
Citation: Guazzelli, E.; Pisano, G.;

Turriani, M.; Biver, T.; Kriechbaum,

M.; Uhlig, F.; Galli, G.; Martinelli, E.

The Nanostructured Self-Assembly

and Thermoresponsiveness in Water

of Amphiphilic Copolymers Carrying

Oligoethylene Glycol and

Polysiloxane Side Chains.

Pharmaceutics 2023, 15, 1703.

https://doi.org/10.3390/

pharmaceutics15061703

Academic Editors: Ana Cazacu

and Elena-Laura Ursu

Received: 2 May 2023

Revised: 2 June 2023

Accepted: 8 June 2023

Published: 10 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Article

The Nanostructured Self-Assembly and Thermoresponsiveness
in Water of Amphiphilic Copolymers Carrying Oligoethylene
Glycol and Polysiloxane Side Chains
Elisa Guazzelli 1 , Giuseppe Pisano 1, Marco Turriani 1, Tarita Biver 1 , Manfred Kriechbaum 2 , Frank Uhlig 2,
Giancarlo Galli 1 and Elisa Martinelli 1,*

1 Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy;
elisa.guazzelli@dcci.unipi.it (E.G.); tarita.biver@unipi.it (T.B.); giancarlo.galli@unipi.it (G.G.)

2 Institute for Inorganic Chemistry, Graz University of Technology, 8010 Graz, Austria;
manfred.kriechbaum@tugraz.at (M.K.); frank.uhlig@tugraz.at (F.U.)

* Correspondence: elisa.martinelli@unipi.it

Abstract: Amphiphilic copolymer self-assembly is a straightforward approach to obtain respon-
sive micelles, nanoparticles, and vesicles that are particularly attractive for biomedicine, i.e., for
the delivery of functional molecules. Here, amphiphilic copolymers of hydrophobic polysiloxane
methacrylate and hydrophilic oligo (ethylene glycol) methyl ether methacrylate with different lengths
of oxyethylenic side chains were synthesized via controlled RAFT radical polymerization and char-
acterized both thermally and in solution. In particular, the thermoresponsive and self-assembling
behavior of the water-soluble copolymers in water was investigated via complementary techniques
such as light transmittance, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS)
measurements. All the copolymers synthesized were thermoresponsive, displaying a cloud point
temperature (Tcp) strongly dependent on macromolecular parameters such as the length of the
oligo(ethylene glycol) side chains and the content of the SiMA counits, as well as the concentration of
the copolymer in water, which is consistent with a lower critical solution temperature (LCST)-type
behavior. SAXS analysis revealed that the copolymers formed nanostructures in water below Tcp,
whose dimension and shape depended on the content of the hydrophobic components in the copoly-
mer. The hydrodynamic diameter (Dh) determined by DLS increased with the amount of SiMA and
the associated morphology at higher SiMA contents was found to be pearl-necklace-micelle-like,
composed of connected hydrophobic cores. These novel amphiphilic copolymers were able to mod-
ulate thermoresponsiveness in water in a wide range of temperatures, including the physiological
temperature, as well as the dimension and shape of their nanostructured assemblies, simply by
varying their chemical composition and the length of the hydrophilic side chains.

Keywords: amphiphilic copolymer; self-assembly; polyethylene glycol; polysiloxane; drug delivery;
random copolymer; thermoresponsiveness; LCST

1. Introduction

Amphiphilic polymers are a class of materials that can be employed to obtain self-
assembled responsive nanomaterials with great potential in medicine and physiology [1,2].
Even though block copolymers are generally recognized as the workhorse of self-assembled
copolymer nanostructures, in recent years, great attention has been directed to the study of
the behavior in this field of amphiphilic homopolymers [3–6] and linear statistical/random
copolymers. These materials have the advantage of being accessible via easy, one-step,
synthetic procedures such as the straightforward free-radical polymerization [7,8] of hy-
drophilic and hydrophobic comonomers, but can also display more sophisticated prop-
erties when dispersity, chain lengths, and composition are controlled [9–12] by means
of reversible deactivation radical polymerization techniques such as ATRP, RAFT, etc.
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The variety of structures that can be obtained from self-assembly of these “non-block”
amphiphilic copolymer ranges from protein-like folded unimer micelles [13–15] and single-
chain nanoparticles [16–20] to supramolecular micelles [21,22], which can be characterized
by complex internal morphologies such as those shown by necklace micelles [7,23] in
lamellar structures [24], large vesicles [25], and micrometric particles [26]. Their unique
properties can even show synergistic effects [27] or outperform [28,29] the self-assembly
of block copolymers that are generally recognized as the standard for applications where
polymer self-assembly is required.

Based on these premises, the rapid development of the field of drug delivery and
controlled release took advantage in many cases of the self-assembly of amphiphilic copoly-
mers, and evolved in parallel with the increased understanding of the possible routes to
cross multiple biological barriers and allow tissue penetration and intracellular traffick-
ing [30]. In particular, amphiphilic polymeric nanostructure can be exploited as a platform,
that can be also functionalized with targeting moieties, in the design of carriers for various
payloads, such as nucleic acids, small molecules and proteins, to aid their therapeutic effect
and limit their adverse impact ideally targeting specific organs, tissues, or cells [30]. To be
effective in such a complex environment, stimuli-responsive self-assembled nanostructures
are particularly appealing for biomedical applications such as imaging probes and drug
delivery systems susceptible to different triggers, i.e., pH [31], ionic strength [32], polar-
ity [15,33,34], local viscosity and aggregation state [35–37], light [9], redox potential [38,39],
and temperature [4,40–42]. Moreover, the effect of the size of the carriers is one of the more
intuitive parameters to be taken into account in the development of more effective carriers.
As one example, it was demonstrated that while long circulating drug-loaded polymeric
micelles, with diameters of 30, 50, 70, and 100 nm, can all penetrate highly permeable
tumors in vivo, particle sizes lower than 50 nm were the most effective to target and to
accumulate in poorly permeable tumors [43]. Size also plays a role in conjunction with
other nanoparticle characteristics such as particle charge for transcutaneous delivery [44]
and surface modification on the cellular uptake with emphasis on the gastrointestinal (GI)
barrier and the blood–brain barrier (BBB) [45].

