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Abstract: Rapid in vitro assessment of antimicrobial drug efficacy under clinically relevant pharma-
cokinetic conditions is an essential element of both drug development and clinical use. Here, we
present a comprehensive overview of a recently developed novel integrated methodology for rapid
assessment of such efficacy, particularly against the emergence of resistant bacterial strains, as jointly
researched by the authors in recent years. This methodology enables rapid in vitro assessment of
the antimicrobial efficacy of single or multiple drugs in combination, following clinically relevant
pharmacokinetics. The proposed methodology entails (a) the automated collection of longitudinal
time–kill data in an optical-density instrument; (b) the processing of collected time–kill data with
the aid of a mathematical model to determine optimal dosing regimens under clinically relevant
pharmacokinetics for single or multiple drugs; and (c) in vitro validation of promising dosing regi-
mens in a hollow fiber system. Proof-of-concept of this methodology through a number of in vitro
studies is discussed. Future directions for the refinement of optimal data collection and processing
are discussed.

Keywords: pharmacokinetics; pharmacodynamics; antimicrobials; antimicrobial resistance; combination
therapy; mathematical modeling

1. Introduction

Rapid assessment of antimicrobial drug efficacy in clinically relevant pharmacokinetic
conditions is fundamental for both new drug development and clinical drug use [1]. This
need is particularly pressing for resistant strains, as they pose a serious threat to human
health [2]. Assessing the effect of drugs on pathogenic bacteria can be typically measured
in vitro through the exposure of a bacterial population to (one or more) drugs at various
time-invariant concentrations over a period of time (time–kill experiments). The number of
live cells in the bacterial population at distinct points in that time period can be typically
assessed by quantitative culture (plating) methods [3]. As widely used as this simple
approach is, it provides limited data because plating can realistically be performed only
at a few time points during a corresponding experiment (see [4] and references therein).
As a result, simple indicators of drug efficacy against bacterial strains, such as the mini-
mum inhibitory concentration (MIC), the area under the curve (AUC), and others, are in
widespread use [5–7]. Unfortunately, such indicators often fail at predicting therapeutic
outcomes under realistic pharmacodynamic and pharmacokinetic conditions [1,8], par-
ticularly when a bacterial population comprises subpopulations of varying degrees of
resistance [4,9–12]. More detailed pharmacodynamic models could provide a better picture
of drug efficacy [13]. However, developing such models from scant measurements based
on plating during short-term time–kill experiments is not practical, if at all feasible.
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An obvious way to address this issue would be to collect more measurements of bacte-
rial population size at densely spaced time points during drug exposure. Accomplishing
this by plating would be practically infeasible, particularly in situations where time or re-
sources are limited yet reliable results are needed quickly, e.g., in a clinical setting. Among a
number of, in principle, feasible options (see Section 4), a long-known, potentially efficient
alternative to plating would be to take measurements of sample turbidity (cloudiness)
using optical density (OD) methods (spectrophotometry) [14–16]. While optical density
measurements rely on well-established principles (of light propagation through a liquid)
and can easily provide a virtually continuous real-time stream of data in a modern in-
strument, they have a serious limitation: they count both live and dead cells of a bacterial
population in a suspension, as both kinds of cells block/absorb light, thus affecting the
resulting optical signal. As a result, optical density measurements are routinely taken only
in studies focusing on growing populations of cells (e.g., to study contamination) and,
until recently, have not been applied to shrinking populations, the very focus of time–kill
experiments with bacterial populations exposed to drugs.

This limitation was removed in a series of recent publications that established a novel
methodology, which is the main focus of this paper. Specifically, we present here a distilled
synthesis of the individual prior results, which collectively constitute the novel integrated
methodology just mentioned. This methodology straddles the span from the automatic
collection of in vitro longitudinal time–kill data (capturing the drug effect on a bacterial
population) to the design and in vitro testing of therapeutic dosing regimens for drugs
following clinically relevant pharmacokinetics. While this methodology is still undergoing
refinements and enhancements, there is already a body of work at a stage mature enough
for direct use, hence worth communicating.

