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Abstract: Raman spectroscopy is a well-established technique for the molecular characterisation of
samples and does not require extensive pre-analytical processing for complex cosmetic products.
As an illustration of its potential, this study investigates the quantitative performance of Raman
spectroscopy coupled with partial least squares regression (PLSR) for the analysis of Alginate na-
noencapsulated Piperonyl Esters (ANC-PE) incorporated into a hydrogel. A total of 96 ANC-PE
samples covering a 0.4% w/w–8.3% w/w PE concentration range have been prepared and analysed.
Despite the complex formulation of the sample, the spectral features of the PE can be detected and
used to quantify the concentrations. Using a leave-K-out cross-validation approach, samples were
divided into a training set (n = 64) and a test set, samples that were previously unknown to the
PLSR model (n = 32). The root mean square error of cross-validation (RMSECV) and prediction
(RMSEP) was evaluated to be 0.142% (w/w PE) and 0.148% (w/w PE), respectively. The accuracy
of the prediction model was further evaluated by the percent relative error calculated from the
predicted concentration compared to the true value, yielding values of 3.58% for the training set and
3.67% for the test set. The outcome of the analysis demonstrated the analytical power of Raman to
obtain label-free, non-destructive quantification of the active cosmetic ingredient, presently PE, in
complex formulations, holding promise for future analytical quality control (AQC) applications in
the cosmetics industry with rapid and consumable-free analysis.

Keywords: Raman spectroscopy; label-free quantification; alginate nanocarriers; hydrogels; partial
least squares regression

1. Introduction

As the skin is the largest organ of the body, trans-dermal is an obvious route for
the administration of active pharmaceutical ingredients for the treatment of pathologies,
either local or systemic. The development of optimised skincare products to improve
consumer well-being and social interactions through skin appearance has also long been
the subject of considerable attention in the cosmetics industry. Skin quality and beauty
have become significant concerns of the worldwide population, and they consequently
drive ongoing research and innovation in the field to develop more effective formulations
for the penetration and permeation of the skin by pharmaceutical or cosmetic ingredients
(API/ACI). Commercial cosmetics or products are usually semi-solid formulations, such
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as gels or creams, and generally include complex mixtures of different compounds, such
as gelling or thickening agents, humectant agents and antimicrobial ingredients, which
allow the product to be more easily spread on the site of application and also enhance their
physicochemical and microbiological stability [1–3].

Because of its natural function to act as a barrier and protect the body from exogenous
insult, achieving dermal penetration of an active ingredient (AI) is not trivial [4], and
various strategies have been devised to increase the efficacies of semi-solid formulations to
deliver AI across the stratum corneum (SC), the outmost and most protective layer of the
epidermis. The encapsulation of AI in nanocarriers (NCs) has been explored most recently
and has been demonstrated to successfully improve the efficacy of the delivery of products
applied topically [5] by enhancing their penetration through the stratum corneum, thus
improving their absorption by the skin [6–9]. NCs have also been explored to address
problems associated with the formulation process itself, such as poor water solubility, or
physicochemical stability of an AI, when mixed with the other formula components [10,11].
Moreover, encapsulation can add the possibility to release the AI into the environment in
a controlled fashion, potentially enabling a more targeted delivery [12–14]. Among the
range of NCs that have been explored, core–shell nano-capsules have been identified as
particularly promising candidates for delivery vehicles for ACI and API [15–17].

Polysaccharides have attracted increasing attention as the principal ingredients of
NCs due to their natural origin [9]. Among the most used polysaccharides, alginates are
well studied, as they can produce rigid although porous gels when combined with divalent
cations. The alginate nanocarriers used in this study (ANCs) are a type of such core–shell
nanocarrier, which have been developed for the encapsulation of lipophilic AI. They are
composed of a hydrophobic oily core surrounded by a hydrophilic alginate-based shell.
They show no toxicity on skin cells and are stable as aqueous suspensions as well as dis-
persed in semi-solid forms such as hydrogels [12,18,19]. Such semi-solid formulations have
become increasingly complex chemical mixtures, as the process of optimisation often entails
an increasingly higher multiplicity of ingredients, thus requiring increasingly sophisticated
analytical protocols to quantitatively characterise them. The routine analytical quantity
control (AQC) of semi-solid formulations can thus be challenging, especially when they
contain AI that has been encapsulated in NCs. Pre-analytical protocols require chemical
extraction with organic solvents and are followed by analysis using separative techniques
such as high-performance liquid chromatography (HPLC), sometimes coupled to mass
spectrometry, to achieve quantification [12,20,21]. Large volumes of solvent are required
to perform such semi-solid–liquid extractions and HPLC analysis, and the approach is,
furthermore, tedious and time consuming. The extraction protocols can also introduce
significant errors in the results if they do not achieve 100% recovery of the AI from the
formulation studied. Given the current imperative to develop alternatives compliant with
the green analytical chemistry principles [22] to limit the production of chemical waste and
to reduce the consumption of consumables in industry and research, more environmentally
friendly and solventless approaches are increasingly being considered [23,24].

