Eudragit® FS Microparticles Containing Bacteriophages, Prepared by Spray-Drying for Oral Administration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Bacteriophage Stock Preparation
2.2.2. Temperature and pH Stability of Bacteriophage Activity
2.2.3. Spray-Drying
2.2.4. Bacteriophage Stability Testing
2.2.5. Production Yield
2.2.6. Scanning Electron Microscopy
2.2.7. Thermal Analysis
2.2.8. Powder X-ray Diffraction
2.2.9. Particle Size Distribution
2.2.10. Determination of Density, Porosity, and Flowability of the Powder
2.2.11. Mixing for Tableting
2.2.12. Uniformity of Capsules
2.2.13. Tableting
2.2.14. Tablet Tests
2.2.15. Simulator of the Human Intestinal Microbial Ecosystem (SHIME®)
2.2.16. Stability Study
2.2.17. Statistical Analysis
3. Results and Discussion
3.1. Influence of Temperature and pH on Bacteriophage Activity
3.2. Formulation
3.3. Characterization of Eudragit® FS-Based Microparticles
3.4. Characterization of the Flowability
3.5. Capsules Filling
3.6. Characterization of the Mix for Tableting
3.7. Characterization of Tablets
3.8. Activity Release Test of Bacteriophage LUZ19 from Powder Using a Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) Model
3.9. Storage Stability Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Levy, S.B.; Marshall, B. Antibacterial Resistance Worldwide: Causes, Challenges and Responses. Nat. Med. 2004, 10, S122–S129. [Google Scholar] [CrossRef]
- Dufour, N.; Debarbieux, L. La phagothérapie: Une arme crédible face à l’antibiorésistance. Med. Sci. 2017, 33, 8. [Google Scholar] [CrossRef] [PubMed]
- Melo, L.D.R.; Oliveira, H.; Pires, D.P.; Dabrowska, K.; Azeredo, J. Phage Therapy Efficacy: A Review of the Last 10 Years of Preclinical Studies. Crit. Rev. Microbiol. 2020, 46, 78–99. [Google Scholar] [CrossRef]
- Gutiérrez, D.; Fernández, L.; Rodríguez, A.; García, P. Are Phage Lytic Proteins the Secret Weapon to Kill Staphylococcus aureus? mBio 2018, 9, e01923-17. [Google Scholar] [CrossRef]
- Dąbrowska, K.; Abedon, S.T. Pharmacologically Aware Phage Therapy: Pharmacodynamic and Pharmacokinetic Obstacles to Phage Antibacterial Action in Animal and Human Bodies. Microbiol. Mol. Biol. Rev. 2019, 83, e00012-19. [Google Scholar] [CrossRef]
- Duan, Y.; Young, R.; Schnabl, B. Bacteriophages and Their Potential for Treatment of Gastrointestinal Diseases. Nat. Rev. Gastroenterol. Hepatol. 2021, 19, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Zalewska-Piątek, B.; Piątek, R. Phage Therapy as a Novel Strategy in the Treatment of Urinary Tract Infections Caused by E. Coli. Antibiotics 2020, 9, 304. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.W.; Floyd, R.V.; Fothergill, J.L. The Contribution of Pseudomonas Aeruginosa Virulence Factors and Host Factors in the Establishment of Urinary Tract Infections. FEMS Microbiol. Lett. 2017, 364. [Google Scholar] [CrossRef] [PubMed]
- Nicolle, L. Complicated Urinary Tract Infection in Adults. Can. J. Infect. Dis. Med. Microbiol. 2005, 16, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Chuang, C.-H.; Wang, Y.-H.; Chang, H.-J.; Chen, H.-L.; Huang, Y.-C.; Lin, T.-Y.; Ozer, E.A.; Allen, J.P.; Hauser, A.R.; Chiu, C.-H. Shanghai Fever: A Distinct Pseudomonas aeruginosa Enteric Disease. Gut 2014, 63, 736–743. [Google Scholar] [CrossRef]