In the rest of the paper, in Section 2, we summarize the basic elements of the proposed
methodology referred to above, and in Section 3, we present a selection of basic proof-of-
concept outcomes presented in the literature. Finally, we discuss potential improvements
and extensions of this methodology.

2. Materials and Methods

The essence of the methodology referred to in Section 1 lies in the use of data-driven
mathematical modeling tools which extract useful information from longitudinal time–kill
data collected by an optical density instrument. Implementation of this methodology
entails the following elements:

1. Automated collection of longitudinal optical density measurements of several bacte-
rial cell suspensions by an optical density instrument, each suspension exposed to
single or multiple drugs at a time-invariant concentration;

2. Feeding the data collected in the previous step into a mathematical model to estimate
the kill rate of the bacterial subpopulation least susceptible to the drug as a function
of drug concentration;

3. Use of the drug-concentration-dependent kill rate estimate from the previous step to
design dosing regimens predicted to eradicate a bacterial population exposed to a
drug following clinically relevant pharmacokinetics;

4. Validation test of promising dosing regimens from the previous step in an in vitro hol-
low fiber infection model mimicking clinically relevant pharmacokinetics in humans;

5. We elaborate on each of the above elements next.

2.1. Longitudinal Optical Density Measurements of Bacterial Cell Suspension under Drug Exposure

In a spectrophotometer, a cell population in suspension is placed in a transparent
cuvette, and light is shone on it [17]. Because cells impart turbidity (cloudiness) to the
suspension as they absorb and scatter light, the intensity of transmitted light is lower than
the intensity of the incident light. Comparing the two intensities provides a quantitative
assessment of the number of cells in suspension (optical density). Optical density is roughly
proportional to the biomass in the cell suspension in a given range that is specific to the
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cell type. The simplicity and ability to generate abundant longitudinal data have made
spectrophotometry the method of choice for measurements of bacterial growth in related
applications. The inherent drawback of spectrophotometry, as already mentioned, is its
inability to distinguish between live and dead cells, a limitation of utmost importance in
time–kill experiments, where bacterial populations are expected to decline [18]. Indeed,
whereas in bacterial growth experiments, live cells quickly far outnumber dead cells, time–
kill experiments with substantial bacterial killing experience the reverse. In fact, bacterial
populations with resistant subpopulations may exhibit interesting behavior, as depicted
in Figure 1, adapted from [18]. This figure indicates that for successive multiples of drug
concentrations, the number of live cells, Nlive, may qualitatively exhibit pure growth,
delayed growth, decline followed by regrowth or delayed regrowth, and finally, continued
decline (Figure 1a). However, what optical density measurements will indicate is a set of
curves for the total number of cells (comprising both live and dead cells, Ntotal) that never
decline, as shown in Figure 1b.
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Figure 1. Qualitative patterns of the number of live (a) and total (b) bacterial cells in suspension (Nlive

and Ntotal, respectively) exposed to time-invariant antibiotic concentrations in multifold dilutions.
The same scale is used for both Nlive and Ntotal. Bacterial subpopulations of varying degrees of drug
resistance are considered. As drug concentration is set at increasingly higher values, the bacterial
population response over time exhibits the five patterns shown. Note that while the number of
live cells may decline (a), the total number of cells (both live and dead) will never decline (b). An
optical density instrument can only produce the curves in (b). In fact, for high concentrations of the
antibiotic, the curves for Ntotal are practically indistinguishable over time. A central focus of this
paper is to summarize a mathematical model-based methodology for obtaining the curves of (a) from
the curves in (b), a task that is arguably impossible based on inspection alone.

It is this inherent limitation of optical density instruments that is addressed by the integrated
mathematical modeling methodology presented here, as detailed in subsequent sections. Of
course, in addition to the above inherent limitation, secondary issues with optical density
instruments may arise from multiple difficulties in the reliable translation of optical density
to a number of bacterial cells. Nevertheless, such difficulties, which are expounded on
in Section 4, proved surmountable in the work reported here, a fact that underscores the
remarkable robustness of the proposed methodology [18,19] and raises expectations for
improvements with the future availability of better optical density instruments.