In this study, two series of amphiphilic copolymers with a statistical distribution
of hydrophilic oligoethylene glycol methyl ether methacrylate (TEGMA for n = 3 or
PEGMA for n ~ 9) and hydrophobic monomethacryloxypropyl-terminated polydimethyl-
siloxane (SiMA) were obtained via RAFT copolymerization in a large compositional range
(4–65 %mol SiMA). Siloxanes, including polydimethylsiloxane (PDMS), are already in use
pharmaceutically both as active pharmaceutical ingredients (API) and as excipients [46],
and their use has also been reported in imaging and drug delivery studies due to their
good chain flexibility, biocompatibility, and low cytotoxicity [47–49]. The thermoresponsive
self-assembly of the copolymers in water was investigated via turbidimetry, dynamic light
scattering (DLS), and small-angle X-ray scattering (SAXS) measurements. The latter, in
particular, revealed that copolymers richer in SiMA aggregated in micelles that showed a
tendency to assume a multicore, necklace-like morphology.

2. Materials and Methods
2.1. Materials

Toluene (Sigma-Aldrich, Darmstadt, Germany) was distilled under vacuum after
reflux over calcium hydride. 2,2′-Azobis(2-methylpropionitrile) (AIBN, Sigma-Aldrich,
Darmstadt, Germany) was recrystallized from methanol. 2-Cyano-2-propyl benzodithioate
(CTA, Sigma-Aldrich, Darmstadt, Germany) was used as received.

Polyethyleneglycol methyl ether methacrylates (PEGMA, Mn = 475 g/mol, average de-
gree of polymerization ~9, Sigma-Aldrich, Darmstadt, Germany), triethyleneglycol methyl
ether methacrylate (TEGMA Mn = 232 g/mol, Sigma-Aldrich, Darmstadt, Germany),
monomethacryloxypropyl-terminated polydimethylsiloxane (SiMA, Mn = 680 g/mol, aver-
age degree of polymerization ~6, Fluorochem, Fluorochem, Hadfield, United Kingdom)
were filtered on basic alumina to remove inhibitors.



Pharmaceutics 2023, 15, 1703 3 of 19

2.2. Synthesis of Copolymers PEGMA-co-SiMAx

In a typical polymerization, PEGMA (0.78 mL, 1.70 mmol), SiMA (1.21 mL, 1.70 mmol),
AIBN (2.22 mg, 0.01 mmol), CTA (15 mg, 0.07 mmol), and toluene (2.2 mL) were added
into a Schlenk tube. Three freeze–pump–thaw cycles were performed to remove oxygen;
then, the tube was backfilled with nitrogen. The polymerization was carried out at 70 ◦C.
The reaction was quenched by cooling an exposure to air after 15 h. The final product,
named PEGMA-co-SiMA45, was characterized by 1H NMR spectroscopy after purification;
x = 45 mol% SiMA.

1H NMR [acetone-d6]: δ (ppm) = 7.4–8 (SC6H5), 3.9–4.3 (COOCH2), 3.5–3.8 (OCH2),
3.4 (OCH3), 0.8–2.3 (CH2CH2CH2, CH2CH2CH3, CH2CCH3), 0.6 (CH2CH2Si), 0.1 (CH3Si).

The reaction conditions for the preparation of the other PEGMA-co-SiMAx copolymers
are summarized in Table S1.

The purification procedure was different for copolymers with different SiMA contents
because of the different solubilities. The crude products PEGMA-co-SiMA10 and PEGMA-
co-SiMA17 were precipitated three times from dichloromethane solutions into n-hexane;
the crude product PEGMA-co-SiMA29 and PEGMA-co-SiMA45 were purified by dialysis of
different copolymer solutions (~0.2 g mL−1) against water, water/THF (1/1 v/v) and THF
in the order, using a dialysis membrane (Repligen (Boston, MA, USA) Spectra/Por Biotech
RC, 3.5–5 kD cut-off, 16 mm). After dialysis, the copolymers were recovered from the THF
solution by evaporating the solvent under vacuum.

2.3. Synthesis of Copolymers TEGMAx-co-SiMAy

In a typical polymerization, TEGMA (0.5 mL, 2.18 mmol), SiMA (1.56 mL, 2.18 mmol),
AIBN (3 mg, 0.02 mmol), CTA (20 mg, 0.09 mmol) and toluene (3.1 mL) were added in
a Schlenk tube. Three freeze-pump-thaw cycles were performed to remove oxygen then
the tube was backfilled with nitrogen. The polymerization was carried out at 70 ◦C. The
reaction was quenched by cooling and exposure to air after 15 h. The crude product was
purified by three precipitations from dichloromethane solutions into ethanol (yield 65%).
The final product, named TEGMA-co-SiMA48, was characterized via 1H NMR spectroscopy;
x = 48 mol% SiMA.

1H NMR [acetone-d6]: δ (ppm) = 7.4–8 (SC6H5), 3.9–4.3 (COOCH2), 3.5–3.8 (OCH2),
3.4 (OCH3), 0.8–2.3 (CH2CH2CH2, CH2CH2CH3, CH2CCH3), 0.6 (CH2CH2Si), 0.1(CH3Si).

The reaction conditions for the preparation of the other TEGMA-co-SiMAx copolymers
are summarized in Table S1.

