-44)-Acetato(3-carboxypropanoato)dichlorido(1R,2R-cyclohexane-1,2-diamine)
platinum(IV) (6)

The reaction was performed according to general procedure 1. Acetatodichlorido(1R,
2R-cyclohexane-1,2-diamine)hydroxidoplatinum(IV) (147 mg, 0.32 mmol, 1 eq.), succinic
anhydride (82 mg, 0.81 mmol, 2.5 eq.), absolute DMF (15 mL). Preparative RP-HPLC
(isocratic, ACN: Milli-Q water = 10:90 + 0.1% formic acid). Yield: 40 mg (22%). 1H NMR
(d6-DMSO): δ = 12.10 (s, 1H, OH), 9.33 (m, 2H, NH2), 8.30 (b, 1H, NH2), 8.12 (b, 1H,
NH2), 2.52–2.68 (m, 2H, CH, DACH), 2.33–2.49 (m, 4H, CH2, succinato signal is in part
overlapping with the DMSO solvent peak), 2.14–2.23 (m, 2H, CH2, DACH), 1.95 (s, 3H,
CH3), 1.46–1.56 (m, 2H, CH2, DACH), 1.21–1.39 (m, 2H, CH2, DACH), 1.08–1.20 (m, 2H,
CH2, DACH) ppm. 13C NMR (d6-DMSO): δ = 181.9 (C=O, succinato), 180.7 (C=O, acetato),
173.7 (C=O, succinato), 62.45 + 62.43 (CH, DACH), 31.2 (CH2, succinato), 31.0 (CH2, DACH),
29.6 (CH2, succinato), 23.53 (CH3), 23.48 (CH2, DACH), 23.3 (CH2, DACH) ppm. 15N NMR
(d6-DMSO): δ = 5.3 (NH2), 3.7 (NH2) ppm. 195Pt NMR (d6-DMSO): δ = 2729 ppm. Elemental
analysis: C12H22Cl2N2O6Pt; calcd. C 25.91, H 3.99, N 5.04, found C 25.53, H 3.92, N 5.01.

7. (OC-6-44)-(3-carboxypropanoato)(1R,2R-cyclohexanem-1,2-diamine) hydroxidoox-
alatoplatinum(IV) (7)

(1R,2R-cyclohexanediamine)dihydroxidooxalatoplatinum(IV) (57 mg, 0.13 mmol, 1 eq.)
and succinic anhydride (13 mg, 0.13 mmol, 1 eq.) were stirred in absolute DMSO (10 mL) for
16 h under argon atmosphere at 50 ◦C. Afterward, the solvent was removed under reduced
pressure. Purification was performed via preparative RP-HPLC (isocratic, MeOH: Milli-Q
water = 5:95 + 0.1% formic acid) and the final product was obtained after lyophilization.
Yield: 25 mg (36%). 1H NMR (d6-DMSO): δ = 12.04 (b, 2H, OH), 8.42 (b, 1H, NH2),
8.09 (b, 1H, NH2), 7.80 (b, 1H, NH2), 7.06 (b, 1H, NH2), the CH signals of the DACH
ligand are overlapping with the DMSO solvent peak, 2.40–2.45 (m, 2H, CH2, succinato),
2.34–2.39 (m, 2H, CH2, succinato), 2.00–2.11 (m, 2H, CH2, DACH), 1.39–1.55 (m, 3H, CH2,
DACH), 1.26–1.36 (m, 1H, CH2, DACH), 1.05–1.18 (m, 2H, CH2, DACH) ppm. 13C NMR
(d6-DMSO): δ = 180.8 (C=O, succinato), 173.9 (C=O, succinato), 163.9 (C=O, oxalato), 163.8
(C=O, oxalato), 61.2 (CH, DACH), 60.0 (CH, DACH), 31.4 (CH2, succinato), 30.9 (CH2,
DACH), 30.7 (CH2, DACH), 29.8 (CH2, succinato), 23.7 (CH2, DACH), 23.5 (CH2, DACH)
ppm. 15N NMR (d6-DMSO): δ = −5.9 (NH2) and −9.6 (NH2) ppm. 195Pt NMR (d6-DMSO):
δ = 3039 ppm. Elemental analysis: C12H20N2O9Pt·2H2O; calcd. C 25.40, H 4.25, N 4.94,
found C 25.74, H 3.85, N 5.02.

2.9.2. Platinum(IV)-PAMAM Dendrimer Conjugates
General Procedure 2: Coupling of Platinum(IV) Complexes to G2 or G4 PAMAM
Dendrimers (C1–C27)

The corresponding platinum(IV) complex 1–7 (1 eq.), N-(3-dimethylaminopropyl)-N′-
ethylcarbodiimide hydrochloride (EDC·HCl) (3.5 eq.) and N-hydroxysuccinimide (NHS)
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(3.5 eq.) were dissolved in Milli-Q water (5 mL) and the mixture was stirred for about 40 min
at room temperature. Afterward, an aqueous solution (15 mL) of PAMAM dendrimer
(0.06 eq. for G2 and 0.02 eq. for G4) was added. The reaction time ranged from 6 to
24 h. Purification was performed by dialysis against distilled water (MWCO = 1.0 kDa
for G2 and 3.5 kDa for G4, 12 changes within 14 h). Finally, the product was obtained via
lyophilization.

1. Complex 1 coupled to G2 PAMAM dendrimer (C1)

The reaction was performed according to general procedure 2. 1 (60 mg, 0.13 mmol,
1 eq.), G2 PAMAM (25 mg, 0.0076 mmol, 0.06 eq.), EDC·HCl (85 mg, 0.44 mmol, 3.5 eq.),
NHS (51 mg, 0.44 mmol, 3.5 eq.), reaction time of 12 h. Yield: 29 mg. ICP-MS (Pt):
194.1 g/kg, average Pt loading of 37.31%, 5.97 Pt units. 195Pt NMR (D2O): δ = 2712 ppm.

2. Complex 2 coupled to G2 PAMAM dendrimer (C2)

The reaction was performed according to general procedure 2. 2 (60 mg, 0.11 mmol,
1 eq.), G2 PAMAM (21 mg, 0.0066 mmol, 0.06 eq.), EDC·HCl (74 mg, 0.38 mmol, 3.5 eq.),
NHS (44 mg, 0.38 mmol, 3.5 eq.), reaction time of 12 h. Yield: 44 mg. ICP-MS (Pt):
161.7 g/kg, average Pt loading of 30.13%, 4.82 Pt units. 195Pt NMR (D2O): δ = 3507 ppm.