- Khanal, D.; Chang, R.Y.K.; Hick, C.; Morales, S.; Chan, H.-K. Enteric-Coated Bacteriophage Tablets for Oral Administration against Gastrointestinal Infections. Int. J. Pharm. 2021, 609, 121206. [Google Scholar] [CrossRef]
- Okuda, J.; Hayashi, N.; Okamoto, M.; Sawada, S.; Minagawa, S.; Yano, Y.; Gotoh, N. Translocation of Pseudomonas aeruginosa from the Intestinal Tract Is Mediated by the Binding of ExoS to an Na,K-ATPase Regulator, FXYD3. Infect. Immun. 2010, 78, 4511–4522. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, X.; Thouverez, M.; Talon, D.; Boillot, A.; Capellier, G.; Floriot, C.; Hélias, J. Endemicity, Molecular Diversity and Colonisation Routes of Pseudomonas Aeruginosa in Intensive Care Units. Intensive Care Med. 2001, 27, 1263–1268. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.C.; Christou, N.V.; Meakins, J.L. The Gastrointestinal Tract The “Undrained Abscess” of Multiple Organ Failure. Ann. Surg. 1993, 218, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Stoutenbeek, C.P.; van Saene, H.K.; Miranda, D.R.; Zandstra, D.F. The Effect of Selective Decontamination of the Digestive Tract on Colonisation and Infection Rate in Multiple Trauma Patients. Intensive Care Med. 1984, 10, 185–192. [Google Scholar] [CrossRef]
- Blair, P.; Rowlands, B.J.; Lowry, K.; Webb, H.; Armstrong, P.; Smilie, J. Selective Decontamination of the Digestive Tract: A Stratified, Randomized, Prospective Study in a Mixed Intensive Care Unit. Surgery 1991, 110, 303–309; discussion 309–310. [Google Scholar]
- Ledingham, I.M.; Alcock, S.R.; Eastaway, A.T.; McDonald, J.C.; McKay, I.C.; Ramsay, G. Triple Regimen of Selective Decontamination of the Digestive Tract, Systemic Cefotaxime, and Microbiological Surveillance for Prevention of Acquired Infection in Intensive Care. Lancet 1988, 1, 785–790. [Google Scholar] [CrossRef]
- De Jonge, E.; Schultz, M.J.; Spanjaard, L.; Bossuyt, P.M.M.; Vroom, M.B.; Dankert, J.; Kesecioglu, J. Effects of Selective Decontamination of Digestive Tract on Mortality and Acquisition of Resistant Bacteria in Intensive Care: A Randomised Controlled Trial. Lancet 2003, 362, 1011–1016. [Google Scholar] [CrossRef]
- Międzybrodzki, R.; Kłak, M.; Jończyk-Matysiak, E.; Bubak, B.; Wójcik, A.; Kaszowska, M.; Weber-Dąbrowska, B.; Łobocka, M.; Górski, A. Means to Facilitate the Overcoming of Gastric Juice Barrier by a Therapeutic Staphylococcal Bacteriophage A5/80. Front. Microbiol. 2017, 8, 467. [Google Scholar] [CrossRef]
- Malik, D.J.; Sokolov, I.J.; Vinner, G.K.; Mancuso, F.; Cinquerrui, S.; Vladisavljevic, G.T.; Clokie, M.R.J.; Garton, N.J.; Stapley, A.G.F.; Kirpichnikova, A. Formulation, Stabilisation and Encapsulation of Bacteriophage for Phage Therapy. Adv. Colloid Interface Sci. 2017, 249, 100–133. [Google Scholar] [CrossRef]
- Ma, Y.; Pacan, J.C.; Wang, Q.; Xu, Y.; Huang, X.; Korenevsky, A.; Sabour, P.M. Microencapsulation of Bacteriophage Felix O1 into Chitosan-Alginate Microspheres for Oral Delivery. AEM 2008, 74, 4799–4805. [Google Scholar] [CrossRef]