The purification procedure was different for copolymers with different SiMA contents
because of the different solubilities. The crude products of TEGMA-co-SiMA4 and TEGMA-
co-SiMA6 were precipitated three times from dichloromethane solutions into n-hexane.
TEGMA-co-SiMA65 was precipitated three times from dichloromethane solutions into
ethanol. TEGMA-co-SiMA15, TEGMA-co-SiMA19 and TEGMA-co-SiMA28 were purified
by dialysis of different copolymer solutions (~0.2 g mL−1) against water, water/THF (1/1
v/v), and THF in that order, using a dialysis membrane (Repligen (Boston, MA, USA)
Spectra/Por Biotech RC, 3.5–5 kD cut-off, 16 mm). After dialysis, the copolymers were
recovered from the THF solution by evaporating the solvent under vacuum.

2.4. Characterization
1H measurements were carried out on a Bruker Avance 400 (400 MHz, Billerica, MA,

USA) spectrometer with deuterated solvents at room temperature. The sample concentra-
tion was approximately 30 g L−1. Gel permeation chromatography (GPC) was carried out
using a Jasco (Hachioji-shi, Tokyo, Japan) PU-2089 Plus liquid chromatograph equipped
with two PL gel 5 µm mixed-D columns, a Jasco RI-2031 Plus refractive index detector, and
a Jasco (Hachioji-shi, Tokyo, Japan) UV-2077 Plus UV/vis detector. Samples were filtered
via a 0.2 µm PTFE filter before injection. The measurements of number and weight aver-
age molecular weights and dispersity (Mn, Mw, Ð), relative to PMMA narrow standards,
were obtained from refractive index detector curves, in chloroform as the mobile phase
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(1 mL min−1) at 30 ◦C, maintained by a Jasco (Hachioji-shi, Tokyo, Japan) CO 2063 Plus
column thermostat.

Differential scanning calorimetry (DSC) analysis was performed with a Mettler (Colum-
bus, OH, USA) DSC 922e Module from −130 to 100 ◦C at heating/cooling rate of 10 ◦C
min−1 under a dry nitrogen flow. The glass transition temperature (Tg) was taken as the
inflection temperature in the second heating cycle.

A Shimadzu (Kyoto, Japan) 2450 UV–vis spectrophotometer was used for measuring
of transmittance of solutions at a fixed wavelength of 700 nm as a function of temperature,
in quartz cuvettes with a 10 mm optical path. The cloud point temperature (Tcp) was
defined at the middle of the signal drop. UV–vis spectra (200–800 nm) were acquired using
a PerkinElmer (Waltham, MA, USA) Lambda 650 spectrophotometer. Solutions in solvents
of different polarities were analyzed in a concentration range of 10−3–10−4 M in quartz
cuvettes with an optical path of 10 mm.

A Malvern (Malvern, Worcestershire, UK) Zetasizer Nanoparticle analyzer (detection
angle = 173◦) or a Beckman Coulter (Brea, CA, USA) Delsa Nano C particle analyzer
(detection angle = 166◦) were used for dynamic light scattering (DLS) measurements
of the prefiltered copolymer solutions (5 µm PTFE or cellulose acetate filters to reduce
contaminant interferences). Intensity, volume, and number distributions from CONTIN
analysis in the instrument software were obtained from the raw intensity autocorrelation
function of at least five different repetitions. The copolymers were dissolved in HPLC-grade
water, chloroform, tetrahydrofuran, and dimethylformamide of (0.2 µm filtered).

Small-angle X-ray scattering (SAXS) was executed via an Anton Paar (Graz, Austria)
SAXSess system with a temperature-controlled sample cell with a quartz capillary (1 mm
diameter, 10 µm wall thickness), sealed by vacuum-tight screwcaps on both ends. The
vacuum during the measurements was ≈ 1 mbar. The solvent background contribution to
the scattering intensity was recorded separately and subtracted on a relative scale (after
normalization to the same transmissions) from all the samples SAXS intensities (20 g L−1

copolymer solutions to allow adequate scattering intensity for analysis). The Debyeflex 3003
(GE-Inspections technologies, Frankfurt, Germany) X-ray generator source was operated
at 40 kV and 50 mA with a sealed-tube Cu anode (Cu-Kα radiation source, λ = 0.154 nm).
The X-ray beam was Goebel-mirror-focused and Kratky(line)-slit collimated with a final
rectangular shaped (17 mm × 0.25 mm). A 1D MYTHEN-1k microstrip solid-state detector
recorded the spectra in transmission mode, with a magnitude of the scattering vector q
between 0.01 to 5 nm−1. Given 2θ as the scattering angle (with respect to the incident
beam) and λ as the wavelength of the X-rays, the sample to detector distance of 307 mm
corresponded to a total 2θ region of 0.14◦–7◦, applying the conversion q = 4π sin(θ)/λ.
The exposure time was typically 60 s times 5, with a waiting time of 10 min between the
different temperature steps for all spectra.

3. Results and Discussion
3.1. Synthesis of PEGMA-co-SiMAx and TEGMA-co-SiMAx Copolymers

The two sets of PEGMA-co-SiMAx and TEGMA-co-SiMAx amphiphilic copolymers
contained the same hydrophobic (though not lipophobic) polydimethylsiloxane methacry-
late (SiMA, Mn = 680 g/mol, number average degree of polymerization n ~ 6) component
and hydrophilic poly(ethylene glycol) methyl ether methacrylate (PEGMA, Mn = 475 g/mol,
number average degree of polymerization n ~ 9) or triethyleneglycol methyl ether methacry-
late (TEGMA, n = 3) (Figure 1).
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Figure 1. Synthesis of amphiphilic copolymers via RAFT polymerization.

For both sets of copolymers, a reversible addition-fragmentation chain-transfer (RAFT)
polymerization was chosen which employed 2-cyano-2-propyl benzodithioate as chain
transfer agent (CTA) (Figure 1). The aromatic group in this CTA was easily detectable
by 1H NMR, which is useful for the determination of the molecular weight and de-
gree of polymerization of the different copolymer samples. The molar ratio between
the two comonomers in the feed mixture was varied over a rather large composition range
(5–70 mol% SiMA) (Table S1).