In 2018, a preliminary study by Miloudi et al. investigated vibrational spectroscopy,
i.e., attenuated total reflectance infrared (ATR-IR) spectroscopy, as a cost-effective, label-
free and non-destructive analytical tool for the quantification of piperonyl esters (PE), a
skin lightening agent, encapsulated in ANCs and dispersed in hydrogels [25]. Indeed, in
addition to being promising lightening agents, PE are a good model for this type of study
because their chemical structure gives them a characteristic molecular signature, enabling
quantitative analysis. A follow-up study by Bonnier et al. further demonstrated that a
single drop of cosmetics such as hydrogel products containing ANCs-encapsulated PE
analysed by ATR-IR spectroscopy without any pre-analytical requirement, i.e., extraction
protocols, enabled the construction of accurate predictive models [26]. Raman spectroscopy
is a complementary technique to infrared spectroscopy [27], which also provides specific
molecular fingerprints to probe the chemical composition of samples analysed [28]. The
technique measures the inelastically scattered radiation (the Raman effect) obtained after
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the illumination of samples with a monochromatic laser source [29]. Many commercially
available Raman devices operate in a microscopic mode, allowing access to molecular
information at the micrometric level under confocal conditions [30,31]. While Raman spec-
troscopy has been extensively studied in research for the mapping or profiling of biological
tissues and cells for disease diagnosis and other biomedical applications [32–38] or even
subcellular analysis [39–41], it remains a powerful analytical technique. In the field of
process analytical technology (PAT), Raman spectroscopy is used to monitor and control
chemical and pharmaceutical processes [42–44], to predict end points of chemical synthe-
sis reactions [45], and to track polymorphic changes in crystallisation processes [46,47].
Additionally, Raman spectroscopy has been reported as a powerful technique enabling
quantitative analysis for a wide range of samples, such as for the determination of water in
natural deep eutectic solvents [48–50], as a quality control tool for chemotherapeutic solu-
tions [51,52], for the quantification of API in solid dosage forms [53–55], screening human
body fluids such as serum [56,57] or for investigating the distribution of AI in complex
cosmetic dried films to study their homogeneity [58]. While ATR-IR spectroscopy requires
the withdrawal of samples, Raman spectroscopy enables in situ analysis of samples, i.e.,
directly through containers [59,60]. The advantages of this are that it ensures the integrity of
samples, prevents cross-contamination, and, importantly, protects workers from exposure
to potentially harmful substances [60,61].

As a follow-up to the previous studies of Miloudi et al. [25] and Bonnier et al. [26],
again using the ANC-PE system as a model, the present study aims to demonstrate the
potential of Raman spectroscopy coupled with multivariate data mining protocols, namely
partial least squares regression (PLSR), for the quantification of nanoencapsulated piperonyl
esters (PE) in cosmetic hydrogels. While the recommended final concentration of this ACI in
a commercial cosmetic formulation is commonly between 1 and 2% w/w, the technique will
be applied to samples of systematically varied concentrations over the range of 0.4% w/w
PE–8.3% w/w PE for the purpose of evaluating the accuracy of the approach for this
model system. Ultimately, the aim is to demonstrate the suitability of the techniques for
analytical quality control (AQC) applications in the cosmetics industry with rapid and
consumable-free analysis.

2. Materials and Methods
2.1. Preparation and Characterisation of Piperonyl Esters-Loaded Alginate Nanocarriers (ANC-PE)

2.1.1. Reagents

The commercial formulation, marketed as Omegalight®, was provided by Bioeurope
(Solabia group, Anet, France). It is a liquid skin-lightening agent resulting from the
combination of piperonyl alcohol and linoleic acid in the form of an ester dissolved in
dicaprylyl ether. It is hereafter referred to as Piperonyl Ester (PE), its chemical name.

Polyoxyethylene sorbitan monooleate (polysorbate 80, Seppic, Castres, France), sorbi-
tan monooleate (Seppic, Castres, France), Sodium alginates (Sigma-Aldrich, Saint-Quentin-
Fallavier, France) and calcium chloride (Fisher Scientific, Illkirch, France) were used to
prepare ANC.

Other compounds used to prepare the semi-solid-form model are sodium carboxymethyl-
cellulose (CMC) as a gelling agent (Fisher Scientific, Illkirch, France), Cosgard® as a preser-
vative (benzyl alcohol and dehydroacetic acid, Aroma zone, Paris France) and glycerol as
a humectant agent (Cooper, Melun, France). Water was purified using a Milli-Q system
(Millipore Corporation, Bedford, MA, USA)

2.1.2. Preparation of ANC-PE Aqueous Suspension

Alginate nanocarriers loaded with PE (ANC-PE) were prepared following the oil-in-
water emulsification and ionic gelation protocol described in detail by Nguyen et al. [12]. A
sodium alginate aqueous solution (0.6 g/L) was prepared and filtered through a 0.45 µm
nylon filter. To prepare the aqueous phase of the emulsion, polysorbate 80 (0.06 g/L) was
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added to the filtrate. Then, PE (0.015 g/g) and sorbitan monooleate (0.1 g/g) were mixed
to form the oil phase. Finally, the nano-emulsification of the two phases was achieved
using an ultrasonic probe (Vibra-cell ultrasonic processor, Sonics, 20 kHz) for 3 min. The
addition of an aqueous solution of calcium ions (0.67 g/L) led to the gelation of the surface
of the nanocarrier. The final concentration of the active ingredient of the ANC-PE aqueous
suspension was 0.165 g/g.

2.1.3. Physicochemical Characterisation of ANC-PE Suspensions

Dynamic light scattering (DLS), using a Zetasizer instrument (Malvern Panalytical,
Malvern, UK), was used to assess the average hydrodynamic diameter and the polydisper-
sity index of ANC-PE. The assays were performed on the samples diluted 1/40 in ultrapure
water, with a 633 nm laser source, at 173◦. Zeta potentials (ζ) were measured using the same
equipment with the detection angle set at 13◦. All measurements have been performed in
triplicate at 25 ◦C.

2.1.4. Preparation of Model Cosmetic Gels

First, a hydrogel containing 3% w/w CMC, 40% w/w of glycerol and 2% w/w of
Cosgard® was prepared in ultrapure water. Continuous mechanical stirring (up to 2000 rpm)
was applied with a propeller (Turbotest® by VMI Rayneri, montaigu-Vendée, France) until
the formation of a viscous gel.