3. Complex 4 coupled to G2 PAMAM dendrimer (C3)

The reaction was performed according to general procedure 2. 4 (60 mg, 0.10 mmol,
1 eq.), G2 PAMAM (20 mg, 0.0063 mmol, 0.06 eq.), EDC·HCl (70 mg, 0.37 mmol, 3.5 eq.),
NHS (42 mg, 0.37 mmol, 3.5 eq.), reaction time of 12 h. Yield: 23 mg. ICP-MS (Pt):
176.2 g/kg, average Pt loading of 37.06%, 5.93 Pt units. 195Pt NMR (D2O): δ = 3218 ppm.

4. Complex 5 coupled to G2 PAMAM dendrimer (C4)

The reaction was performed according to general procedure 2. 5 (151 mg, 0.23 mmol,
1 eq.), G2 PAMAM (46 mg, 0.014 mmol, 0.06 eq.), EDC·HCl (157 mg, 0.82 mmol, 3.5 eq.),
NHS (94 mg, 0.82 mmol, 3.5 eq.), reaction time of 12h. Yield: 148 mg. ICP-MS (Pt):
140.7 g/kg, average Pt loading of 27.38%, 4.38 Pt units. 19F NMR (D2O): δ = −72.8–(−72.5)
(d, 3J(1H, 19F) = 8.6 Hz, 3F, CF3) (several overlapping duplets) ppm. 195Pt NMR (D2O):
δ = 3246 (minor), 3239 (major) ppm.

5. Complex 7 coupled to G2 PAMAM dendrimer (C5)

The reaction was performed according to general procedure 2. 7 (80 mg, 0.15 mmol,
1 eq.), G2 PAMAM (29 mg, 0.009 mmol, 0.06 eq.), EDC·HCl (101 mg, 0.53 mmol, 3.5 eq.),
NHS (61 mg, 0.53 mmol, 3.5 eq.), reaction time of 12 h. Yield: 45 mg. ICP-MS (Pt):
207.7 g/kg, average Pt loading of 47.88%, 7.66 Pt units. 195Pt NMR (D2O): δ = 3038 ppm.

6. Complex 1 coupled to G4 PAMAM dendrimer (C6)

The reaction was performed according to general procedure 2. 1 (60 mg, 0.13 mmol,
1 eq.), G4 PAMAM (36 mg, 0.0025 mmol, 0.02 eq.), EDC·HCl (85 mg, 0.44 mmol, 3.5 eq.),
NHS (51 mg, 0.44 mmol, 3.5 eq.), reaction time of 12 h. Yield: 41 mg. ICP-MS (Pt): 93.2 g/kg,
average Pt loading of 13.59%, 8.70 Pt units. 195Pt NMR (D2O): δ = 2711 ppm.

7. Complex 1 coupled to G4 PAMAM dendrimer (C7)

The reaction was performed according to general procedure 2. 1 (60 mg, 0.13 mmol,
1 eq.), G4 PAMAM (36 mg, 0.0025 mmol, 0.02 eq.), EDC·HCl (85 mg, 0.44 mmol, 3.5 eq.),
NHS (51 mg, 0.44 mmol, 3.5 eq.), reaction time of 24 h. Yield: 26 mg. ICP-MS (Pt):
102.7 g/kg, average Pt loading of 15.42%, 9.87 Pt units. 195Pt NMR (D2O): δ = 2712 ppm.

8. Complex 1 coupled to G4 PAMAM dendrimer (C8)

The reaction was performed according to general procedure 2. 1 (60 mg, 0.13 mmol,
1 eq.), G4 PAMAM (36 mg, 0.0025 mmol, 0.02 eq.), EDC·HCl (85 mg, 0.44 mmol, 3.5 eq.),
NHS (51 mg, 0.44 mmol, 3.5 eq.), reaction time of 12 h. Yield: 34.8 mg. ICP-MS (Pt):
105.3 g/kg, average Pt loading of 15.94%, 10.20 Pt units. 195Pt NMR (D2O): δ = 2712 ppm.
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9. Complex 1 coupled to G4 PAMAM dendrimer (C9)

The reaction was performed according to general procedure 2. 1 (60 mg, 0.13 mmol,
1 eq.), G4 PAMAM (36 mg, 0.0025 mmol, 0.02 eq.), EDC·HCl (85 mg, 0.44 mmol, 3.5 eq.),
NHS (51 mg, 0.44 mmol, 3.5 eq.), reaction time of 18 h. Yield: 33 mg. ICP-MS (Pt):
111.6 g/kg, average Pt loading of 17.23%, 11.03 Pt units. 195Pt NMR (D2O): δ = 2712 ppm.

10. Complex 1 coupled to G4 PAMAM dendrimer (C10)

The reaction was performed according to general procedure 2. 1 (60 mg, 0.13 mmol,
1 eq.), G4 PAMAM (36 mg, 0.0025 mmol, 0.02 eq.), EDC·HCl (85 mg, 0.44 mmol, 3.5 eq.),
NHS (51 mg, 0.44 mmol, 3.5 eq.), reaction time of 21 h. Yield: 28 mg. ICP-MS (Pt):
129.5 g/kg, average Pt loading of 21.20%, 13.57 Pt units. 195Pt NMR (D2O): δ = 2711 ppm.

11. Complex 1 coupled to G4 PAMAM dendrimer (C11)

The reaction was performed according to general procedure 2. 1 (60 mg, 0.13 mmol,
1 eq.), G4 PAMAM (36 mg, 0.0025 mmol, 0.02 eq.), EDC·HCl (85 mg, 0.44 mmol, 3.5 eq.),
NHS (51 mg, 0.44 mmol, 3.5 eq.), reaction time of 12 h. Yield: 54 mg. ICP-MS (Pt):
235.8 g/kg, average Pt loading of 60.33%, 38.61 Pt units. 195Pt NMR (D2O): δ = 2712 ppm.

12. Complex 1 coupled to G4 PAMAM dendrimer (C12)

The reaction was performed according to general procedure 2. 1 (300 mg, 0.63 mmol,
1 eq.), G4 PAMAM (179 mg, 0.013 mmol, 0.02 eq.), EDC·HCl (423 mg, 2.21 mmol, 3.5 eq.),
NHS (254 mg, 2.21 mmol, 3.5 eq.), reaction time of 12 h. Yield: 325 mg. ICP-MS (Pt):
259.6 g/kg, average Pt loading of 75.98%, 48.63 Pt units. 195Pt NMR (D2O): δ = 2710 ppm.

13. Complex 2 coupled to G4 PAMAM dendrimer (C13)

The reaction was performed according to general procedure 2. 2 (60 mg, 0.131 mmol,
1 eq.), G4 PAMAM (31 mg, 0.0022 mmol, 0.02 eq.), EDC·HCl (73 mg, 0.38 mmol, 3.5 eq.),
NHS (44 mg, 0.38 mmol, 3.5 eq.), reaction time of 12 h. Yield: 67 mg. ICP-MS (Pt):
195.1 g/kg, average Pt loading of 47.30%, 30.27 Pt units. 195Pt NMR (D2O): δ = 3507 ppm.