The RAFT polymerization was carried out with toluene as solvent at 70 ◦C under
nitrogen, using 2,2′-azobis(2-methylpropionitrile) (AIBN) as the thermal initiator with a
CTA:AIBN molar ratio of 5:1 for all the copolymerization runs. The reaction products were
named PEGMA-co-SiMAx and TEGMA-co-SiMAx, where x, the molar percentage of SiMA,
was determined by 1H NMR analysis, as well as the overall composition of the copolymer
(Figures S1 and S2). The integral areas of the signals at 7.4–8 ppm of the aromatic protons
in the CTA, 0.1 ppm for Si(CH3)2 protons of SiMA, 3.4 ppm for OCH3 protons of PEGMA
or TEGMA, and 4–4.5 ppm for COOCH2 protons of both repeating units were used to
calculate the number average degree of polymerization of the copolymers; the compositions
are reported in Table 1.

Table 1. Physical–chemical characterization of copolymers PEGMA-co-SIMAx and TEGMA-co-
SiMAx.

Copolymer Conversion
(a) (%)

SiMA
(mol%)

SiMA
(wt%)

Mn
(b)

(g mol–1)
Mn

(c)

(g mol–1) Ð (c) Water
Solubility

PEGMA-co-SiMA10 97 10 14 20,300 17,300 1.30 Yes
PEGMA-co-SiMA17 96 17 23 23,500 21,000 1.29 Yes
PEGMA-co-SiMA29 94 29 37 31,500 17,600 1.59 Yes
PEGMA-co-SiMA45 74 45 54 29,000 15,600 1.60 Yes
TEGMA-co-SiMA4 96 4 12 7700 17,100 1.17 Yes
TEGMA-co-SiMA6 97 6 17 8500 16,100 1.16 Yes
TEGMA-co-SiMA15 94 15 34 8000 20,000 1.22 Yes
TEGMA-co-SiMA19 89 19 41 8700 21,400 1.17 Yes
TEGMA-co-SiMA28 90 28 53 8800 20,400 1.13 No
TEGMA-co-SiMA48 80 48 73 12,200 26,000 1.33 No
TEGMA-co-SiMA65 78 65 85 8600 22,500 1.30 No

(a) Total conversion of the monomers in the crude product determined by 1HNMR. (b) Number average molecular
weight by 1HNMR. (c) Number average molecular and dispersity by GPC.

The controlled nature of the RAFT polymerization was verified by monitoring the
kinetics of copolymer formation by 1H NMR, for the copolymerization of TEGMA and
SiMA in 50:50 molar ratio. Figure 2a shows the kinetic plots of ln([M]0/[M]) vs. time,
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linear up to 8 h of polymerization where the total monomer conversion reached 64%. This
implies a first-order kinetics of the consumption of monomers during the polymeriza-
tion [50]. The plot also showed an induction time of about two hours, consistent with
what already reported for polymerization mediated by the dithiobenzoate CTA used in this
reaction [51,52]. As expected for a controlled RAFT polymerization, the number average
degree of polymerization DPn grew linearly with conversion (Figure 2b), in agreement with
the theoretical values given by Equation (1):

DPn = p [M]0/[CTA]0 (1)

where p is the monomer conversion and [M]0 and [CTA]0 are the initial molar concentrations
of both comonomers and chain transfer agent, respectively.
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Figure 2. (a) Kinetics plot of SiMA, TEGMA and the sum of the two comonomers and
(b) overall degree of polymerization (DPn, by 1H NMR in CDCl3) for the RAFT copolymerization
(Monomers:CTA:AIBN = 55:1:0.2) of TEGMA and SiMA (50:50 molar ratio).

GPC analysis confirmed the occurred copolymerization, and the copolymer curves
were monomodal with a generally relatively low dispersity Ð≤ 1.33, apart from copolymers
PEGMA-co-SiMAx with a higher mole content (≥29%) of SiMA. The discrepancies in the
Mn determined by GPC and 1H NMR analysis were due to the calibration of the GPC
setup with PMMA standards, that are characterized by a dissimilar hydrodynamic and
conformational behavior, compared to the atypical one of amphiphilic copolymers.

In keeping with the precise control of the macromolecular structure achieved by the
RAFT copolymerization, the chemical composition of the copolymers was modulated over
a predetermined wide molar range of both counits. This in turn enabled the production of
several narrowly dispersed copolymers featuring diverse amphiphilic characters for inves-
tigation of self-assembling in solutions. While a few examples of amphiphilic copolymers
based on fluorinated comonomers are reported in the literature [14,15,42,53–55], very little
is known about the thermoresponsiveness and self-assembly in the water of amphiphilic
copolymers based on siloxane comonomers [56].

3.2. Differential Scanning Calorimetry

Thermal characterization of synthesized copolymers was performed by differential
scanning calorimetry (DSC) analyses (heating/cooling rates 10 ◦C min−1) with the objectives
of identifying the glass transition temperature (Tg) and its specific heat capacity change (∆Cp)
as well as the melting temperature (Tm) with its enthalpy variation (∆Hm). All samples were
examined between−130 and 100 ◦C. Copolymers PEGMA-co-SiMAx were semicrystalline,
whereas copolymers TEGMA-co-SiMAx were completely amorphous (Figure 3). For both
copolymer systems, the overall thermal behavior depended on chemical composition.
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The temperatures of glass and melting transitions and the associated specific heat
and enthalpy changes are reported in Table 2. For copolymers with low amounts of SiMA,
only one glass transition was detected similar to those of the homopolymers, p(PEGMA)
(Tg = −63 ◦C) and p(TEGMA) (Tg = −48 ◦C). The copolymers with higher SiMA contents
(≥45 mol% and 15 mol% for PEGMA-co-SiMAx and TEGMA-co-SiMAx, respectively)
presented a second glass transition in the range −124 ◦C ÷ −115 ◦C that is similar to
the behavior of the p(SiMA) homopolymer (Tg = −107 ◦C). This result suggests that
the hydrophilic and the hydrophobic components were chemically incompatible and
underwent microphase separation in the bulk. Moreover, a melting transition was also
detected for PEGMA-co-SiMAx associated with the crystalline regions of PEGMA counits.
Such a transition did not occur for TEGMA-co-SiMAx copolymers, given the shorter length
of the oxyethylenic side chains, which is consistent with the completely amorphous nature
of the corresponding homopolymer. The melting temperature was found to decrease from
−9 ◦C to −18 ◦C as the content of PEGMA in the copolymer decreased from 90 to 55 mol%
with a reduction in the melting enthalpy. The decrease in the crystallinity degree was due
to the incorporation of SiMA counits as defective elements.