- Ma, Y.; Pacan, J.C.; Wang, Q.; Sabour, P.M.; Huang, X.; Xu, Y. Enhanced Alginate Microspheres as Means of Oral Delivery of Bacteriophage for Reducing Staphylococcus Aureus Intestinal Carriage. Food Hydrocoll. 2012, 26, 434–440. [Google Scholar] [CrossRef]
- Śliwka, P.; Mituła, P.; Mituła, A.; Skaradziński, G.; Choińska-Pulit, A.; Niezgoda, N.; Weber-Dąbrowska, B.; Żaczek, M.; Skaradzińska, A. Encapsulation of Bacteriophage T4 in Mannitol-Alginate Dry Macrospheres and Survival in Simulated Gastrointestinal Conditions. LWT 2019, 99, 238–243. [Google Scholar] [CrossRef]
- Soto, M.J.; Retamales, J.; Palza, H.; Bastías, R. Encapsulation of Specific Salmonella Enteritidis Phage F3αSE on Alginate-Spheres as a Method for Protection and Dosification. Electron. J. Biotechnol. 2018, 31, 57–60. [Google Scholar] [CrossRef]
- Kim, S.; Jo, A.; Ahn, J. Application of Chitosan-Alginate Microspheres for the Sustained Release of Bacteriophage in Simulated Gastrointestinal Conditions. Int. J. Food Sci. Technol. 2015, 50, 913–918. [Google Scholar] [CrossRef]
- Dini, C.; Islan, G.A.; de Urraza, P.J.; Castro, G.R. Novel Biopolymer Matrices for Microencapsulation of Phages: Enhanced Protection Against Acidity and Protease Activity: Novel Biopolymer Matrices for Microencapsulation of Phages: Enhanced Protection. Macromol. Biosci. 2012, 12, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Huang, X.; Baxi, S.; Chambers, J.R.; Sabour, P.M.; Wang, Q. Whey Protein Improves Survival and Release Characteristics of Bacteriophage Felix O1 Encapsulated in Alginate Microspheres. Food Res. Int. 2013, 52, 460–466. [Google Scholar] [CrossRef]
- Samtlebe, M. Carrier Systems for Bacteriophages to Supplement Food Systems: Encapsulation and Controlled Release to Modulate the Human Gut Microbiota. Food Sci. Technol. 2016, 7, 334–340. [Google Scholar] [CrossRef]
- Gill, J.J.; Sabour, P.M.; Leslie, K.E.; Griffiths, M.W. Bovine Whey Proteins Inhibit the Interaction of Staphylococcus Aureus and Bacteriophage K. J. Appl. Microbiol. 2006, 101, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Puapermpoonsiri, U.; Spencer, J.; van der Walle, C.F. A Freeze-Dried Formulation of Bacteriophage Encapsulated in Biodegradable Microspheres. Eur. J. Pharm. Biopharm. 2009, 72, 26–33. [Google Scholar] [CrossRef] [PubMed]
- González-Menéndez, E.; Fernández, L.; Gutiérrez, D.; Pando, D.; Martínez, B.; Rodríguez, A.; García, P. Strategies to Encapsulate the Staphylococcus Aureus Bacteriophage PhiIPLA-RODI. Viruses 2018, 10, 495. [Google Scholar] [CrossRef] [PubMed]
- Vinner, G.K.; Vladisavljević, G.T.; Clokie, M.R.J.; Malik, D.J. Microencapsulation of Clostridium Difficile Specific Bacteriophages Using Microfluidic Glass Capillary Devices for Colon Delivery Using PH Triggered Release. PLoS ONE 2017, 12, e0186239. [Google Scholar] [CrossRef] [PubMed]
- Leung, S.S.Y.; Morales, S.; Britton, W.; Kutter, E.; Chan, H.K. Microfluidic-Assisted Bacteriophage Encapsulation into Liposomes. Int. J. Pharm. 2018, 545, 176–182. [Google Scholar] [CrossRef]