14. Complex 3 coupled to G4 PAMAM dendrimer (C14)

The reaction was performed according to general procedure 2. 3 (60 mg, 0.10 mmol,
1 eq.), G4 PAMAM (33 mg, 0.0021 mmol, 0.02 eq.), EDC·HCl (70 mg, 0.37 mmol, 3.5 eq.),
NHS (42 mg, 0.37 mmol, 3.5 eq.), reaction time of 18 h. Yield: 80 mg. ICP-MS (Pt): 86.8 g/kg,
average Pt loading of 13.14%, 8.41 Pt units. 195Pt NMR (D2O): δ = 3217 ppm.

15. Complex 3 coupled to G4 PAMAM dendrimer (C15)

The reaction was performed according to general procedure 2. 3 (60 mg, 0.10 mmol,
1 eq.), G4 PAMAM (33 mg, 0.0021 mmol, 0.02 eq.), EDC·HCl (70 mg, 0.37 mmol, 3.5 eq.),
NHS (42 mg, 0.37 mmol, 3.5 eq.), reaction time of 15 h. Yield: 56 mg. ICP-MS (Pt):
103.9 g/kg, average Pt loading of 16.81%, 10.76 Pt units. 195Pt NMR (D2O): δ = 3217 ppm.

16. Complex 3 coupled to G4 PAMAM dendrimer (C16)

The reaction was performed according to general procedure 2. 3 (60 mg, 0.10 mmol,
1 eq.), G4 PAMAM (33 mg, 0.0021 mmol, 0.02 eq.), EDC·HCl (70 mg, 0.37 mmol, 3.5 eq.),
NHS (42 mg, 0.37 mmol, 3.5 eq.), reaction time of 12 h. Yield: 90 mg. ICP-MS (Pt):
113.2 g/kg, average Pt loading of 19.03%, 12.18 Pt units. 195Pt NMR (D2O): δ = 3218 ppm.

17. Complex 3 coupled to G4 PAMAM dendrimer (C17)

The reaction was performed according to general procedure 2. 3 (60 mg, 0.10 mmol,
1 eq.), G4 PAMAM (33 mg, 0.0021 mmol, 0.02 eq.), EDC·HCl (71 mg, 0.37 mmol, 3.5 eq.),
NHS (42 mg, 0.37 mmol, 3.5 eq.), reaction time of 24 h. Yield: 80 mg. ICP-MS (Pt):
119.1 g/kg, average Pt loading of 20.53%, 13.14 Pt units. 195Pt NMR (D2O): δ = 3218 ppm.

18. Complex 3 coupled to G4 PAMAM dendrimer (C18)
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The reaction was performed according to general procedure 2. 3 (60 mg, 0.10 mmol,
1 eq.), G4 PAMAM (33 mg, 0.0021 mmol, 0.02 eq.), EDC·HCl (71 mg, 0.37 mmol, 3.5 eq.),
NHS (42 mg, 0.37 mmol, 3.5 eq.), reaction time of 6 h. Yield: 81 mg. ICP-MS (Pt): 141.4 g/kg,
average Pt loading of 26.98%, 17.27 Pt units. 195Pt NMR (D2O): δ = 3217 ppm.

19. Complex 3 coupled to G4 PAMAM dendrimer (C19)

The reaction was performed according to general procedure 2. 3 (60 mg, 0.10 mmol,
1 eq.), G4 PAMAM (33 mg, 0.0021 mmol, 0.02 eq.), EDC·HCl (70 mg, 0.37 mmol, 3.5 eq.),
NHS (42 mg, 0.37 mmol, 3.5 eq.), reaction time of 21 h. Yield: 81 mg. ICP-MS (Pt):
160.7 g/kg, average Pt loading of 33.78%, 21.62 Pt units. 195Pt NMR (D2O): δ = 3218 ppm.

20. Complex 3 coupled to G4 PAMAM dendrimer (C20)

The reaction was performed according to general procedure 2. 3 (60 mg, 0.10 mmol,
1 eq.), G4 PAMAM (33 mg, 0.0021 mmol, 0.02 eq.), EDC·HCl (71 mg, 0.37 mmol, 3.5 eq.),
NHS (43 mg, 0.37 mmol, 3.5 eq.), reaction time of 9 h. Yield: 95 mg. ICP-MS (Pt): 181.4 g/kg,
average Pt loading of 42.80%, 27.39 Pt units. 195Pt NMR (D2O): δ = 3218 ppm.

21. Complex 3 coupled to G4 PAMAM dendrimer (C21)

The reaction was performed according to general procedure 2. 3 (60 mg, 0.10 mmol,
1 eq.), G4 PAMAM (33 mg, 0.0021 mmol, 0.02 eq.), EDC·HCl (70 mg, 0.37 mmol, 3.5 eq.),
NHS (42 mg, 0.37 mmol, 3.5 eq.), reaction time of 24 h. Yield: 76 mg. ICP-MS (Pt):
240.1 g/kg, average Pt loading of 86.73%, 55.51 Pt units. 195Pt NMR (D2O): δ = 3217 ppm.

22. Complex 4 coupled to G4 PAMAM dendrimer (C22)

The reaction was performed according to general procedure 2. 4 (60 mg, 0.10 mmol,
1 eq.), G4 PAMAM (30 mg, 0.0021 mmol, 0.02 eq.), EDC·HCl (70 mg, 0.37 mmol, 3.5 eq.),
NHS (43 mg, 0.37 mmol, 3.5 eq.), reaction time of 12 h. Yield: 65 mg. ICP-MS (Pt):
168.1 g/kg, average Pt loading of 37.95%, 24.29 Pt units. 195Pt NMR (D2O): δ = 3218 ppm.

23. Complex 5 coupled to G4 PAMAM dendrimer (C23)

The reaction was performed according to general procedure 2. 5 (60 mg, 0.09 mmol,
1 eq.), G4 PAMAM (27 mg, 0.0019 mmol, 0.02 eq.), EDC·HCl (63 mg, 0.33 mmol, 3.5 eq.),
NHS (38 mg, 0.33 mmol, 3.5 eq.), reaction time of 12 h. Yield: 57 mg. ICP-MS (Pt):
125.1 g/kg, average Pt loading of 23.80%, 15.23 Pt units. 19F NMR (D2O): δ = -72.9-(-72.4)
(d, 3J (1H, 19F) = 8.5 Hz, 3F, CF3) (several overlapping duplets) ppm. 195Pt NMR (D2O):
δ = 3246 (minor), 3239 (major) ppm.