Table 2. Thermal properties of the copolymers PEGMA-co-SiMAx and TEGMA-co-SiMAx.

Copolymer Tg
(a)

(◦C)
∆Cp

(a)

(J (gK)−1)
Tg

(b)

(◦C)
∆Cp

(b)

(J (gK)−1)
Tm

(b)

(◦C)
∆Hm

(b)

(J g−1)

pPEGMA(c) −63 1.44
PEGMA-co-SiMA10 n.d. (d) −64 1.20 −9 −0.64
PEGMA-co-SiMA17 n.d. (d) −66 0.86 −12 −0.23
PEGMA-co-SiMA29 n.d. (d) −67 0.78 −15 −0.26
PEGMA-co-SiMA45 −120 0.23 −68 0.45 −18 −0.06

pTEGMA (c) −48 0.60
TEGMA-co-SiMA4 n.d. (d) −50 0.63
TEGMA-co-SiMA6 n.d. (d) −49 0.59

TEGMA-co-SiMA15 −122 0.09 −53 0.34
TEGMA-co-SiMA19 −124 0.19 −52 0.32
TEGMA-co-SiMA28 −123 0.29 −53 0.21
TEGMA-co-SiMA48 −115 0.38 −58 0.11
TEGMA-co-SiMA65 −115 0.55 n.d. (d)

pSiMA (c) −107 0.95
(a) Glass transition temperature and specific heat capacity change for the SiMA component. (b) Glass transition
temperature, specific heat capacity change, melting temperature and enthalpy for the PEGMA or TEGMA
component. (c) Data from the literature [15,57,58]. (d) Not determined.
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3.3. Self-Assembly in Solution
3.3.1. Light Transmittance Measurements

Transmittance at a wavelength of λ = 700 nm of PEGMA-co-SiMAx and TEGMA-co-
SiMAx solution in water was measured using a UV–vis spectrophotometer, thermostated
(±0.1 ◦C) at different temperatures. Copolymers TEGMA-co-SiMAx with a SiMA content
greater than 19 mol% were poorly soluble or completely insoluble in water and could not
be investigated. The light transmittance values of solutions of PEGMA-co-SiMAx (with
x = 10, 17, and 29 mol%) in water (10 g L−1) were plotted in Figure 4a,b as a function of
temperature in a heating and cooling cycle, respectively.
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The curves in Figure 4a show a sharp reduction in the transmittance values from
about 100% to 0% on heating to a critical temperature, named the cloud point temperature
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(Tcp), at which copolymer aggregation into large multichain aggregates occurred. This
phenomenon was also easily visually detected, since at room temperature the polymeric
solution was transparent and homogeneous, whereas it turned into a cloudy dispersion at
and above Tcp. A cooling ramp was also carried out to evaluate the effective reversibility
of the transition process (Figure 4b). For the solutions of copolymers with a SiMA content
lower than 17 mol%, the transition was reversible with negligible hysteresis, whereas for
the other samples, there was a slight thermal hysteresis by about 6–8 ◦C.

The Tcp was found to strongly depend on the type of hydrophilic component and its
content in the copolymer. In particular, for both sets of copolymers, Tcp increased as the
content of the hydrophilic component increased, tending to the values of the respective
homopolymers pPEGMA (Tcp = 90 ◦C) and pTEGMA (Tcp = 47 ◦C) [59]. This result
confirms that the amphiphilic copolymers of this work showed a similar thermoresponsive
behavior as their respective homopolymers, by which hydrogen bonds between water
and hydrophilic oxyethylene side chains are broken at Tcp and intermacromolecular polar
bonds among copolymer chains are formed, thereby giving rise to multichain aggregates.
Moreover, for a similar content of the hydrophilic component in the copolymer, the Tcp
decreased by more than 50 ◦C (copolymer concentration 10 g L−1) by passing from PEGMA
to TEGMA counits (Table 3). According to the literature [4,59], the longer oxyethylene side
chains guarantee a higher hydrophilicity and assist water solubility of the non-aggregated
(co)polymer chains in the aqueous medium over an extended temperature interval.

Table 3. Cloud temperature of copolymer solutions in water at different concentrations (error on Tcp

within ± 0.2 ◦C).

Copolymer Concentration
(g L−1)

Tcp
(◦C)

PEGMA-co-SiMA10

2.5 88.5
5.0 87.0
7.5 85.5
10 84.5
15 84.0
20 83.5
30 83.0

PEGMA-co-SiMA17 10 83.0

PEGMA-co-SiMA29 10 79.0

PEGMA-co-SiMA45 10 73.0

TEGMA-co-SiMA4 10 41.0

TEGMA-co-SiMA6

0.5 38.9
1.0 37.3
5.0 37.3
10 37.2
30 35.8
40 35.5

TEGMA-co-SiMA15

0.5 33.0
1.0 31.0
5.0 28.5
10 28.4
40 28.3

TEGMA-co-SiMA19

0.5 33.0
1.0 32.0
5.0 29.5
10 26.5

To investigate the influence of the concentration on the thermoresponsive behavior,
aqueous solutions of selected copolymers were prepared at various concentrations and
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analyzed through transmittance measurements by varying the temperature (Table 3). By
increasing the concentration of the copolymer, a reduction in the value of Tcp was observed
down to a plateau, consistent with a lower critical solution temperature (LCST)-type
behavior (Figure 4c,d).