Second, 12 sets of samples with systematically varying concentrations of PE were
independently prepared, and each set contained 8 samples, for a total of 96 samples. For
clarity, the list of samples and corresponding concentrations are summarised in Table 1. As
examples, sample C1 from SET_01 was prepared by mixing 2.504 g of the hydrogel, 0.121 g
of the ANC-PE suspension and 2.383 g of deionised water, while sample C8 from SET 1 was
prepared by mixing 2.551 g of the hydrogel and 2.55 g of the ANC-PE suspension without
deionised water added. For all samples, a total mass of 5 g was prepared. Increasing the PE
final concentration in samples was achieved by increasing the mass of ANC-PE suspension
introduced into the hydrogel. However, the mass of deionised water added was reduced
accordingly to respect the final mass of 5 g. Therefore, for all samples, final concentrations
of 1.5% w/w CMC, 20% w/w glycerol and 1% w/w Cosgard® were kept consistent.

Table 1. Final PE concentration (% w/w) in samples analysed.

PE Final Concentration (% w/w)

Concentration C1 C2 C3 C4 C5 C6 C7 C8
SET 01 0.402 0.857 1.671 2.481 3.285 4.231 6.255 8.331
SET 02 0.452 0.837 1.640 2.411 3.213 4.341 6.016 8.306
SET 03 0.533 1.128 1.865 2.727 3.507 4.703 5.513 7.127
SET 04 0.537 1.102 1.870 2.679 3.494 4.794 5.493 7.194
SET 05 0.694 1.391 2.197 2.986 3.833 5.180 6.657 7.833
SET 06 0.667 1.333 2.167 2.933 3.833 5.167 6.667 7.833
SET 07 0.400 0.835 1.617 2.461 3.276 4.149 6.249 8.331
SET 08 0.408 0.861 1.667 2.459 3.244 4.158 6.203 8.369
SET 09 0.542 1.103 1.934 2.678 3.539 4.720 5.486 7.134
SET 10 0.543 1.097 1.890 2.696 3.483 4.684 5.497 7.209
SET 11 0.668 1.443 2.177 2.938 3.816 5.123 6.607 7.799
SET 12 0.702 1.360 2.134 2.954 3.826 5.102 6.620 7.737

Overall, the mass of ANC-PE suspension added to hydrogel was between 0.121 g
and 2.522 g. The amount of ultrapure water ranged from 2.409 g to 0 g. Ultimately, the
96 samples analysed had concentrations between 0.400% w/w PE and 8.369% w/w PE
(Table 1). Considering the 0.1 mg accuracy of the analytical balance used to prepare the
ANC-PE hydrogels, the errors of weighing were calculated to be ±0.08% for the lowest
PE concentration and ±0.004% for the highest. Therefore, reference values used for the
training of PLSR models were considered reliable and accurate.
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2.2. Raman Spectroscopy Data Collection

Raman analysis was performed with a LabRam spectrometer (Horiba Jobin-Yvon,
Villeneuve-d’Ascq, France). A HeNe laser with a wavelength of 690 nm was used, and
the power at the sample was close to ~10 mW. Backscattered light was collected with a
×10 microscope objective (Olympus, NA = 0.25). The confocal hole was set at 400 µm for
all measurements. Detection was facilitated by dispersing Raman-shifted radiation onto a
CCD detector using a grating (300 lines/mm), delivering a spectral resolution of ~4 cm−1

over the 150–3750 cm−1 spectral range. The acquisition time was 20 s. Considering the
viscosity of the samples and the volumes available, it was convenient to place hydrogels
into 96-well plates for data collection. The laser spot was manually focused below the
surface of samples, from where the highest Raman intensities were collected. For each
sample, 5 wells were filled and analysed. A total of 10 spectra were recorded for each well
for a total of 50 spectra per sample. The final dataset had a total of 4800 Raman spectra
from the 96 samples studied. Additionally, Raman spectra for each pure compound, i.e.,
sorbitan monooleate, polysorbate 80, sodium alginate, PE, glycerol and Cosgard®, were
recorded with the same parameters.

2.3. Data Handling

The data mining was conducted with MATLAB® (The Mathworks, Natick, MA, USA).
The different steps are presented in Figure 1.
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Firstly, Raman spectra were subjected to extended multiplicative signal correction
(EMSC). The correction was applied using the freely available EMSC toolbox from Nofima
Data Modelling (https://nofimadatamodeling.wordpress.com/software-downloads-list/)
(accessed on 15 November 2021)). For additional details, see the tutorial published by
Asfeth and Kohler [62]. In this study, a basic EMSC model was applied to the full spectral
range of 150–3750 cm−1. Then, spectra were subjected to Rubber Band baseline correction
followed by vector normalisation (RB-VN). Rubber Band is an algorithm computing a
polynomial baseline to subtract from the data [63,64]. The method was applied with a
polynomial order set to 1 to avoid over-correcting the spectra. The vector normalisation
calculates the ratio of spectra to their respective Euclidian norms [29].

https://nofimadatamodeling.wordpress.com/software-downloads-list/
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Principal component analysis (PCA) was used for data exploration. PCA is an unsu-
pervised method used for data description and explorative data structure modelling [65,66].
PCA is widely used to simplify multidimensional datasets. It allows the reduction in the
number of variables to retain the most important variation within the dataset [67,68]. The
derivation of PC loadings, which represent the variance of each variable (wavenumber) for
a given PC, gives information about variations in the chemical compositions, for instance,
differences in spectra correlated to PE concentration [69].