2.2. Kill Rate Estimation of Least Susceptible Bacteria as a Function of Drug Concentration

The study of bacterial population dynamics has a long history [20], with a variety
of mathematical models used for corresponding quantitative descriptions [13,21]. At the
core of these models is the elementary differential equation dNlive/dt = KgNlive(t) or its
counterpart for a saturating bacterial population dNlive/dt = KgNlive(t)(1− Nlive/Nmax),
where Nlive is the number of live bacterial cells in a population, Kg is the physiological
growth rate, and Nmax is the upper bound of the growing bacterial population [22]. Expo-
sure to bactericidal drugs adds a killing term, rNlive, to the right-hand side of the preceding
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equations, where r is the specific kill rate, dependent on drug concentration C. A typical
expression for the specific kill rate is

r = K
CH

CH + CH
50

(1)

where H is the Hill exponent of sigmoidicity [9,23–25] as shown in Figure 2.
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Figure 2. Bactericidal rate of drugs following concentration-dependent (H � 1) or time-dependent
(H � 1) activity [1], as captured by the Hill exponent H in Equation (1).

For typical time–kill experiments with time-invariant C, solution of the differential
equation dNlive/dt =

(
Kg − r

)
Nlive(t) is Nlive(t) = Nlive(0)exp

[(
Kg − r

)
t
]
, which corre-

sponds to a straight line of slope Kg − r in a plot of log(Nlive(t)) vs. t.
As conceptually useful as such linear plots are, most practical situations of bacterial

populations exposed to drugs involve subpopulations of varying susceptibility to the
drug(s), corresponding to a distribution of values of r ≥ 0 over a bacterial population at
any given drug concentration C [9,10]. The result is curved rather than straight lines for
log(Nlive(t)), as depicted, for example, in Figure 1a. For such cases, it was shown [11,12]
that the size Nlive(t) of a heterogeneous bacterial population exposed to one or more drugs
at time-invariant concentration C is well captured by the equation

ln
[

Nlive(t)
N0

]
=
(
Kg − rmin

)
t + λ

(
e−at − 1

)
−

−ln

[
1 + Kg

Nlive(0)
Nmax

t∫
0

exp
[(

Kg − rmin
)
τ + λ(e−aτ − 1)

]
dτ

]
(2)

and the kill rate average and variance over time are well captured by the equations

µ(t) = rmin + (µ(0)− rmin)exp
[
− µ(0)−rmin

λ t
]
=

= rmin + λae−at
(3)

σ(t)2 = (µ(0)−rmin)
2

λ exp
[
− µ(0)−rmin

λ t
]
=

= λa2e−at
(4)

where:

Nlive(t) is the live bacterial population size with an initial value of N0;
Kg is the physiological net growth rate of the entire bacterial population, common for
all subpopulations;
rmin is the kill rate induced by the antibiotic on the most resistant (least susceptible) subpopulation;
Nmax is the maximum size of a bacterial population reaching saturation under growth conditions;
µ(t) is the kill rate average over the bacterial population at time t;
σ(t)2 is the kill rate variance over the bacterial population at time t.

λ > 0, a > 0 are constants associated with the initial decline of the average kill rate
of the population and correspond to the Poisson distributed variable ( r− rmin)/a with



Pharmaceutics 2023, 15, 1671 5 of 13

average and variance equal to λ. Note that no assumptions about the mechanisms that
confer bacterial resistance have been made to derive the above Equations (2)–(4).

The parameters Kg, rmin, λ, a, Nmax that appear in Equation (2) can be estimated by
regression, assuming enough values of Nlive(t) are available. The preceding statement im-
mediately justifies why plating methods for measurement of Nlive(t) are impractical for
estimation of Kg, rmin, λ, a, Nmax: at least 10–20 data points would be needed for reasonable
parameter estimates [9,10].