24. Complex 7 coupled to G4 PAMAM dendrimer (C24)

The reaction was performed according to general procedure 2. 7 (80 mg, 0.15 mmol,
1 eq.), G4 PAMAM (43 mg, 0.0030 mmol, 0.02 eq.), EDC·HCl (101 mg, 0.53 mmol, 3.5 eq.),
NHS (61 mg, 0.53 mmol, 3.5 eq.), reaction time of 12 h. Yield: 106 mg. ICP-MS (Pt):
152.6 g/kg, average Pt loading of 29.06%, 18.60 Pt units. 195Pt NMR (D2O): δ = 3038 ppm.

3. Results and Discussion
3.1. Synthesis

Acetatohydroxidoplatinum(IV) precursor complexes were synthesized according to
standard procedures via unsymmetric oxidation with hydrogen peroxide in acetic acid [27].
The trifluoromethyl oxaliplatin analog was synthesized as reported recently [26]. Further
reaction with succinic anhydride in absolute DMF resulted in complexes 1–6 after purifi-
cation via RP-HPLC [23]. The synthesis of compound 7 followed a method previously
published (Scheme 1) [28].
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Scheme 1. Synthetic pathway leading to platinum(IV) complexes 1–7. Scheme 1. Synthetic pathway leading to platinum(IV) complexes 1–7.

The conjugation of platinum(IV) complexes to G2 and G4 PAMAM dendrimers
was performed in two steps adapted from a previously published procedure [23]. At
first, COOH groups of compounds 1–7 were activated with the coupling reagents N-(3-
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dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC·HCl) and N-
hydroxysuccinimide (NHS) forming an NHS-ester [29]. The addition of G2 and G4 PAMAM
dendrimers containing primary amines as terminal groups resulted in amide bond forma-
tions leading to conjugates C1–C24 (Scheme 2). Purification was performed via dialysis
against distilled water using dialysis tubings with a molecular weight cut-off (MWCO) of
1 kDa for conjugates of G2 and MWCO of 3.5 kDa for G4, respectively. The final conjugates,
C1–C24, were obtained via lyophilization. Additionally, conjugates with platinum(IV)
complex 6 were synthesized. However, analysis by NMR spectroscopy revealed an ad-
ditional signal in 195Pt NMR spectra, probably caused by hydrolysis during the dialysis
process. Consequently, these conjugates could not be included in this study. Furthermore,
numerous couplings of the G4 PAMAM dendrimer with platinum(IV) complexes 1 and 3
were conducted with different reaction times in order to vary the loading with platinum(IV)
complexes (Table 1).
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Table 1. Overview of the composition of conjugates C1–C24 including platinum(IV) units per
PAMAM dendrimer, average loading rates and molecular weights (MW).

Sample Pt(IV) PAMAM
Number of

Terminal NH2
Moieties

Pt(IV)
Units per
PAMAM

Average
Pt(IV)

Loading [%]
MW [kDa]

C1 1 G2 16 5.97 37.31 6.0
C2 2 G2 16 4.82 30.13 5.8
C3 4 G2 16 5.93 37.06 6.6
C4 5 G2 16 4.38 27.38 6.0
C5 7 G2 16 7.66 47.88 7.2

C6 1 G4 64 8.70 13.59 18.2
C7 1 G4 64 9.87 15.42 18.7
C8 1 G4 64 10.20 15.94 18.9
C9 1 G4 64 11.03 17.23 19.3
C10 1 G4 64 13.57 21.20 20.4
C11 1 G4 64 38.61 60.33 31.9
C12 1 G4 64 48.63 75.98 36.5

C13 2 G4 64 30.27 47.30 30.2

C14 3 G4 64 8.41 13.14 18.9
C15 3 G4 64 10.76 16.81 20.2
C16 3 G4 64 12.18 19.03 21.0
C17 3 G4 64 13.14 20.53 21.5
C18 3 G4 64 17.27 26.98 23.8
C19 3 G4 64 21.62 33.78 26.2
C20 3 G4 64 27.39 42.80 29.4
C21 3 G4 64 55.51 86.73 45.0

C22 4 G4 64 24.29 37.95 27.8

C23 5 G4 64 15.23 23.80 23.7

C24 7 G4 64 18.60 29.06 23.8
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3.2. Analysis

Characterization of platinum(IV) complexes 1–7 was performed by using multinu-
clear one- and two-dimensional NMR spectroscopy (1H, 13C, 15N, 19F, 195Pt) (Supporting
Information, Figures S1–S10) and their purity was validated by elemental analysis (>95%).
The platinum(IV)-PAMAM conjugates C1–C24 were analyzed by 1H and 195Pt NMR spec-
troscopy (Supporting Information, Figures S11–S20). 195Pt resonances between 2611 and
3507 ppm are indicative of the presence of platinum(IV) units. As an example, the 1H
NMR spectra of G4 PAMAM conjugate C14 and platinum(IV) complex 3 are shown for
comparison (Figure S21). 1H signals of conjugates in the region above 2.2 ppm result in
part from signals of the bound platinum(IV) moiety as well as from signals of the inner
and outer part of the dendrimer with peripheral amine groups which are free or bound to
the platinum complex. Therefore, complete signal assignment in proton NMR spectra was
unfortunately not possible.

Furthermore, ICP-MS was used for the determination of the platinum amount of
conjugates C1–C24. The different platinum(IV) units per dendrimer and the corresponding
loading rates are shown in Table 1. The molecular weight of conjugates C1–C24 was
calculated based on the molecular weight of the PAMAM dendrimer (according to Sigma-
Aldrich: PAMAM G2 = 3256 g/mol, PAMAM G4 = 14214 g/mol) and the addition of the
molecular weight of attached platinum(IV) units, while also considering the release of
water molecules during the conjugation process (Table 1).

Additionally, pseudo-2D diffusion-ordered spectroscopy (DOSY) spectra were mea-
sured for selected compounds, confirming the conjugation of platinum(IV) complexes to
PAMAM dendrimers. As an example, an overlay of DOSY spectra of the conjugate C14, the
unloaded G4 PAMAM dendrimer and platinum(IV) complex 3 is shown in Figure S22 (Sup-
porting Information). The derived diffusion coefficient was used to estimate the average
diameter of unloaded G2 and G4 PAMAM dendrimers as well as of conjugates C1–C3 and
C12–C14 using the Stokes–Einstein equation and the assumption that the molecules are
spherical (Table 2). As expected, the conjugation of platinum(IV) complexes to dendrimers
significantly increased the diameter compared to unloaded PAMAM dendrimers. The
calculated diameters are consistent with previously published data [23].

Table 2. Estimated diameters using DOSY spectra and Stokes–Einstein equation of G2 and G4
PAMAM dendrimers as well as of conjugates C1–C3 and C12–C14.