- Vinner, G.K.; Malik, D.J. High Precision Microfluidic Microencapsulation of Bacteriophages for Enteric Delivery. Res. Microbiol. 2018, 169, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Vinner, G.K.; Rezaie-Yazdi, Z.; Leppanen, M.; Stapley, A.G.F.; Leaper, M.C.; Malik, D.J. Microencapsulation of Salmonella-Specific Bacteriophage Felix O1 Using Spray-Drying in a Ph-Responsive Formulation and Direct Compression Tableting of Powders into a Solid Oral Dosage Form. Pharmaceuticals 2019, 12, 43. [Google Scholar] [CrossRef]
- Leung, S.S.Y.; Parumasivam, T.; Gao, F.G.; Carrigy, N.B.; Vehring, R.; Finlay, W.H.; Morales, S.; Britton, W.J.; Kutter, E.; Chan, H.K. Production of Inhalation Phage Powders Using Spray Freeze Drying and Spray Drying Techniques for Treatment of Respiratory Infections. Pharm. Res. 2016, 33, 1486–1496. [Google Scholar] [CrossRef]
- Leung, S.S.Y.; Parumasivam, T.; Gao, F.G.; Carter, E.A.; Carrigy, N.B.; Vehring, R.; Finlay, W.H.; Morales, S.; Britton, W.J.; Kutter, E.; et al. Effects of Storage Conditions on the Stability of Spray Dried, Inhalable Bacteriophage Powders. Int. J. Pharm. 2017, 521, 141–149. [Google Scholar] [CrossRef]
- Vandenheuvel, D.; Singh, A.; Vandersteegen, K.; Klumpp, J.; Lavigne, R.; Van Den Mooter, G. Feasibility of Spray Drying Bacteriophages into Respirable Powders to Combat Pulmonary Bacterial Infections. Eur. J. Pharm. Biopharm. 2013, 84, 578–582. [Google Scholar] [CrossRef]
- Vandenheuvel, D. Instability of Bacteriophages in Spray-Dried Trehalose Powders Is Caused by Crystallization of the Matrix. Int. J. Pharm. 2014, 4, 202–205. [Google Scholar] [CrossRef]
- Tabare, E.; Glonti, T.; Cochez, C.; Ngassam, C.; Pirnay, J.-P.; Amighi, K.; Goole, J. A Design of Experiment Approach to Optimize Spray-Dried Powders Containing Pseudomonas AeruginosaPodoviridae and Myoviridae Bacteriophages. Viruses 2021, 13, 1926. [Google Scholar] [CrossRef]
- Stanford, K.; McALLISTER, T.A.; Niu, Y.D.; Stephens, T.P.; Mazzocco, A.; Waddell, T.E.; Johnson, R.P. Oral Delivery Systems for Encapsulated Bacteriophages Targeted at Escherichia Coli O157:H7 in Feedlot Cattle. J. Food Prot. 2010, 73, 1304–1312. [Google Scholar] [CrossRef]
- Duyvejonck, H.; Merabishvili, M.; Pirnay, J.-P.; De Vos, D.; Verbeken, G.; Van Belleghem, J.; Gryp, T.; De Leenheer, J.; Van der Borght, K.; Van Simaey, L.; et al. Development of a QPCR Platform for Quantification of the Five Bacteriophages within Bacteriophage Cocktail 2 (BFC2). Sci. Rep. 2019, 9, 13893. [Google Scholar] [CrossRef] [PubMed]
- Antoine, C.; Laforêt, F.; Blasdel, B.; Fall, A.; Duprez, J.-N.; Mainil, J.; Delcenserie, V.; Thiry, D. In Vitro Characterization and In Vivo Efficacy Assessment in Galleria Mellonella Larvae of Newly Isolated Bacteriophages against Escherichia Coli K1. Viruses 2021, 13, 2005. [Google Scholar] [CrossRef] [PubMed]
- Kutter, E. Phage Host Range and Efficiency of Plating. In Bacteriophages; Clokie, M.R.J., Kropinski, A.M., Eds.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2009; Volume 501, pp. 141–149. ISBN 978-1-58829-682-5. [Google Scholar]