Partial least squares regression (PLSR) was applied over the spectral range (300–3750 cm−1).
PLSR correlates modifications in band positions, intensities and shapes with the systemati-
cally varying concentration of PE in hydrogel samples. PLSR is a supervised multivariate
analysis method used for relating two sets of variables by quantifying them with respect
to each other [65]. PLSR is extensively referenced in the literature as a robust and well-
recognised quantitative approach used along with vibrational spectroscopy [65]. Therefore,
PLSR is particularly powerful for constructing linear models from spectra collected from
complex blends with many partially overlapping peaks.

For the purpose of the study, each PLSR analysis was performed by splitting the
dataset three ways. First, 2/3 of the dataset was used as the training set (=64 samples)
and the remaining 1/3 of the dataset as the test set (=32 samples). Second, the training
set was randomly sub-divided into the calibration set (n = 42 samples) and validation set
(n = 22 samples) using a leave-K-out cross-validation (LKOCV) approach. SET 01, SET 02,
SET 04, SET 05, SET 07, SET 08, SET 10 and SET 11 were constantly used as the training set.
Purposely, the randomness of the LKOCV was kept in this study. Since there were multiple
combinations of calibration/validation sets, a 100-fold iterative protocol was applied to
challenge the dataset and provide an overall reliability estimate of the models (root mean
squared error of cross-validation (RMSECV) and R2). Then, the test set (i.e., SET 03, SET
06, SET 09 and SET 12) was used in the predictive models as independent samples, i.e.,
previously unknown to the PLSR model, to be determined. At this stage, the performance
of the predictive model has been assessed according to the root mean squared error of
prediction (RMSEP), R2 and accuracy of the predicted concentration in percent relative
error to the target (actual) concentration. In this study, predicted concentrations, RMSECV
and RMSEP, are expressed as % w/w PE concentration.

3. Results and Discussion
3.1. Physicochemical Characterisation of ANC-PE Suspensions

ANC, and specifically ANC-PE, are spherical nanocarriers thoroughly described in
previous publications [12,18,25]. In the present study, ANC-PE suspensions used to prepare
the range of diluted samples are comparable to those previously obtained for the ATR-IR
studies [25,26]. The average hydrodynamic diameter was 185 ± 8.5 nm, the polydispersity
index was 0.109 ± 0.001 and the zeta potential was −25.8 ± 2.4 mV. These results show
good reproducibility of the preparation protocol. The hydrodynamic diameter of the
ANC-PE complies with the use of nano-systems in skin cosmetic products [70] as their
size was between 100 and 200 nm. The polydispersity index of the nanocarriers is close to
0.1, which reflects a monodisperse suspension and the absence of aggregation. The zeta
potential is close to −30 mV, which indicates good colloidal stability of the suspensions.
ANC-PE-loaded hydrogels were white in colour, had a homogeneous aspect and did not
show any sign of destabilisation over the course of the study.

3.2. Characterisation of Spectral Variability According to ANC-PE Concentrations in the Dataset

The collected Raman signatures reflect the complex chemical nature of the samples
analysed, consisting of combined contributions from the different ingredients used to
prepare the hydrogel and the ANC-PE suspensions.

Figure 2 presents spectra collected from ANC-PE hydrogels SET 01-C1 (0.402% w/w
PE) and SET 01-C8 (8.331% w/w PE), compared to mean spectra for pure ingredients, PE,
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glycerol and Cosgard®, in the fingerprint region (FPR) (Figure 2A) and high-wavenumber
region (HWR) (Figure 2B).
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In the FPR (300–1800 cm−1), for PE (Figure 2A-c), the main features were observed at
715 cm−1 (=C-H bending), 771 cm−1 (=CH wagging), 812 cm−1 (=C-H bending), 844 cm−1,
877 cm−1, 925 cm−1 (=CH bending), 966 cm−1, 1004 cm−1, 1039 cm−1 (C-O, C-C stretching),
1080 cm−1 (C-C-C stretching), 1126 cm−1 (C-C-C stretching), 1258 cm−1 (C-O stretch-
ing), 1301 cm−1 (CH2 bending), 1442 cm−1 (CH2 deformation), 1612 cm−1 (C=O stretch-
ing), 1658 cm−1 (C=C stretching) and 1742 cm−1 (C=O stretching) [71]. For glycerol
(Figure 2A-d), the main features were observed at 417 cm−1 (CCO rocking), 485 cm−1 (CCO
rocking), 677 cm−1 (CCC deformation), 823 cm−1 (CC stretching), 850 cm−1 (CC stretching),
923 cm−1 (CH2 rocking), 977 cm−1 (CH2 rocking), 1055 cm−1 (CO stretching), 1109 cm−1

(CO stretching), 1258 cm−1 (C-O stretching) and 1466 cm−1 (CH2 deformation) [49,72]. For
Cosgard® (Figure 2A-e), the main features were found at 620 cm−1 (benzyl ring bending),
801 cm−1 (C-C stretching), 1001 cm−1 (benzyl ring stretching), 1028 cm−1 (in-plane CH
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bending), 1207 cm−1 (C-C stretching), 1588 cm−1 (C-O stretching) and 1609 cm−1 (quadrant
benzyl ring stretching) [71].