Sample Pt(IV) PAMAM Diameter [Å] Diameter Increase [%]

G2 PAMAM - G2 ~27.9 -
G4 PAMAM - G4 ~44.4 -

C1 1 G2 ~30.4 ~9
C2 2 G2 ~36.9 ~32
C3 3 G2 ~36.5 ~31

C12 1 G4 ~54.4 ~23
C13 2 G4 ~63.6 ~43
C14 3 G4 ~60.0 ~35

Moreover, the reduction behavior of conjugates in comparison to unattached plat-
inum(IV) complexes was investigated by time-dependent 1H NMR spectroscopy (Table 3).
In general, the reduction behavior is influenced by the nature of the ligands coordinated to
the platinum(IV) core. In addition to the axial ligands, the equatorial coordination sphere
plays a crucial part as shown by the significantly different rates of reduction of platinum(IV)
complexes 1–3, 5, 6 featuring the same carboxylato ligands in axial position. In accordance
with previous studies [30,31], the cisplatin core of substance 1 led to a faster reduction with
a reduction half-time of 6 h, whereas only 6% of the carboplatin(IV) analog 2 was reduced
after 95 h. Similar to complex 1, the two chlorido ligands of compound 6 allow fast electron
transfer, thereby supporting rapid reduction [32]. The additional trifluoromethyl group in
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position 4 of the DACH ligand of complex 5 seems to cause a faster reduction in compari-
son to substance 3, comparable with the discovered relationship of electron-withdrawing
power and rate of reduction for axial ligands [33,34]. Furthermore, the strong effect of axial
ligands on the reduction behavior is displayed by the comparison of the two oxaliplatin(IV)
analogs 3 and 7. The amine and carboxylato ligands of complex 3 cannot form bridges
with the reducing agent and thus do not support the electron transfer from ascorbate to the
platinum(IV) atom in the center. Consequently, only 14% of compound 3 was reduced after
165 h. In contrast, the hydroxido ligand of complex 7 facilitates electron transfer and results
in a significantly lower reduction half-time of 29 h, consistent with previously published
results [35,36]. The same order of rates of reduction was observed for the conjugates of the
respective platinum(IV) complexes, except for C23. Generally, all conjugates underwent
faster reduction compared to their corresponding platinum(IV) complexes, possibly caused
by the increased bulkiness of the axial ligand. A potential connection between bulkiness
and facilitated reduction has been reported in the literature [37]. As further expected, the
influence between G2 and G4 dendrimers on the reduction behavior is marginal due to
the huge distance to the platinum(IV) core. Therefore, no significant difference in the rate
of reduction between conjugates of G2 and G4 dendrimers was observed based on the
measurements of C2 and C13, respectively.

Table 3. Overview of the reduction half-times of platinum(IV) complexes and representative conju-
gates at ambient temperature (ratio complex: ascorbic acid = 1:25). Due to long reduction half-times,
some measurements were stopped before reaching the reduction half-time, and the percentage of the
reduced species at this point is mentioned in brackets.

Sample Pt(IV) PAMAM Reduction Half-Time [h]

1 1 - ~6
2 2 - >95 (~6%)
3 3 - >165 (~14%)
5 5 - >93 (~23%)
6 6 - ~27
7 7 - ~29

C2 2 G2 >92 (~37%)
C11 1 G4 ~3
C13 2 G4 >95 (~42%)
C22 4 G4 ~45
C23 5 G4 ~65
C24 7 G4 n/a

Finally, a single crystal of oxaliplatin analog 3 was obtained from a methanol solution
by slow evaporation at room temperature and was analyzed by X-ray diffraction. Complex
3 crystallized in the orthorhombic space group P212121 and confirmed the octahedral
coordination sphere with the platinum(IV) atom in the center (Figure 1). The bidentate
oxalato and DACH ligand are in equatorial position with bite angles of 84.74(16)◦ (O5–
Pt1–O6) and 83.59(19)◦ (N1–Pt1–N2), respectively. The structure is completed by two
axially coordinated carboxylato ligands featuring an O1–Pt1–O9 angle of 177.1(2)◦. The
equatorial Pt–N (Pt1–N1, 2.031(5); Pt1–N2, 2.034(5) Å) and Pt–O (Pt1–O5, 2.010(4); Pt1–
O6, 2.009(4) Å) distances are comparable to other oxaliplatin analogs reported in the
literature [38], whereas Pt–O bond lengths of carboxylato ligands in axial position were
found at 2.004(4) (Pt1–O1) and 2.002(4) Å (Pt1–O9), and are comparable with those of
previously published platinum(IV) complexes [39]. Additionally, one intra-molecular
hydrogen bond N1–H·····O10 of moderate character with a donor–acceptor contact of
2.715 Å (N1·····O10) and an angle of 130.1◦ (N1–H·····O10) was found in the solid state.
Further details about the crystal structure can be found in the Supporting Information
(Tables S1–S3).



Pharmaceutics 2023, 15, 1515 14 of 23

Pharmaceutics 2023, 15, x FOR PEER REVIEW 14 of 23 
 

 

oxalato and DACH ligand are in equatorial position with bite angles of 84.74(16)° (O5–
Pt1–O6) and 83.59(19)° (N1–Pt1–N2), respectively. The structure is completed by two axi-
ally coordinated carboxylato ligands featuring an O1–Pt1–O9 angle of 177.1(2)°. The equa-
torial Pt–N (Pt1–N1, 2.031(5); Pt1–N2, 2.034(5) Å) and Pt–O (Pt1–O5, 2.010(4); Pt1–O6, 
2.009(4) Å) distances are comparable to other oxaliplatin analogs reported in the literature 
[38], whereas Pt–O bond lengths of carboxylato ligands in axial position were found at 
2.004(4) (Pt1–O1) and 2.002(4) Å (Pt1–O9), and are comparable with those of previously 
published platinum(IV) complexes [39]. Additionally, one intra-molecular hydrogen bond 
N1–H·····O10 of moderate character with a donor–acceptor contact of 2.715 Å (N1·····O10) 
and an angle of 130.1° (N1–H·····O10) was found in the solid state. Further details about 
the crystal structure can be found in the Supporting Information (Tables S1–S3). 

 
Figure 1. ORTEP view of complex 3. Asymmetric unit of platinum(IV) complex 3 drawn with 50% 
displacement ellipsoid with a bond precision for C-C single bonds of 0.0099 Å. The chiral interpre-
tation is done with the help of Flack and Hooft parameters (−0.023, −0.019), and can be determined 
for C1 (R) and C2 (R). Solvent and disorder (main residue disorder = 4%) were omitted for clarity. 

3.3. Cytotoxicity 
Three human cancer cell lines differing in their chemosensitivity were employed for 

testing the cytotoxic potencies of all compounds: the broadly sensitive ovarian teratocar-
cinoma cell line CH1/PA-1, the multidrug-resistant non-small cell lung cancer cell line 
A549 and the colon cancer cell line SW480 with mostly intermediate sensitivity. IC50 values 
interpolated from concentration–effect curves (Supporting Information, Figures S23–S29) 
are listed in Table 4. This pattern of sensitivity also reflects throughout the data compiled 
here. 