- Lebrun, P.; Krier, F.; Mantanus, J.; Grohganz, H.; Yang, M.; Rozet, E.; Boulanger, B.; Evrard, B.; Rantanen, J.; Hubert, P. Design Space Approach in the Optimization of the Spray-Drying Process. Eur. J. Pharm. Biopharm. 2012, 80, 226–234. [Google Scholar] [CrossRef]
- Tietje, C.; Brouder, A. (Eds.) International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. In Handbook of Transnational Economic Governance Regimes; Brill|Nijhoff: Leiden, Belgium, 2010; pp. 1041–1053. ISBN 978-90-04-18156-4. [Google Scholar]
- Chang, R.Y.; Wong, J.; Mathai, A.; Morales, S.; Kutter, E.; Britton, W.; Li, J.; Chan, H.K. Production of Highly Stable Spray Dried Phage Formulations for Treatment of Pseudomonas Aeruginosa Lung Infection. Eur. J. Pharm. Biopharm. 2017, 121, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lechanteur, A.; Evrard, B. Influence of Composition and Spray-Drying Process Parameters on Carrier-Free DPI Properties and Behaviors in the Lung: A Review. Pharmaceutics 2020, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Mah, P.T.; O’Connell, P.; Focaroli, S.; Lundy, R.; O’Mahony, T.F.; Hastedt, J.E.; Gitlin, I.; Oscarson, S.; Fahy, J.V.; Healy, A.M. The Use of Hydrophobic Amino Acids in Protecting Spray Dried Trehalose Formulations against Moisture-Induced Changes. Eur. J. Pharm. Biopharm. 2019, 144, 139–153. [Google Scholar] [CrossRef]
- Ali Rashidinejad, S.M.J. (Ed.) Spray Drying Encapsulation of Bioactive Materials; CRC Press: Boca Raton, FL, USA, 2021; ISBN 978-0-429-35546-2. [Google Scholar]
- Malik, D.J. Targeted Delivery of Bacteriophages to the Gastrointestinal Tract and Their Controlled Release. In Microbiome and Metabolome in Diagnosis, Therapy, and other Strategic Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 185–194. ISBN 978-0-12-815249-2. [Google Scholar]
- Chablani, L.; Tawde, S.A.; D’Souza, M.J. Spray-Dried Microparticles: A Potential Vehicle for Oral Delivery of Vaccines. J. Microencapsul. 2012, 29, 388–397. [Google Scholar] [CrossRef]
- Kshirsagar, S.J.; Bhalekar, M.R.; Umap, R.R. In Vitro In Vivo Comparison of Two PH Sensitive Eudragit Polymers for Colon Specific Drug Delivery. J. Pharm. Sci. 2009, 10, 61. [Google Scholar]
- Skrdla, P.J.; Floyd, P.D.; Dell’Orco, P.C. The Amorphous State: First-Principles Derivation of the Gordon–Taylor Equation for Direct Prediction of the Glass Transition Temperature of Mixtures; Estimation of the Crossover Temperature of Fragile Glass Formers; Physical Basis of the “Rule of 2/3”. Phys. Chem. Chem. Phys. 2017, 19, 20523–20532. [Google Scholar] [CrossRef]
- Chang, R.Y.K.; Kwok, P.C.L.; Khanal, D.; Morales, S.; Kutter, E.; Li, J.; Chan, H. Inhalable Bacteriophage Powders: Glass Transition Temperature and Bioactivity Stabilization. Bioeng. Transl. Med. 2020, 5, e10159. [Google Scholar] [CrossRef] [PubMed]
- Pirnay, J.-P.; Verbeken, G.; Ceyssens, P.-J.; Huys, I.; De Vos, D.; Ameloot, C.; Fauconnier, A. The Magistral Phage. Viruses 2018, 10, 64. [Google Scholar] [CrossRef] [PubMed]
Formulations | % w/w D-(+)-Trehalose and L-Isoleucine | % w/w Eudragit® FS-30D with PlasACRYL® T20 |