3.3.2. Dynamic Light Scattering

Dynamic light scattering (DLS) measurements were carried out on the copolymers
PEGMA-co-SiMAx and TEGMA-co-SiMAx to investigate the ability of these amphiphilic
copolymers to form self-assembled nanostructures in water. Furthermore, the influence
of temperature on these systems was assessed. For each PEGMA-co-SiMAx water-soluble
sample, aqueous solutions with a concentration of 10 g L−1 of copolymer were analyzed
by DLS varying the temperature in the range 25–90 ◦C. On the other hand, copolymers
TEGMA-co-SiMAx were analyzed at a reduced concentration of 1 g L−1 to minimize the
turbidity of the solution. Copolymers with a SiMA content higher than 19 mol% were not
analyzed because of their complete insolubility. The hydrodynamic diameter (Dh) values
at room temperature and at a temperature above Tcp are collected in Table 4 for the two
series of copolymers.

Table 4. Average hydrodynamic diameters (Dh) by DLS of copolymer solutions in various organic
solvents (20 g L−1) and water (10 g L−1) at 25 ◦C and above Tcp for PEGMA-co-SiMAx and TEGMA-
co-SiMAx.

Copolymer Dh (H2O)
(nm)

Dh (CHCl3)
(nm)

Dh (DMF)
(nm)

Dh (THF)
(nm)

25 ◦C T > Tcp 25 ◦C 25 ◦C 25 ◦C

PEGMA-co-SiMA10 17 ± 9 1200 ± 100 (a) 7 ± 3 8 ± 3 8 ± 3
PEGMA-co-SiMA29 30 ± 20 420 ± 40 (a) 11 ± 4 10 ± 4 9 ± 3
PEGMA-co-SiMA45 70 ± 40 100 ± 10 (a) 10 ± 5 15 ± 6 9 ± 4
TEGMA-co-SiMA4 13 ± 4 310 ± 40 (b) 5 ± 2 6 ± 1 5 ± 1
TEGMA-co-SiMA6 16 ± 4 230 ± 30 (b) 8 ± 4 7 ± 3 11 ± 6

TEGMA-co-SiMA15 24 ± 9 140 ± 30 (b) 5 ± 1 5 ± 1 5 ± 1
TEGMA-co-SiMA19 37 ± 9 170 ± 60 (b) 5 ± 2 6 ± 2 5 ± 1

(a) Measured at T > 85 ◦C and 10 g L−1. (b) Measured at T > 60 ◦C and 1 g L−1.

The DLS measurements of the PEGMA90-co-SiMA10 and TEGMA-co-SiMA6 copoly-
mers will be described as a typical example (Figures 5a and 5b, respectively). A drastic
sharp increase in Dh at a temperature above Tcp was observed, confirming the light trans-
mittance results (Figure 4). In fact, the cloud point observed could be related to an abrupt
change in the aggregation state of the amphiphilic copolymers in water. This finding was
attributed to the formation of smaller micellar nanostructures at T < Tcp and larger aggre-
gates at T ≥ Tcp. The Dh values measured in a cooling cycle were similar to those obtained
during heating, confirming the reversibility of the thermoresponsive phenomenon.

For any copolymer solution investigated herein (Table 4), we observed that increasing
the SiMA mole content in the copolymer resulted in an increase in the size of the nanos-
tructures observed at T < Tcp, and a decrease in the Dh measured at T > Tcp up to the point
reached for the copolymer PEGMA-co-SiMA45, for which the difference between the two
values was the smallest one (30 nm).

The effect of copolymer concentration on self-assembly was also tested. DLS measure-
ments were carried out by varying the concentration (from 0.5 to 30 g L−1) of copolymer
in the water at 25 ◦C and at T > Tcp. The case of PEGMA-co-SiMA29 will be discussed in
detail as an example (Figure 5c). These analyses showed that at a temperature below Tcp,
the Dh of the nanostructures did not change significantly with the increase in concentration
of the copolymer in the water solution, with a behavior that is compatible with a micellar,
close aggregation mechanism, for the concentration range investigated. Differently, at
a temperature above Tcp, the micellar nanoparticles collapse into larger aggregates that



Pharmaceutics 2023, 15, 1703 11 of 19

showed an open aggregation mechanism, with an increase in the size of the aggregate at
higher copolymer concentrations (Figure 5c,d).
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The effect of organic solvents on the self-assembly of the amphiphilic copolymers at
room temperature was also investigated. Chloroform, tetrahydrofuran (THF) and dimethyl-
formamide (DMF) were used as solvents with lower selectivity than water towards the
hydrophilic/hydrophobic component of the copolymers. Measured average hydrody-
namic diameters are reported in Table 4. As an example, in Figure 6a, the intensity size
distribution was also compared with that in water for copolymer PEGMA-co-SiMA10.
Particle size in organic solvents was generally found to be 5 nm ≤ Dh ≤ 15 nm, that was
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significantly smaller than in water. The hydrodynamic diameter of the nanostructures in
aqueous solution increased with increasing SiMA content in the copolymer, going from
17 nm to 71 nm for the PEGMA-co-SiMA series and from 13 nm to 37 nm for the TEGMA-co-
SiMA series. The relatively large sizes of the nanostructures formed in aqueous solutions at
T < Tcp seem to be compatible with the formation of multichain micellar nanoparticles rather
than single-chain, unimer micelles that are normally characterized by Dh < 10 nm [15,60].
In agreement with the results from SAXS analysis (see below Section 3.3.3) we assume that
in the tested organic solvents the copolymers were totally solvated, assuming a typical ran-
dom coil conformation. In contrast, in aqueous solution, the polymer chains self-assembled
into micellar nanoparticles due to the favorable interactions of water with oxyethylenic
side chains and hydrophobic interaction among the siloxane ones. This assembly resulted
in distinct hydrophobic compartments whose non-polar nature was confirmed by the
solvatochromic shift of CTA residue absorption in UV–vis spectra (see Section 3.3.4 below).
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Figure 6. DLS intensity size distribution of hydrodynamic diameters (Dh) for PEGMA-co-SiMA10
(a) and TEGMA-co-SiMA15 (b) copolymers in different solvents at 25 ◦C.