In the HWR (2500–3750 cm−1), PE features were observed at 2731 cm−1 (CH stretch-
ing), 2801 cm−1 (CH stretching), 2858 cm−1 (symmetric CH2 stretching), 2901 cm−1 (anti-
symmetric CH2 stretching), 3015 cm−1 (=CH stretching) and 3080 cm−1 (=CH stretching)
(Figure 2B-c) [71]. For glycerol, bands at 2742 cm−1 (CH stretching from C2), 2893 cm−1

(symmetric CH2 stretching) and 2947 cm−1 (antisymmetric CH2 stretching), and a broad
band with a maximum of 3326 cm−1 (symmetric and antisymmetric OH stretching) was
observed (Figure 2B-d) [49,72]. For Cosgard®, weak features at 2877 cm−1 (CH stretching),
2928 cm−1 (CH stretching) and 3066 cm−1 (= CH stretching) were found (Figure 2B-e) [71].

The comparison of mean normalised spectra from ANC-PE hydrogel samples SET
01-C1 (0.402% w/w PE) and SET 01-C8 (8.331% w/w PE) highlighted a number of spec-
tral variations. While for the sample of 0.402% w/w PE, the contributions from glycerol
(Figure 2A-d) and Cosgard® (Figure 2A-e) are quite noticeable, for the sample of 8.331%
w/w PE, the main features from PE exhibited higher intensities (Figure 2A-c dotted lines).
In the HWR, it was also observed that the spectral signature for the concentration 8.331%
w/w PE (Figure 2B-b) displayed a significant contribution from PE (Figure 2B-c) com-
pared to the hydrogel at 0.402% w/w PE (Figure 2B-a). Moreover, the water features at
3080–3750 cm−1 (symmetric and antisymmetric OH stretching) are mostly observed for low
PE concentrations, and the contribution decreases in intensity as the ACI content increases.

3.3. Principal Component Analysis (PCA)

PCA is a relevant approach for data visualisation, allowing the identification of spectral
features with the greatest variability in the collected datasets. Figure 3A displays an
example of the PCA scatterplot obtained from SET-01 samples with the highest and lowest
PE concentrations, respectively, of 0.402% w/w PE (Figure 3A red dots) and 8.331% w/w
PE (Figure 3A green dots). The two sets of spectra are well separated based on PC1, which
accounts for 94.7% of the explained variance, while PC2 accounts for only 1.2%.

The loadings of the principal components are shown in Figure 3B. In the FPR, PC1
(Figure 3B-a) has positive peaks at 715 cm−1, 774 cm−1, 809 cm−1, 887 cm−1, 963 cm−,
1077 cm−1, 1128 cm−1, 1258 cm−1, 1301 cm−1, 1442 cm−1, 1658 cm−1 and 1739 cm−1 that
can be matched to features in the pure spectrum of PE (Figure 2A-c). The negative bands at
417 cm−1, 482, and 677 cm−1 are assigned to glycerol (Figure 2A-d). In the HW region, the
positive peaks in PC1 at 2726 cm−1, 2799 cm−1, 2855 cm−1, 2909 cm−1 and 3012 cm−1 are
assigned to PE (Figure 2A-c). The broad negative band in the range of 3080–3750 cm−1 is a
characteristic feature from OH vibrations that can be, in the present case, mainly attributed
to the water added to samples (see Section 2).

Along PC2 (Figure 3A), it is observed that data from both concentrations are scattered.
The green dots corresponding to the highest concentration are more spread out, but no
discrimination can be observed in that direction. Although in the FPR of the PC2 loading
(Figure 3B-b), positive features observed at 417 cm−1, 479 cm−1, 852 cm−1, 923 cm−1,
1053 cm−1, 1109 cm−1 and 1469 cm−1 can be assigned to glycerol (Figure 2A-d) and
positive bands at 1001 cm−1 and 1212 cm−1 to Cosgard® (Figure 2A-e), the shape of the
baseline strongly suggests the presence of residual background in the data (see dotted line
representing the zero line). The HWR is also affected, but the broad positive feature is also
attributed to modification in the water region, while negative features at 2855 cm−1 and
2915 cm−1 can be residual PE contributions (Figure 2A-c). The loading of PC2 highlights the
heterogeneity in the data collected, although the explained variance of 1.2% suggests that it
is weak compared to the increase in spectral features intensities related to systematically
varying concentrations of PE.
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Figure 3. (A) Scatter plot (PC1 versus PC2) from PCA analysis performed on pre-processed Raman
spectra collected from ANC-PE hydrogel SET 01-C1 (0.402% w/w PE) (red dots) and ANC-PE
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range of 300–3750 cm−1. Dotted lines indicate the zero level. Spectra have been offset for clarity.

3.4. Construction of Predictive Models (Cross-Validation)

As described in Section 2.3, data were split three ways into the calibration set
(n = 42 samples), the validation set (n = 22 samples) and the test set (n = 32 samples).

Figure 4A presents the RMSECV as a function of the number of latent variables (LVs)
obtained from 100 iterations of cross-validation. The mean RMSECV displayed a decrease
for the first 6 LVs to reach a minimum value at 0.142 ± 0.023% w/w PE, followed by an
increase up to 0.177 ± 0.014% w/w PE at (LV = 20). For this study, LV = 6 has been selected,
considering that beyond this point, no improvement in the reliability of the quantification
could be achieved.
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Figure 4B shows a plot of prepared % w/w PE concentration regressed against % w/w
PE concentrations predicted from 100 iterations of cross-validation. The R2 = 0.997 ± 0.001
indicates a good correlation, despite the fact that samples of the highest concentrations
appear to be more scattered around the linear regression line. The RMSECV of 0.142% w/w
PE corresponds to ~3.6% of the median concentration (3.985% w/w PE) of the range studied.