This limitation, posed by plating-based measurements, is overcome by the optical
density-based methods discussed, which can routinely generate measurements every
minute or so. However, as already mentioned, their measurements are of Ntotal rather than
of Nlive. To make measurements of Ntotal usable in parameter estimation, the following
equation was derived [18]:

Ntotal(t)
N0

= eλ(e−at−1)+(Kg−rmin)t+

+e−λλ
Kg−rmin

a

(
Kd+rmin

a
∫ λ

λe−at z−1+
rmin−Kg

a ezdz +
∫ λ

λe−at z
rmin−Kg

a ezdz
) (5)

when N0 � Nmax, which is typical for time–kill experiments. (The full expression for N0 not
far from Nmax is also shown in [18]). In fact, it may be numerically simpler and conceptually
insightful to use the following two differential equations (from which Equation (5) is
derived for N0/Nmax ≈ 0) in parameter estimation based on measurements of Ntotal(t):

dNlive
dt

=

(
−Kg

Nlive(t)
Nmax

+ Kg − rmin − λae−at
)

Nlive(t) ≈
(
Kg − rmin − λae−at)Nlive(t) (6)

dNtotal
dt

=

(
Kg

[
1− Nlive(t)

Nmax

]
+ Kd

)
Nlive(t) ≈

(
Kg + Kd

)
Nlive(t) (7)

where Kd is the natural death rate of bacterial cells.
Equations (6) and (7) shed light on the nature of the parameter estimation problem:
First, estimates of Kg, Kd can be obtained from a simple time-growth experiment

(C = 0) for which there is no drug-induced kill rate, i.e., rmin = 0 and λ = 0, by default.
Then, estimates of Nlive(t) are reasonably well obtained from Equation (7), provided that
dNtotal/dt can be estimated with reasonable accuracy. It is for this purpose that optical
density-based measurements of Ntotal(t) at closely spaced points in time become crucial, as they
allow a reasonably accurate estimation of dNtotal/dt, hence of Nlive(t) via Equation (7), and
finally, the parameters rmin, λ, a via standard regression using Equation (6).

Of the parameters estimated via the exercise just described, the one critical for dosing
regimen design is rmin, which is the kill rate of the least susceptible (most resistant) sub-
population. (Note that in long enough time–kill experiments, Equation (3) immediately
suggests that the average kill rate, µ(t), quickly tends to rmin). The importance of rmin
stems from the fact that complete eradication of a bacterial population exposed to a drug at
concentration C occurs if and only if

rmin > Kg (8)

i.e., the kill rate of the least susceptible bacterial subpopulation should be greater than the corre-
sponding population growth rate (see Equation (5) and discussion in [18]). The dependence of
rmin on C is typically considered to follow the form of Equation (1), as shown qualitatively
in Figure 3 (two instances of the general Figure 2), which qualitatively depicts a fit of
Equation (1) to values of rmin estimated from time–kill experiments at distinct drug concen-
trations C. It is noted that counterparts of Equation (1) can be fit to effective concentrations
concerning multiple drugs, but this pharmacodynamics issue [26–28] is beyond the scope
of this paper and will be explored elsewhere. The outcome of fitting rmin to C is crucial for
designing effective dosing regimens under clinically relevant pharmacokinetics, as will be
discussed in the next section.
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Figure 3. Fit of Equation (1) to values of rmin estimated from time–kill experiments with a bacterial
population exposed to distinct drug concentrations C. (a) Eradication of the entire bacterial population
is predicted for high enough drug concentrations C. (b) No drug concentration C can eliminate the
entire bacterial population.

2.3. Dosing Regimen Design for Bacterial Eradication under Clinically Relevant Pharmacokinetics

The preceding discussion in Sections 2.1 and 2.2 is concerned with pharmacodynamics
(PD), i.e., the bactericidal effect of a drug at a certain concentration. This knowledge is one
of the two fundamental components of pharmacology for antimicrobial therapy [1]. The
second fundamental component is pharmacokinetics (PK), i.e., the absorption, distribution,
and metabolism/elimination of drugs. In this section, we describe how pharmacodynamic
information, as acquired by the approach described in the previous two sections, can be
combined with related pharmacokinetics for design of effective drug dosing regimens.