3.3.3. Small-Angle X-ray Scattering

To investigate the morphology of the micellar nanoparticles in solution, some of the
synthesized amphiphilic copolymers were analyzed by small-angle X-ray scattering (SAXS)
measurements. In particular, aqueous and THF solutions (20 g L−1) of copolymers PEGMA-
co-SiMA10, PEGMA-co-SiMA45, TEGMA-co-SiMA6 and TEGMA-co-SiMA15 were analyzed
by SAXS. In Figure 7a we report the scattering intensity I(q) of all samples in water as a
function of the scattering vector q after background subtraction.

The Guinier plots (Figure 7b), linear in the region of low q values (1/Rg < q < 1.3/Rg),
were used to determine the radius of gyration Rg (Table 5) of the particles. In the water
solution, the Guinier curves showed a positive variation with respect to linearity at low
q values (q2 < 0.4 nm–2). This deviation suggests the presence of attractive interactions
between the molecules in aqueous solution, confirming the formation of multichain mi-
cellar nanoparticles. Additionally, Rg values calculated for all the samples in water were
higher than those in THF, in agreement with what was shown by the DLS measurements.
The combined SAXS and DLS results suggest that these copolymers self-assembled in
water solution in small aggregates due to the intermacromolecular interactions among
copolymer chains.
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Table 5. Radius of gyration Rg of copolymer solutions in water and THF (20 g L−1) at 20 ◦C.

Copolymer Solvent Aggregation Rg (nm)

PEGMA-co-SiMA10
H2O Aggregates 5.0 ± 0.3
THF Random coil 2.30 ± 0.03

PEGMA-co-SiMA45
H2O Aggregates 6.1 ± 0.1
THF Random coil 2.01 ± 0.07

TRIGMA-co-SiMA6
H2O Aggregates 6.3 ± 0.3
THF Random coil 2.26 ± 0.05

TRIGMA-co-SiMA15
H2O Aggregates 7.1 ± 0.6
THF Random coil 2.31 ± 0.04

Kratky plots (q2I(q) vs. q) of copolymer solutions in water (selective solvent) and
THF (non-selective solvent) are compared in Figure 8. TEGMA-co-SiMA6 and TEGMA-co-
SiMA15 displayed in THF (Figure 8b) ascending q2I(q) curves until a plateau was reached in
the high q region, typical of polymers that adopt a random coil conformation. By contrast,
Kratky plots of the copolymer in water (Figure 8a) showed a small peak followed by a large
shoulder at higher q. This shape of the plot indicates the partial degree of folding within
the nanostructures, due to the hydrophobic interactions among the hydrophobic portions
of the copolymer such as the siloxane chains. Moreover, the real space p(r)-function was
obtained via indirect Fourier transformation [61] of the scattering curve I(q) in reciprocal
space. This kind of plot is also called distance distribution function and helps to elucidate
the shape and conformation of polymer particles [62,63].

Figure 9 demonstrates that the maximum dimension of the copolymer particle in water
solution was in any case on the order 10–15 nm. Moreover, for PEGMA-co-SiMA10 and
TEGMA-co-SiMA6 the maximum of the p(r)-function correlated well with the Rg values
obtained from the Guinier analysis. However, the asymmetric profile of the curve as well as
the presence of several humps (Figure 9a,b) were indicative of an anisotropic shape of the
non-homogeneous and non-compact aggregates [64]. On the other hand, the p(r)-function
plot for the copolymers richer in SiMA (PEGMA-co-SiMA45 and TEGMA-co-SiMA15)
(Figure 9c,d) more clearly indicated the presence of multicore, pearl necklace micelles in
solution. For these samples, a first peak (r ≈ 2 nm) correlates to the diameter of one globule
slightly smaller than the size of a single polymer chain in THF (Rg ≈ 2−2.3 nm); a second
peak (r ≈ 8–10 nm) arises from the pairing distances between neighboring globules [65,66].
There are also larger structures present which could not be resolved well with our SAXS
measurements as they were beyond our resolution and which are the reason for the sharp
cutoff of the p(r)-functions at r > 10 and r > 12 nm, respectively, in Figure 9b–d.



Pharmaceutics 2023, 15, 1703 14 of 19Pharmaceutics 2023, 15, x FOR PEER REVIEW 14 of 20 
 

 

 
(a) (b) 

Figure 8. Kratky plots for copolymer TEGMA-co-SiMAx in water (a) and THF (b). 

Figure 9 demonstrates that the maximum dimension of the copolymer particle in 
water solution was in any case on the order 10–15 nm. Moreover, for PEGMA-co-SiMA10 
and TEGMA-co-SiMA6 the maximum of the p(r)-function correlated well with the Rg 
values obtained from the Guinier analysis. However, the asymmetric profile of the curve 
as well as the presence of several humps (Figure 9a,b) were indicative of an anisotropic 
shape of the non-homogeneous and non-compact aggregates [64]. On the other hand, the 
p(r)-function plot for the copolymers richer in SiMA (PEGMA-co-SiMA45 and TEGMA-
co-SiMA15) (Figure 9c,d) more clearly indicated the presence of multicore, pearl necklace 
micelles in solution. For these samples, a first peak (r ≈ 2 nm) correlates to the diameter of 
one globule slightly smaller than the size of a single polymer chain in THF (Rg ≈ 2−2.3 nm); 
a second peak (r ≈ 8–10 nm) arises from the pairing distances between neighboring 
globules [65,66]. There are also larger structures present which could not be resolved well 
with our SAXS measurements as they were beyond our resolution and which are the 
reason for the sharp cutoff of the p(r)-functions at r > 10 and r > 12 nm, respectively, in 
Figure 9b–d. 