The regression coefficient obtained from PLSR analysis performed on Raman spectra
collected from ANC-PE hydrogels (Figure 5A) compared to the spectrum of PE (Figure 5B)
confirms the high molecular specificity of the predictive model to detect and quantify
spectral variations of the ACI. Positive features in the FPR at 601 cm−1, 715 cm−1, 774 cm−1,
809 cm−1, 887 cm−1, 963 cm−1, 1080 cm−1, 1128 cm−1, 1193 cm−1, 1258 cm−1, 1301 cm−1,
1442 cm−1, 1612 cm−1, 1658 cm−1 and 1742 cm−1 correspond to the main PE features
(Figure 5B), already seen in the PC1 loading from the PCA (Figure 3B-a). Negative features
(Figure 5A) at 417 cm−1, 482 cm−1 and 677 cm−1 are assigned to glycerol (Figure 2A-d). In
the HWR, the same observation was made, with positive bands at 2726 cm−1, 2796 cm−1,
2855 cm−1, 2909 cm−1 and 3012 cm−1 corresponding to PE, while the broad water bands in
the range of 3080–3750 cm−1 are negative. The water concentration is inversely proportional
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to the ANC-PE concentration in hydrogels, and, therefore, the predictive model relies on
the variations in band ratios to create a correlation with the absolute concentration of ACI
in samples. The same explanation applies to glycerol that is found in hydrogel samples at a
constant concentration of 20% w/w (see Section 2.1.3), hence the anti-correlated evolution
of its features compared to PE.
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Figure 5. First regression coefficient from PLSR analysis performed on Raman spectra collected from
ANC-PE hydrogels (A) compared to the reference spectrum for PE (B). Dotted line indicates the
zero baseline.

Table 2 gives a summary of the percent relative error for the 64 samples used as the
training set. The percent relative error (%RE) ranged from 0.14% to 12.07% and the mean %
relative error is 3.58%. PE concentrations (% w/w) were determined with a relative error
inferior to 5% for 46 out of 64 samples analysed, and 16 samples were predicted with a
relative error between 5 and 10%. Two samples were determined with % RE higher than
10%, i.e., 11.15% for SET-04-C1 (0.537% w/w PE) and 12.07% for SET-10-C1 (0.543% w/w PE).

Table 2. Summary of percent relative errors for the training set (n = 64).

%RE <1 <2.5 <5 <7.5 <10 <12.5

Number of samples 9 22 15 11 5 2

Min (%RE) 0.14 1.02 2.54 5.41 7.59 11.15

Max (% RE) 0.95 2.49 4.99 7.31 9.86 12.07

Mean (%RE) 0.61 1.54 3.53. 6.25 8.98 11.61

Overall mean (%RE) 3.58

Table 3 provides another representation of the distribution of % RE according to PE
concentrations. The percentage relative errors higher than 7.5%, i.e., 12.07% for SET-10-C1
(0.543% w/w PE), 11.15% for SET-04-C1 (0.537% w/w PE), 9.86% for SET-11-C1 (0.668% w/w
PE), 9.86% for SET-10-C2 (1.096% w/w PE), 9.64% for SET-02-C1 (0.452% w/w PE), 7.94%
for SET-04-C2 (1.102% w/w PE) and 7.50% for SET-05-C1 (0.694% w/w PE), indicate that the
highest errors were obtained for samples with the lowest PE concentrations (i.e., C1 and
C2 from different sets). For samples above 2% w/w PE, the relative error remained below
5%, except for samples SET 11-C6 (5.123% w/w) (%RE = 7.31%), SET-04-C5 (3.494% w/w)
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(%RE = 6.43%), SET-10-C5 (3.483% w/w) (%RE = 6.16%), SET-05-C6 (5.180% w/w) (%RE
= 6.01%) and SET-10-C6 (4.684% w/w) (%RE = 5.73%). It is, however, observed that %RE
remains ~5–7% for these samples. The overall mean %RE = 3.58% suggests that Raman
spectroscopy has the ability to accurately predict PE concentration in hydrogel samples.

Table 3. Summary of mean % relative errors according to PE concentration ranges (training set).

PE Concentration (w/w%) No of Samples Mean %RE Min–Max %RE

<1 12 6.57 1.22–12.07

[1, 2] 10 5.21 0.55–9.86

[2, 3] 10 1.77 0.91–3.74

[3, 4] 8 2.44 0.95–6.43

[4, 5] 6 2.63 0.49–5.73

[5, 6] 4 5.13 3.46–7.31

[6, 7] 6 1.52 0.19–4.76

[7, 8] 4 2.35 1.54–3.14

>8 4 1.52 1.02–2.28

3.5. Prediction of PE Concentration in Test Samples (Unknown; to Be Determined)

Figure 6 presents the regression plot obtained from the PLSR analysis performed on
the test samples (SET 03, SET 06, SET 09 and SET 12) that were projected into the predictive
model as unknown samples to be determined. The results were RMSEP = 0.148 ± 0.010%
w/w PE and R2 = 0.996 ± 0.0004 (with LV = 6). The RMSEP corresponds to ~3.7% of the
median concentration (3.985% w/w) of the range studied.

Pharmaceutics 2023, 15, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 6. Prepared PE concentrations regressed against predicted PE concentrations for the test set 
(Unknown; to be determined). Error bars represent the mean ± standard deviation for each test sam-
ple. 

Table 4 gives a summary of %RE for the 32 test samples analysed. The values range 
from 0.22% to 11.58%, and the mean % relative error is 3.67%. PE concentrations (% w/w) 
were determined with a relative error inferior to 5% for 23 out of 32 samples analysed. 
%RE from 5 to 7.5% were obtained with 6 samples. Three samples have a % relative error 
above 10%: SET-03-C1 (0.533% w/w PE) (11.58%), SET-09-C1 (0.542% w/w PE) (10.29%) and 
SET-06-C1 (0.667% w/w PE) (10.09%). Similarly, to the training set, the highest %RE is 
found in samples with the lowest PE concentrations (C1–C2) (Table 5). 