As expected due to their higher inertness, platinum(IV) complexes 1–3 are by one to 
two orders of magnitude less potent than the corresponding platinum(II) drugs cisplatin, 
carboplatin and oxaliplatin. Of the structural modifications imposed on 3, only the ex-
change of oxalate for two chlorido ligands had conspicuous consequences for biological 
activity: IC50 values of the dichlorido analog 6 are 9–26 times lower than those of 3, de-
pending on the cell line, whereas addition of a CF3 substituent to the DACH ligand (in 5) 
or replacement of the axial acetato ligand with a hydroxido group (in 7) yielded minor, if 
any, changes in cytotoxic potency. 

Except for the rather inefficient conjugate C2 (where, moreover, a comparison with 
the unconjugated complex 2 is only partially possible, as some IC50 values were not even 
reached), loading of the platinum(IV) complexes onto G2 PAMAM dendrimers (C1, C3–
C5) resulted in products with 4–30 times increased cytotoxic potency in absolute numbers. 

Figure 1. ORTEP view of complex 3. Asymmetric unit of platinum(IV) complex 3 drawn with
50% displacement ellipsoid with a bond precision for C-C single bonds of 0.0099 Å. The chiral
interpretation is done with the help of Flack and Hooft parameters (−0.023, −0.019), and can be
determined for C1 (R) and C2 (R). Solvent and disorder (main residue disorder = 4%) were omitted
for clarity.

3.3. Cytotoxicity

Three human cancer cell lines differing in their chemosensitivity were employed for
testing the cytotoxic potencies of all compounds: the broadly sensitive ovarian teratocarci-
noma cell line CH1/PA-1, the multidrug-resistant non-small cell lung cancer cell line A549
and the colon cancer cell line SW480 with mostly intermediate sensitivity. IC50 values inter-
polated from concentration–effect curves (Supporting Information, Figures S23–S29) are
listed in Table 4. This pattern of sensitivity also reflects throughout the data compiled here.

As expected due to their higher inertness, platinum(IV) complexes 1–3 are by one to
two orders of magnitude less potent than the corresponding platinum(II) drugs cisplatin,
carboplatin and oxaliplatin. Of the structural modifications imposed on 3, only the exchange
of oxalate for two chlorido ligands had conspicuous consequences for biological activity:
IC50 values of the dichlorido analog 6 are 9–26 times lower than those of 3, depending on
the cell line, whereas addition of a CF3 substituent to the DACH ligand (in 5) or replacement
of the axial acetato ligand with a hydroxido group (in 7) yielded minor, if any, changes in
cytotoxic potency.

Except for the rather inefficient conjugate C2 (where, moreover, a comparison with
the unconjugated complex 2 is only partially possible, as some IC50 values were not even
reached), loading of the platinum(IV) complexes onto G2 PAMAM dendrimers (C1, C3–C5)
resulted in products with 4–30 times increased cytotoxic potency in absolute numbers. This
implies that the products mostly exert at least the effect that could roughly be expected
from their degree of platinum(IV) loading (4–9 platinum(IV) units per dendrimer), but even
higher effects were observed in some cases (e.g., compare C4 with 5 in CH1/PA-1 cells).



Pharmaceutics 2023, 15, 1515 15 of 23

Table 4. Cytotoxicity of platinum(IV) complexes 1–3 and 5–7 as well as their dendrimer conjugates
C1–C24 in comparison with parental platinum(II) drugs in three human cancer cell lines. Mean IC50

values are indicated ± standard deviations and are obtained from at least three independent MTT
assays (96 h exposure) and pertain to dendrimer concentration for C1–C24.

Sample Pt(IV) PAMAM Pt(IV) Units
per PAMAM

IC50 [µM]
A549

IC50 [µM]
CH1/PA-1

IC50 [µM]
SW480

G2 PAMAM [23] - G2 - >50 67 ± 19 >50
G4 PAMAM [23] - G4 - 8.2 ± 2.4 1.5 ± 0.4 6.2 ± 1.1

Cisplatin [24] - - - 3.8 ± 1.0 0.073 ± 0.001 2.3 ± 0.2
Carboplatin [24] - - - 38 ± 3 0.79 ± 0.11 42 ± 10
Oxaliplatin [24] - - - 0.98 ± 0.21 0.18 ± 0.01 0.29 ± 0.05

1 [28] 1 - - 99 ± 17 1.2 ± 0.5 47 ± 11
2 [28] 2 - - >200 16 ± 6 >200
3 [28] 3 - - 70 ± 29 4.1 ± 0.6 22 ± 8

5 5 - - 54 ± 6 6.0 ± 0.9 33 ± 5
6 6 - - 2.8 ± 0.1 0.44 ± 0.10 0.85 ± 0.14
7 7 - - 66 ± 2 5.2 ± 0.8 20 ± 3

C1 1 G2 5.97 10.7 ± 0.3 0.31 ± 0.10 6.4 ± 1.3
C2 2 G2 4.82 >200 11 ± 2 122 ± 8
C3 4 G2 5.93 6.3 ± 1.3 0.47 ± 0.09 1.7 ± 0.7
C4 5 G2 4.38 9.9 ± 0.8 0.20 ± 0.06 2.3 ± 0.4
C5 7 G2 7.66 4.0 ± 0.2 0.22 ± 0.02 0.98 ± 0.18

C6 1 G4 8.70 1.2 ± 0.3 0.015 ± 0.004 0.42 ± 0.03
C7 1 G4 9.87 2.5 ± 0.5 0.029 ± 0.004 1.3 ± 0.2
C8 1 G4 10.20 1.1 ± 0.2 0.0084 ± 0.0036 0.31 ± 0.12
C9 1 G4 11.03 1.3 ± 0.2 0.011 ± 0.003 0.51 ± 0.05

C10 1 G4 13.57 1.2 ± 0.2 0.012 ± 0.003 0.41 ± 0.09
C11 1 G4 38.61 1.4 ± 0.1 0.013 ± 0.001 0.71 ± 0.06
C12 1 G4 48.63 0.69 ± 0.08 0.0034 ± 0.0016 0.25 ± 0.18

C13 2 G4 30.27 9.0 ± 1.8 0.025 ± 0.010 2.5 ± 1.8

C14 3 G4 8.41 0.30 ± 0.05 0.017 ± 0.003 0.072 ± 0.007
C15 3 G4 10.76 0.092 ± 0.004 0.0078 ± 0.0010 0.038 ± 0.006
C16 3 G4 12.18 0.20 ± 0.02 0.013 ± 0.001 0.065 ± 0.017
C17 3 G4 13.14 0.85 ± 0.28 0.039 ± 0.013 0.27 ± 0.08
C18 3 G4 17.27 1.8 ± 0.3 0.086 ± 0.019 0.50 ± 0.18
C19 3 G4 21.62 0.24 ± 0.06 0.011 ± 0.003 0.077 ± 0.021
C20 3 G4 27.39 0.052 ± 0.016 0.0024 ± 0.0006 0.022 ± 0.006
C21 3 G4 55.51 0.14 ± 0.02 0.0067 ± 0.0005 0.036 ± 0.002
C22 4 G4 24.29 0.031 ± 0.006 0.00078 ± 0.00026 0.0062 ± 0.0012