A drug can certainly be clinically administered in a number of ways, each resulting in a
corresponding drug concentration profile in a patient over time—from time-varying to time-
invariant. In addition to variability over time, administered drug concentration in a patient
typically exhibits topical variability as well, following corresponding pharmacokinetics. For
example, different profiles typically arise between plasma (blood) and tissue concentration,
as there are multiple compartments from an injection point to targeted tissues, and the
corresponding dynamics for each compartment are different for different drugs [29]. A
simple pharmacokinetic profile for periodic drug injection and subsequent first-order
elimination of the drug is shown in Figure 4, where the drug concentration C(t) is plotted
over time t. This choice lends itself to both simple theoretical analysis and experimental
testing in an in vitro hollow-fiber infection model (Section 2.4 below). Alternatives are
expounded on in Section 4.
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Figure 5. Qualitatively distinct outcomes of a homogeneous bacterial population exposed to a drug
following the PK in Figure 4, depending on D/Kg (Equation (9)). (a) Bacterial population decline for
D/Kg > 1. (b) Bacterial population growth for D/Kg < 1.

Equation (9) is the main outcome of this section and can be used to complete a dosing
regimen design that ensures, with confidence, that D > Kg. It provides a direct link between
PK and PD, as drugs with the same PD but different PK or with the same PK and different
PD will generally result in different D, hence will require different dosing regimens to
achieve similar bactericidal outcomes. A detailed investigation of this aspect is provided
in [30] and, in a broader context, in [4]. Qualitatively, what one can expect when selecting
Cmax and T for a dosing regimen accommodating the PK of a drug with a half-life t1/2
(Figure 4) depends on all three parameters K, C50, and H of rmin (see Equation (1)). Of
these parameters, H determines how sigmoidal rmin is (Figure 2) and, ultimately, whether
the drug exhibits time-dependent or concentration-dependent behavior [1]. The resulting
D/Kg qualitatively follows the patterns shown in Figure 6, which provides a link between
PK and PD for corresponding drugs.
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two different values of the Hill factor H (0.5 vs. 8, Figure 2).

2.4. Validation Test of Promising Dosing Regimens in an In Vitro Hollow Fiber Infection Model

While the preceding methodology can use optical density measurements from time–
kill experiments to rapidly design dosing regimens expected to be effective under realistic
pharmacokinetics, there is inherent uncertainty in such expectations [26–28]. In vitro testing
in a hollow-fiber infection model (HFIM, Figure 7) [31,32] can be used to test whether ex-
pected outcomes under realistic pharmacokinetics will indeed be achieved [33–35]. Simple
HFIM designs for a single drug (in terms of both structure and design parameter values)
were heuristically extended in the 1980s to the designs of two drugs with different pharma-
cokinetics [31,36]. However, recent developments in the treatment of multidrug-resistant
bacterial infections [37–41] have made it necessary to test three or even more drugs in an
HFIM before a corresponding combination is put to clinical use [26,42,43]. This made it
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necessary to advance the state of the art in HFIM design. A comprehensive new design
method was developed in [44], where (a) new configurations beyond the standard in-series
configuration of [31,36] were developed (Figure 7), (b) explicit formulas were derived for
setting design parameters to values that result in desired pharmacokinetics for each drug
in the hollow fiber cartridge, and (c) even for two drugs, an entire family of new designs
beyond Blaser’s [36] was provided. In addition to making designs for three or more drugs
feasible, these advancements substantially improved flexibility for the satisfaction of design
objectives and constraints in an HFIM and paved the way for further extensions concerning
various pharmacokinetic profiles (see Section 4).
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Figure 7. In vitro hollow fiber infection model (HFIM) for testing the effectiveness of three drugs that
follow different pharmacokinetics. Design parameters shown take values according to the formulas
developed in [44]. (a) In-series configuration: adds vessels B, C to the basic central vessel of the
single-drug design. (b) In-parallel configuration: adds vessels A, B, C to the basic central vessel of the
single-drug design, offering additional flexibility on the range of pharmacokinetics to be simulated
in vitro. The framed areas in both (a,b) refer to the basic design for a single drug. Each framed area,
along with vessel B and associated streams, corresponds to Blaser’s long-known configuration [31,36]
for two drugs.
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3. Results
3.1. Longitudinal Optical Density Measurements of Bacterial Cell Suspension under Drug Exposure