Table 4. Summary of percent relative errors for the test set. 

%RE  <1 <2.5 <5 <7.5 <10 <12.5 
Number of samples 6 8 9 6 0 3 

Min (%RE) 0.22 1.19 2.72 5.48 - 10.09  
Max (%RE) 0.69 2.23 4.77 6.82 - 11.58 

Mean (%RE)  0.39 1.61 3.57 6.34 - 10.65 
overall mean (%RE)  3.67 

Table 5. Summary of mean % relative errors according to PE concentration ranges (test set). 

PE Concentration  No. of Samples  Mean RE% Min–Max %RE  
<1  4 8.76 3.07–11.57 

[1, 2]  6 4.61 2.09–6.82 
[2, 3]  6 1.12 0.33–2.24 
[3, 4]  4 3.75 1.19–6.67 
[4, 5]  2 3.89 3.75–4.03 
[5, 6]  4 4.64 3.02–6.64 
[6, 7]  2 0.977  0.59–1.36  
[7, 8]  4 1.17 0.18–2.72  
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test sample.

Table 4 gives a summary of %RE for the 32 test samples analysed. The values range
from 0.22% to 11.58%, and the mean % relative error is 3.67%. PE concentrations (% w/w)
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were determined with a relative error inferior to 5% for 23 out of 32 samples analysed.
%RE from 5 to 7.5% were obtained with 6 samples. Three samples have a % relative error
above 10%: SET-03-C1 (0.533% w/w PE) (11.58%), SET-09-C1 (0.542% w/w PE) (10.29%)
and SET-06-C1 (0.667% w/w PE) (10.09%). Similarly, to the training set, the highest %RE is
found in samples with the lowest PE concentrations (C1–C2) (Table 5).

Table 4. Summary of percent relative errors for the test set.

%RE <1 <2.5 <5 <7.5 <10 <12.5

Number of samples 6 8 9 6 0 3

Min (%RE) 0.22 1.19 2.72 5.48 - 10.09

Max (%RE) 0.69 2.23 4.77 6.82 - 11.58

Mean (%RE) 0.39 1.61 3.57 6.34 - 10.65

overall mean (%RE) 3.67

Table 5. Summary of mean % relative errors according to PE concentration ranges (test set).

PE Concentration No. of Samples Mean RE% Min–Max %RE

<1 4 8.76 3.07–11.57

[1, 2] 6 4.61 2.09–6.82

[2, 3] 6 1.12 0.33–2.24

[3, 4] 4 3.75 1.19–6.67

[4, 5] 2 3.89 3.75–4.03

[5, 6] 4 4.64 3.02–6.64

[6, 7] 2 0.977 0.59–1.36

[7, 8] 4 1.17 0.18–2.72

>8 - - -

3.6. General Discussion

Similar to ATR-IR spectroscopy, confocal Raman microspectroscopy provides a spe-
cific molecular fingerprint of the cosmetic hydrogels under investigation. The spectra
result from the combined contribution of ingredients in the formula, correlated to their
respective concentrations. For both techniques, the regression coefficients obtained from
PLSR analysis highlighted the contributions of specific features from PE to the predictive
models, as well as the presence of other bands from ingredients such as glycerol and water
(Figure 5 and [25,26] for ATR-IR spectra). The anti-correlated patterns between the increas-
ing intensities of PE spectral bands according to their final concentration in hydrogels
and the decreasing intensities of water and glycerol bands were found to be identical for
both methods.

A direct comparison of Raman analysis with results previously obtained using ATR-IR
spectroscopy [26] is not possible due to the differing number of samples, concentration
range and spectral range used to apply the PLSR analysis. Nevertheless, the physicochemi-
cal characteristics of ANC-PE suspensions (average hydrodynamic diameter, polydispersity
index and zeta potential) for ANC-PE suspensions used to prepare the range of diluted
samples were found to be very similar to values previously obtained for the ATR-IR
study [25,26]. Furthermore, the loaded ANC-PE hydrogels were prepared with standard-
ised experimental conditions (same instruments, protocols and ingredients); therefore, for
both studies, they are highly comparable. The respective mean %RE of 2.51% and 3.67%
calculated for the test sets for ATR-IR and for Raman, respectively, suggest a similar level
of accuracy in the prediction of unknown samples. Although slightly different values were
obtained for RMSECV = 0.097% w/w PE (R2 = 0.995) for ATR-IR compared to RMSECV
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= 0.142% w/w PE (R2 = 0.997) for Raman (Figure 4), both techniques can be considered
suitable for rapid and cost-effective analytical control of complex cosmetic formulations.
Beyond their respective performance to quantify PE in cosmetic hydrogels, the applicability
and/or transferability to either academic research laboratories or the industrial environ-
ment should be considered. On the one hand, ATR-IR spectroscopy is a highly robust and
reliable (alignment, calibration and requiring minimal maintenance) technique that has
been employed to analyse liquid samples such as human body fluids [73,74], chemother-
apeutic drugs [51,52,61,75] and natural deep eutectic solvents (NADES) [76,77], either as
liquids or after drying. The upgrade from measurements performed in transmission mode
to the ATR mode, thanks to the availability of compact accessories, has enabled rapid and
easy analysis from a single drop of the sample deposited onto a flat ATR crystal (commonly
diamond) [78]. ATR-IR setups most commonly found in analytical labs remain, however,
most suited for analysis of reduced batches of samples, considering the workflow that
requires cleaning the ATR crystal and recording a new background between each mea-
surement. High-throughput ATR plate readers (e.g., Pike Technologies) [79,80] open up
the possibility to prepare samples remotely and run automated batch analysis, although
the use of such systems is not yet widespread. Quantum cascade laser IR spectroscopy
is an emerging alternative, using brighter light sources for increased analysis speed and
sensitivity [81]. Despite the high cost of such an apparatus, these innovations contribute
to strengthening the case for applications of infrared spectroscopy for analytical quality
control (ACQ).