C23 5 G4 15.23 27 ± 1 0.37 ± 0.09 6.7 ± 0.7

C24 7 G4 18.60 0.191 ± 0.004 0.0069 ± 0.0007 0.056 ± 0.003

Apart from a singular exception (conjugate C23 containing complex 5), the effects of
loaded G4 PAMAM dendrimers are not less remarkable: the majority of C6–C12 (loaded
with cisplatin analog 1) and, even more so, C14–C22 (loaded with oxaliplatin analogs 3 or
4) is much more to tremendously more potent than could be explained by the mere ratios
of platinum(IV) loading (especially compare C15, C20, C21 or also C22 with 3). Reasons
are likely to be multifactorial. It has been reported that dendrimers can enhance membrane
permeability and therefore increase the cellular uptake of drugs. The conjugation of
anticancer agent paclitaxel to lauryl-modified G3 PAMAM dendrimers led to up to 12-times
higher permeability than free paclitaxel in monolayers of the human colon adenocarcinoma
cell line Caco-2, as well as in porcine brain endothelial cells [40]. Furthermore, enhanced
cellular uptake by a factor of up to 11 was detected with G4 PAMAM dendrimers combined
with cisplatin in A2780 ovarian cancer cells compared to free cisplatin [19]. Additionally,
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a relationship of fast reduction leading to increased cytotoxicity is widely accepted [41].
According to Ref. [19], the accelerated activation of conjugates by reduction based on faster
reduction half-times (Table 2) as compared to their corresponding platinum(IV) complexes
may play a significant part in increased cytotoxicity. In addition to enhanced permeability,
cellular uptake and faster reduction half-times, it is conceivable that synergies between
the individual effects of platinum(IV) complex and G4 PAMAM dendrimer additionally
contribute to the extraordinary enhancement of cytotoxicity, since even the unloaded
G4 PAMAM dendrimer (in contrast to G2) exerts antiproliferative activity in the low
micromolar concentration range in all three cell lines. However, detailed investigations
are needed to fully understand the mechanism of significantly increased cytotoxicity of
platinum(IV)-based PAMAM dendrimer conjugates. Furthermore, it is intriguing that
higher loading than the applied minimum of about 10 platinum(IV) units per dendrimer
did not necessarily (or, in fact, rather occasionally and under proportionally) lead to further
increase in potency, neither in series C6–C12 nor C14–C21. It is conceivable that reasons
are similar to a previously conducted study of half-generation PAMAM dendrimers loaded
with cisplatin, in which an incomplete drug release was detected probably caused by
intramolecular interactions of platinum complex and dendrimer branches [42].

3.4. In Vivo Studies

In order to validate the in vivo efficacy of the platinum(IV)-loaded dendrimer strategy,
one representative conjugate of the platinum(IV) series of cisplatin (C11), carboplatin (C13),
and oxaliplatin (C22) was tested in the G4 PAMAM dendrimer background. The toxicity
tests were performed by tail vein injection (every second day for 3 injections in total) into
non-tumor-bearing mice at a dose equimolar to the released platinum(II) species: C11,
0.17 mg/20 g, equimolar to 3 mg/kg cisplatin; C13, 0.91 mg/20 g, equimolar to 17 mg/kg
carboplatin; C22, 0.52 mg/20 g; equimolar to 9 mg/kg oxaliplatin. Out of the three tested
substances, the cisplatin-based conjugate C11 showed by far the best tolerability without
significant weight loss or profound changes in behavior and showed only temporal mild
hair loss. In contrast, oxaliplatin-based conjugate C22 led in both treated mice to tail
necrosis, forcing the termination of this experimental group based on ethical guidelines.
The carboplatin-based conjugate C13 induced moderate weight and strong hair loss. Thus,
the cisplatin-based conjugate was further analyzed in more depth. An additional toxicity
assay with C12, a higher platinum(IV)-loaded conjugate compared to C11, was performed
at concentrations equimolar to 1.5 and 3 mg/kg cisplatin and the same application scheme
as before. Again, no signs of toxicity were observed.

Consequently, C12 was chosen for the therapy experiment. As the anticancer activity
of platinum drugs includes also immunological mechanisms [43], the colon cancer allograft
model was used. As a first step, the impact of cisplatin was tested compared to C12 in
CT26 murine colon cancer cells in vitro. Compound C12 exerted a more than four-fold
lower IC50 value as compared to cisplatin (C12: 0.43 µM; cisplatin: 1.85 µM, Supporting
Information, Figure S30), thus resembling data in the human cancer cell models (compare
Table 4).

Based on this higher cytotoxic activity and clearly better tolerability in non-tumor-
bearing animals, the efficacy of C12 (7.5 mg/kg: equimolar to 3 mg/kg cisplatin) was
compared with the respective dose of free cisplatin (3 mg/kg) and unloaded G4 PAMAM
dendrimer in CT26-allograft-bearing mice. Drugs were given intravenously for two weeks
twice a week. The impact of the different treatment groups as compared to solvent control
on tumor volume and body weight until day 14 (loss of the first mouse in the solvent group
due to big tumor size) are given in Figures 2 and 3, respectively. All treatments significantly
reduced tumor volume as compared to the solvent control with a maximum tumor growth
inhibition effect of 37% for unloaded G4 PAMAM dendrimer, 47.6% for cisplatin, as well
as 65.6% for C12. In addition, concerning the tumor growth curves, the strongest activity
was exerted by C12, although the difference between free cisplatin and C12 did not reach
statistical significance in the multiple comparison tests (p = 0.075). Concerning toxicity,
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neither free G4 PAMAM dendrimer nor C12 led to any loss of body weight. In contrast, free
cisplatin at the maximal tolerated dose of 3 mg/kg significantly reduced body weight as
compared to all other experimental groups with a maximal loss of body weight of around
20% at day 14 of treatment. This data strongly suggests an improved therapeutic window
for cisplatin when given as a PAMAM-dendrimer-based nano-formulation.
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Figure 3. Comparison of the body weight development with treatment of solvent, G4 PAMAM,
conjugate C12 and cisplatin in BALB/c mice over 14 days. Significances were determined via Turkey’s
multiple comparisons test with the following abbreviations: ns = not significant, **** p < 0.0001.