Proof of concept was provided in [18] for the information extraction capabilities
of model-based analysis of longitudinal optical density measurements from a bacterial
suspension exposed to antibiotics in time–kill experiments, as outlined in Section 2.1. In [18],
levofloxacin in fourfold dilutions was used against Acinetobacter baumannii, ATCC BAA747.
In that study, longitudinal measurements of the bacterial population size (of the kind shown
in Figure 1b) for both live and dead cells were collected by an optical density instrument
(BacterioScan model 216Dx) at the early stages of its development at the time. Even though
the instrument could not explicitly report declining population patterns for live cells, as
explained in Section 2.1, the model-based analysis of optical density data for both live and
dead cells could reconstruct the live cell population over time with remarkable fidelity,
correctly estimating live population decline and subsequent long-term regrowth patterns
from data of as little duration as six hours. These patterns were confirmed with separate,
far more time-consuming, plating-based measurements in the same study, validating the
credibility of the method and suggesting its potential use in dosing regimen design for
clinically relevant pharmacokinetics, as discussed next.

3.2. From Optical Density Measurements to Dosing Regimen Design for Clinically
Relevant Pharmacokinetics

The capability of the proposed model-based methodology to start from optical density
time–kill measurements and eventually guide individualized dosing regimen design for
clinically relevant pharmacokinetics was experimentally validated in vitro in [19]. In that
study, longitudinal optical density measurements were collected using the same instrument
as in Section 3.1. In corresponding time–kill experiments, Acinetobacter baumannii, ATCC
BAA747, was exposed to fourfold dilutions of (a) ceftazidime and of (b) ceftazidime/amikacin
in a concentrations ratio of 2:1. Model-based data analysis was performed for both cases,
considering periodic injections every T = 8 h with subsequent exponential drug decline
corresponding to a half-life of t1/2 = 2.5 h. The design parameter left to choose from for
both cases was Cmax, the peak concentration of ceftazidime (Figure 4). The outcome of the
model-based analysis is summarized in Figure 8. In that figure, it is indicated that ceftazidime
alone is not predicted with a high likelihood to suppress the entire bacterial population, even
at high concentrations (Figure 8, CAZ). By contrast, the ceftazidime/amikacin 2:1 combination
is predicted in the same figure (CAZ + AMK, 2:1) to have a very high likelihood of suppressing
the bacterial population, even at relatively modest concentrations.
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 Figure 8. Probability of satisfaction of Equation (9) for bacterial exposure to ceftazidime (CAZ) and
combination of ceftazidime and amikacin at a mass ratio of 2:1 (CAZ + AMK, 2:1). In both cases,
drugs were injected every T = 8 h with subsequent exponential decline of each concentration from
its peak of Cmax, corresponding to half-life of t1/2 = 2.5 h. Cmax = 60or150mg/L for points A and B,
respectively, and Cmax, ceftazidime/Cmax, amikacin = 40/20 (mg/L)/(mg/L) for point C were selected
for testing in the in vitro HFIM with corresponding probabilities for D\Kg > 1 equal to 59%, 38%,
and 98%, respectively.
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The predictions of Figure 8 were experimentally tested by implementing the antibiotic
profile of Figure 4 in an in vitro hollow-fiber infection model, using Cmax = 60or150mg/L for
points A and B, respectively, and Cmax, ceftazidime/Cmax, amikacin = 40/20 (mg/L)/(mg/L)
for point C of Figure 8. The outcomes are shown in Figure 9, where confirmation of predictions
established in Figure 8 is evident.
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Figure 9. Bacterial response in the hollow fiber infection model corresponding to points A, B, and C
of Figure 8. The responses associated with points A and B (orange and blue) correspond to injecting
ceftazidime equivalent to 1 g (Cmax = 60mg/L) and 2.5 g (Cmax = 150mg/L) respectively, adminis-
tered every 8 h, as shown in Figure 4. The response associated with point C (green) corresponds to
injecting a combination of ceftazidime and amikacin (2 : 1 mass ratio) with ceftazidime equivalent to
0.67 g and amikacin equivalent to 5mg/kg administered every 8 h, as shown in Figure 4. Data are
shown as mean ± standard deviation.