In comparison, Raman spectroscopy is still considered a complex technique for expert
users. However, measurements through quartz cuvettes can easily be performed with
a macro setup, highlighting the feasibility of performing quantitative analysis through
a container. Makki et al. have reported the AQC of chemotherapeutic solutions with
systematically varying concentrations of drugs in quartz cuvettes [52], while Elderderi
et al. have conducted similar studies of NADES to quantify water content [48]. In the last
few years, considerable efforts to miniaturise systems have resulted in more affordable
transportable (benchtop) devices with remote probes and compact handheld devices.
Most commercial Raman instruments are designed for operation in confocal microscopic
conditions. In such setups, the technique measures backscattered light, and therefore, the
laser source does not have to go through the sample. The technique of spatially offset
Raman spectroscopy (SORS) uses a central fibre to deliver the source laser, and spatially
offset fibres to collect the backscattered Raman signal, exploiting the fact that the offset
signal originates from deeper in the sample, enabling the measurement of larger volumes
(e.g., larger packaging containers [82–84], blister packs [85], vials [49,59] or other containers
such as perfusion bags for chemotherapeutic drugs [60,86]). SORS is a more user-friendly
approach, which does not require a high degree of user training. Nevertheless, a thorough
evaluation of the application as a quantitative analytical tool is necessary to validate its
suitability to screen complex cosmetic products. The main benefits of in situ analysis are
to guarantee sample integrity while avoiding contamination and to significantly improve
workflow while offering a 100% consumable-free alternative. Another benefit of Raman
spectroscopy is that, without the requirements for consumables, it can perform in-line
quantitative ACQ, either using immersed fibre probes [87,88] or through a (transparent)
vessel wall [87,89].

In terms of application potential, the PLSR outcome for the Raman analysis could be
significantly improved through enhanced repeatability and reproducibility of the measure-
ment. In this preliminary study, the laser was manually focused just below the surface of
the samples. In terms of repeatability, error bars in Figure 4 correspond to the standard
deviation calculated from the 50 predicted PE concentration obtained from the 50 spectra
recorded per sample of the validation set (see Section 2). The mean standard deviation was
found to be 0.08 +/− 0.021% w/w PE. The coefficient of variations expressed in percent
(CV%) were ranging between 1.10% and 18.4% with a mean value equal to 4.14%. It was
observed that the highest CV% was found for samples with concentrations below 1% w/w
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PE, suggesting that the repeatability in the measurements is lower most likely due to
weaker intensities, and hence a lower signal-to-noise ratio, from the AI compared to other
ingredients. Above 1% w/w PE, the CV% decreased rapidly, and it was found inferior to 2%
for the highest concentration, i.e., sample with more than% w/w PE. Similar observations
were made for the test set (Figure 6) with a mean standard deviation of 0.077± 0.010% w/w
PE and CV% ranging from 1.07% to 11.8% (mean = 3.67%). Automated sample positioning
and light collection could help to standardise the data collection process and to maximise
the signal-to-noise ratio at every single analysis. Commercially available confocal Raman
microscopes typically include an autofocus feature, so it is easy to develop an automated
routine to automatically set the zero position and then increment a predefined motion to
focus the laser to a constant depth within the sample. Raman microscopes can be purchased
with an inverted configuration (objective lens pointing to the ceiling) that can be used to
analyse liquid samples [90,91], and the technique lacks a dedicated instrumental setup for
liquid diffracting samples. Moreover, a number of parameters such as the wavelength of the
laser source and magnification of the focusing objectives must be considered and compared
to determine if Raman spectroscopy is suitable for quality control of cosmetic hydrogels.

In the context of determining ACI concentration in complex cosmetic forms, the direct
assay of samples without the need for pre-analytical steps and the absence of solvent or
consumable requirements are indisputable advantages over chromatography-based proto-
cols. Spectroscopic analysis offers the advantages of reagentless and thus more eco-friendly
techniques that can be implemented in the field in an industrial environment. Indeed, a
more thorough evaluation of the technique should be performed according to established
guidelines. For instance, the ICH Q2(R2) validation of analytical procedures from the
European Medicines Agency provides additional criteria such as intermediate precision
or inter-laboratory reproducibility that should be determined from larger datasets [92].
Ultimately, Raman spectroscopy is a versatile technique that can be adapted to perform
analysis outside, through or inside containers, which is a significant advantage over ATR-IR.
It is indeed necessary to screen larger panels of systems with various chemical composi-
tions to have a comprehensive view of the advantages and limitations of both vibrational
techniques evaluated.

4. Conclusions

Raman spectroscopy is a powerful technique for label-free molecular characterisation
of samples. The molecular specificity allows us to detect and quantify the ACI in complex
semi-solid formulations with no requirements for pre-analytical protocols. Although
PE is nanoencapsulated in core–shell nanocarriers, Raman analysis coupled with data
mining protocols such as PLSR resulted in robust quantitative models with an RMSEP of
0.148% w/w and R2 of 0.996. With a mean % error equal to 3.67% for the 32 predicted-as-
unknown samples, the feasibility to deliver accurate quantification is highlighted. While
optimisation in the experimental setup and sample presentation for higher reproducibility
need to be sought, the results obtained in the present study showed the potential of Raman
spectroscopy as a promising tool for the analytical quality control of cosmetic products.
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