The promising effects further translate into a prolongation trend of animal survival
(Figure 4). While in the cisplatin group, weight loss was critical in addition to tumor
necrosis, even smaller tumors tended to get necrotic and broke up in C12-treated animals,
making the sacrifice of the animals necessary due to ethical guidelines. In contrast to the
cisplatin and G4 PAMAM dendrimer treatment arms, only the anticancer activity of C12
showed a trend towards longer survival (p-value of 0.0549 in log-rank and 0.05 in Gehan–
Breslow–Wilcoxon test) in the direct comparison with the solvent control arm. A more
extended analysis of different doses and schedules is needed to optimize the therapeutic
effects of C12, but limit the massive necrotizing effects leading to the termination of the
experiment due to tumor ulceration.
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Figure 4. Comparison of the survival time with treatment of solvent, G4 PAMAM, conjugate C12
and cisplatin in BALB/c mice over 14 days. Significances were determined via log-rank test (LRT)
and Gehan–Breslow-Wilcoxon test (GBWT) with the following abbreviations: ns = not significant,
** p < 0.01. 1 with GBWT. 2 with LRT.

In addition to tumor growth experiments, the tumor and organ distribution of plat-
inum in mice treated with cisplatin or C12 were determined by ICP-MS (Figure 5). Unex-
pectedly, the platinum levels in the tumor did not differ significantly 24 h after the second
dosing. In contrast, C12 led to high platinum levels in the serum at all three time points,
while blood cells contained enhanced platinum contents in the case of cisplatin treatment
(Supporting Information, Figure S31). This suggests a lower clearance and reduced lo-
cal interaction with blood cells of C12, as compared to cisplatin. In organ distribution
(Figure 5), C12 treatment led to a massive platinum accumulation in the kidney as com-
pared to all other organs, while in the case of cisplatin, higher levels were detected in lung
tissue, however, with great inter-individual differences. These data strongly suggest that
the PAMAM dendrimer formulation leads to trapping of the nano-formation probably
based on filtration in the glomerulus and reabsorbed in the lumen of the proximal tubule.
Renal excretion and glomerular filtration are typical for ≤G4 PAMAM dendrimers and
in general for nanoparticles smaller than 5 nm [44,45]. The conjugation of complex 1 to
G4 PAMAM dendrimers considerably increased the polymer diameter of C14 from about
4.5 to 5.4 nm. Additionally, the influence of the molecular weight of nanoparticles on
the biodistribution behavior was reported previously. Nanoparticles <20 kDa primarily
undergo renal clearance, whereas bigger molecules show longer blood circulation times
and a shift towards clearance by the reticuloendothelial system [46]. Based on a particle size
of over 5 nm and a molecular weight of 36.5 kDa of conjugate C12, the renal accumulation
is rather unexpected and needs to be investigated in more detail. However, it is obvious
that, despite these unwanted conditions, C12 exerted a comparable tumor accumulation to
cisplatin, a tendency to enhance anticancer activity, and an improved therapeutic window.
This strongly suggests further modifications of the novel cisplatin dendrimeric remedy to
ameliorate kidney accumulation and, in parallel, enhance tumor response. On the contrary,
the efficient kidney accumulation of this dendrimer preparation might also be considered
in kidney-specific drug delivery approaches [47–49].
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Figure 5. Comparison of the platinum accumulation in tumors and different organs of mice treated
with conjugate C12 (green) and cisplatin (violet) 24 h after second application measured by ICP-MS.
Significances were determined via Turkey’s multiple comparisons test with the following abbreviation:
ns = not significant.

4. Conclusions

In the present study, an alternative antitumor strategy was presented by conjugating
various platinum(IV)-analogs of cisplatin, carboplatin and oxaliplatin to the surface of G2
and G4 PAMAM dendrimers. Twenty-four novel conjugates were synthesized and charac-
terized by 1H and 195Pt NMR spectroscopy, as well as DOSY measurements substantiating
the successful conjugation. Reduction behavior analysis revealed a significantly faster
reduction of all conjugates in comparison to their corresponding platinum(IV) complexes,
probably caused by the increased bulkiness of the axial ligands of the conjugates. The accel-
erated reduction of the conjugates may also, amongst others, be responsible for improved
cytotoxicity of the conjugates. Specifically, the conjugation of platinum(IV) complexes to
G4 PAMAM dendrimers resulted in IC50 values in the low micro- to the nanomolar range,
tremendously lower compared to the corresponding platinum(IV) or even platinum(II)
complexes. Remarkably, an oxaliplatin(IV)-based conjugate even reached an IC50 value of
780 ± 260 pM in the CH1/PA-1 cancer cell line.

Furthermore, the cisplatin(IV)-based conjugate C12 was investigated in vivo in CT26-
allograft-bearing mice due to its best toxicological profile. Concentrations of the conjugate
equimolar to 3 mg/kg cisplatin (maximum tolerated dosage [50]) were very well toler-
ated and even higher doses could be considered in further investigations. Additionally,
biodistribution was analyzed in tumor-bearing mice 24 h after the second application.
Unexpectedly, increased accumulation in the kidney was detected despite a higher cut-
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off molecular weight and particle size of C12. It needs to be investigated in more detail,
whether C12 behaves like nanoparticles with a hydrodynamic diameter between 5 nm and
100 nm efficiently crossing the endothelial layer, but blocked by the glomerular basement
membrane [51]. Due to the connection of preferred renal excretion with small molecular
weights and particle sizes as well as cationic surface charges, supporting attraction to the
negatively charged endothelial and podocyte glycocalyx, the use of amine-terminated
PAMAM dendrimers >G4 could be considered to reduce renal accumulation. Nevertheless,
besides increased molecular weight and size, higher generations of cationic PAMAM den-
drimers (>G4) are accompanied by a sharp increase in cytotoxicity based on their increased
positive charge density [52,53]. However, additional surface modifications (e.g., PEGy-
lation) of the terminal positively charged amines under physiological conditions could
reduce undesired toxicities and further decrease the preference for renal excretion [54,55].

The following anticancer activity experiments revealed a maximum tumor growth in-
hibition effect of 65.6% for C12 compared to 47.6% for cisplatin. Additionally, the treatment
with C12 had no negative influence on body weight, whereas cisplatin application led to a
maximal loss of body weight of around 20%, enabling an improved therapeutic window
for C12 compared to cisplatin. Furthermore, a trend of extended animal survival with the
treatment of C12 could be observed compared to the solvent control and cisplatin group.

Finally, it can be concluded that the combination of platinum(IV) complexes coupled
with PAMAM dendrimers enables a promising approach to further improve existing
anticancer therapy. The full potential could be exploited by further investigations of the
therapeutic window as well as adjustments on the surface of PAMAM dendrimers to further
optimize pharmacological properties.

Supplementary Materials: The following supporting information can be downloaded at https:
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