4. Discussion
4.1. Optical Density Measurements and Alternatives

As already discussed in Section 1, a number of alternatives exist for measuring the number
of cells in a population. These include quantitative polymerase chain reaction (PCR) [45,46], flu-
orescence microscopy [47,48], enzyme-linked immunosorbent assay (ELISA) [49], fluorescence-
based microplate reader [50–52], flow cytometry [47,53,54], fiber-based fluorescence spec-
troscopy [55]), and microcalorimetry [56]. While they all have a significant role to play in
corresponding applications, they also have disadvantages related to complexity or the current
state of development, thus making optical density methods a viable option for the purposes of
this study. A recent, informative review [57] summarizes such methods and their corresponding
applications. For all methods, improvements in both instrument hardware and software are
reasonable to anticipate in the future.

For optical density instruments, improvements would be welcome to address sources
of systematic errors, such as the following: To extend their dynamic range, many optical
density instruments change the measurement method from scattering to absorption based
on a threshold value of bacterial concentration, thus possibly introducing calibration
errors [19]. Dead cells decompose over time, thus changing the optical signature of the
cell suspension and making corresponding adjustments necessary. The concentration of
cells in suspension used in the instrument may not be uniform if mixing is not adequate,
thus biasing measurements. A number of antibiotics, such as fluoroquinolones, can induce
morphological changes in exposed bacteria (e.g., filaments at concentrations close to the
MIC), thus inadvertently changing again the optical signature observed.

While the results presented here demonstrate the value of the proposed methodology,
improvements in optical density instruments are anticipated to increase the methodology’s utility.

4.2. Clinically Relevant Pharmacokinetics and Design and In Vitro Testing of Dosing Regimens

A confident estimate of the effect of drug concentration, C, on the specific kill rate, rmin,
of the least susceptible bacterial subpopulation via Equation (1) (as discussed in Section 2.2)
immediately allows for the use of Equation (9) to design of an effective dosing regimen
that accommodates specified pharmacokinetics. Indeed, regardless of the particular form
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of C(t) in Equation (9), the effectiveness of a dosing regimen rests on whether D > Kg.
While the preceding analysis was carried out for the profile of C(t) shown in Figure 4,
other profiles, such as profiles corresponding to multi-compartment models, may easily be
considered [29].

It should also be noted that while the in vitro testing of dosing regimens in an HFIM
outlined in Section 2.4 is specifically designed for pharmacokinetics, as shown in Figure 4,
methods for experimental designs that address pharmacokinetics that correspond to multi-
compartment models are directly feasible, using the Laplace-transforms-based method
described in [44]. This is left for future investigation.

5. Conclusions and Future Work

The results presented here highlight the potential for clinicians to use the proposed
method for individualized dosing regimen design. The utility of the proposed method
can be further consolidated and expanded with additional future work. Potential items to
study include the following:

• Instrumentation improvements that may improve the quality of the data (reduction of
systematic error);

• A wider range of clonally diverse bacteria;
• Bacteria with various resistance mechanisms;
• Different antibiotics, particularly with pharmacodynamics and pharmacokinetic differences;
• Combination therapy, particularly the interplay between pharmacodynamics

and pharmacokinetics;
• Automation of computations through software development;
• Testing of in vivo relevance in animal infection models.

6. Patents

A US patent application has been filed for the method presented here [58].
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