---|---|---|
F1 | 100 | 0 |
F2 | 50 | 50 |
F3 | 25 | 75 |
F4 | 20 | 80 |
F5 | 15 | 85 |
F6 | 10 | 90 |
F7 | 5 | 95 |
F8 | 0 | 100 |
Excipients/Formulations | % w/w |
---|---|
Spray-dried powder | 3.00 |
Microcrystalline cellulose | 55.48 |
Mannitol | 36.39 |
Colloidal silicon dioxide | 0.10 |
Hydroxypropyl cellulose | 2.42 |
Croscarmellose sodium | 1.61 |
Magnesium stearate | 1.00 |
TOTAL | 100.00 |
Formulation | Dv10 (µm) | Dv50 (µm) | Dv90 (µm) | |
---|---|---|---|---|
F1 | Average | 0.87 | 2.54 | 6.27 |
Standard deviation | 0.00 | 0.04 | 0.22 | |
F4 | Average | 1.19 | 2.97 | 6.64 |
Standard deviation | 0.00 | 0.02 | 0.09 |
Formulation | ρP (g/cm3) | ρL (g/cm3) | ρT (g/cm3) | ε (%) | CI (%) | HR | |
---|---|---|---|---|---|---|---|
F1 | Average | 1.3891 | 0.1093 | 0.3080 | 77.82 | 64.51 | 2.82 |
Standard deviation | 0.0062 | 0.0029 | 0.0047 | 0.13 | 0.41 | 0.03 | |
F4 | Average | 1.3664 | 0.1790 | 0.3016 | 77.93 | 40.65 | 1.68 |
Standard deviation | 0.0062 | 0.0070 | 0.0139 | 0.12 | 0.47 | 0.01 |
F1 | F4 | |||||
---|---|---|---|---|---|---|
Capsules size | 00 | 0 | 1 | 00 | 0 | 1 |
Average mass of powder (g)/capsule | 0.269 | 0.164 | 0.156 | 0.312 | 0.265 | 0.250 |
Standard deviation | 0.008 | 0.008 | 0.008 | 0.008 | 0.009 | 0.007 |
Lower limit (g) | 0.249 | 0.148 | 0.140 | 0.289 | 0.239 | 0.225 |
Upper limit (g) | 0.289 | 0.181 | 0.171 | 0.335 | 0.392 | 0.275 |
Compliance | Compliant | Compliant | Compliant | Compliant | Compliant | Compliant |
Formulation | ρP (g/cm3) | ρL (g/cm3) | ρT (g/cm3) | ε (%) | CI (%) | HR | |
---|---|---|---|---|---|---|---|
F4+mix | Average | 1.5407 | 0.4336 | 0.5781 | 62.48 | 25.00 | 1.33 |
Standard deviation | 0.0054 | 0.0026 | 0.0033 | 0.12 | 0.82 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabare, E.; Dauchot, T.; Cochez, C.; Glonti, T.; Antoine, C.; Laforêt, F.; Pirnay, J.-P.; Delcenserie, V.; Thiry, D.; Goole, J. Eudragit® FS Microparticles Containing Bacteriophages, Prepared by Spray-Drying for Oral Administration. Pharmaceutics 2023, 15, 1602. https://doi.org/10.3390/pharmaceutics15061602
Tabare E, Dauchot T, Cochez C, Glonti T, Antoine C, Laforêt F, Pirnay J-P, Delcenserie V, Thiry D, Goole J. Eudragit® FS Microparticles Containing Bacteriophages, Prepared by Spray-Drying for Oral Administration. Pharmaceutics. 2023; 15(6):1602. https://doi.org/10.3390/pharmaceutics15061602
Chicago/Turabian StyleTabare, Emilie, Tiffany Dauchot, Christel Cochez, Tea Glonti, Céline Antoine, Fanny Laforêt, Jean-Paul Pirnay, Véronique Delcenserie, Damien Thiry, and Jonathan Goole. 2023. "Eudragit® FS Microparticles Containing Bacteriophages, Prepared by Spray-Drying for Oral Administration" Pharmaceutics 15, no. 6: 1602. https://doi.org/10.3390/pharmaceutics15061602
APA StyleTabare, E., Dauchot, T., Cochez, C., Glonti, T., Antoine, C., Laforêt, F., Pirnay, J. -P., Delcenserie, V., Thiry, D., & Goole, J. (2023). Eudragit® FS Microparticles Containing Bacteriophages, Prepared by Spray-Drying for Oral Administration. Pharmaceutics, 15(6), 1602. https://doi.org/10.3390/pharmaceutics15061602