Thus, the pearl necklace structure (Figure 9e) seemed to acquire greater dimensional 
uniformity and conformational homogeneity with the increase in SiMA content in the 
copolymer. Increasing the percentage of such a component could lead to the formation of 
more compact, folded domains within the single polymer chain arising from the stronger 
hydrophobic interactions of SiMA side chains. Such folded domains are connected by 
unfolded flexible portions. Differently, copolymers richer in PEGMA, being overall more 
soluble in water were less susceptible to fold intramolecularly in compact nanostructures 
to shield the hydrophobic compartment, thus aggregating structurally less-defined 
nanoparticles. Necklace-like micelle morphology was recently reported in the literature to 
describe the aggregation in water of amphiphilic copolymers of PEG-acrylamide and 
dodecyl acrylamide [23]. It is also reported for other systems such as copolymers of 
sodium maleate and dodecyl vinyl ether [7,67–69].  

Figure 8. Kratky plots for copolymer TEGMA-co-SiMAx in water (a) and THF (b).

Pharmaceutics 2023, 15, x FOR PEER REVIEW 15 of 20 
 

 

 
                   (a)                   (b) 

 
                      (c)                  (d) 

 
(e) 

Figure 9. Distance distribution p(r)-function of water solutions (20 g L−1) of copolymers PEGMA-co-
SiMAx and TEGMA-co-SiMAx (a–d). Schematic representation of the self-assembly in “pearl 
necklace” micelles of the copolymers with higher SiMA content (e). 

3.3.4. Solvatochromism of the RAFT CTA  
The UV–vis spectrum of the RAFT chain transfer agent used is characterized by a 

maximum of absorption at λmax = 303 nm and a second minor peak at λ = 521 nm in CHCl3 
as shown in Figure 10a. Moreover, λmax showed solvatochromic behavior, with a 
bathochromic shift of ~10 nm from 298 nm to 308 nm with increasing solvent polarity from 
n-hexane/PDMS to water (Table 6). 

Figure 9. Distance distribution p(r)-function of water solutions (20 g L−1) of copolymers PEGMA-
co-SiMAx and TEGMA-co-SiMAx (a–d). Schematic representation of the self-assembly in “pearl
necklace” micelles of the copolymers with higher SiMA content (e).



Pharmaceutics 2023, 15, 1703 15 of 19

Thus, the pearl necklace structure (Figure 9e) seemed to acquire greater dimensional
uniformity and conformational homogeneity with the increase in SiMA content in the
copolymer. Increasing the percentage of such a component could lead to the formation of
more compact, folded domains within the single polymer chain arising from the stronger
hydrophobic interactions of SiMA side chains. Such folded domains are connected by
unfolded flexible portions. Differently, copolymers richer in PEGMA, being overall more
soluble in water were less susceptible to fold intramolecularly in compact nanostructures to
shield the hydrophobic compartment, thus aggregating structurally less-defined nanoparti-
cles. Necklace-like micelle morphology was recently reported in the literature to describe
the aggregation in water of amphiphilic copolymers of PEG-acrylamide and dodecyl acry-
lamide [23]. It is also reported for other systems such as copolymers of sodium maleate
and dodecyl vinyl ether [7,67–69].

3.3.4. Solvatochromism of the RAFT CTA

The UV–vis spectrum of the RAFT chain transfer agent used is characterized by a
maximum of absorption at λmax = 303 nm and a second minor peak at λ = 521 nm in
CHCl3 as shown in Figure 10a. Moreover, λmax showed solvatochromic behavior, with a
bathochromic shift of ~10 nm from 298 nm to 308 nm with increasing solvent polarity from
n-hexane/PDMS to water (Table 6).
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Figure 10. UV–vis spectra of CTA 10−4 M in CHCl3 (a) and the series of PEGMA-co-SiMAx copoly-
mers in water compared to the homopolymer pPEGMA at 10–4 M (or 4 × 10–5 M when SiMA >
29 mol%) (b).

Table 6. Wavelength of maximum absorption λmax of CTA (10–4 M) in solvents with different relative
permittivity (εr) compared with the λmax of the residue of the CTA of the amphiphilic copolymers in
water solution.

CTA in Solvent λmax
(nm)

εr
20 ◦C

Copolymer
in Water

λmax
(nm)

H2O 308 81.1 pPEGMA 307
DMSO 307 46.7 PEGMA-co-SiMA10 305

Diglyme 304 7.3 PEGMA-co-SiMA29 303
CH2Cl2 303 9.1 PEGMA-co-SiMA45 299

THF 303 7.5
CHCl3 303 4.8 TEGMA-co-SiMA4 305

n-hexane 299 1.9 TEGMA-co-SiMA6 304
PDMS 298 2.6 TEGMA-co-SiMA15 303
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Thus, the residue of the CTA attached to the macromolecular chain end is also an-
ticipated to be sensitive to the nano-environment derived from the self-assembly of the
copolymers in water. In fact, the CTA residue in pPEGMA showed a λmax in water solutions
similar to those in water itself (307 nm), but a decrease in λmax was detected for water
solutions of the amphiphilic copolymers. In particular, λmax was found to decrease by
increasing the SiMA content in the copolymer, reaching a minimum value of 299 nm for
PEGMA-co-SiMA45 (Figure 10b, Table 6). This finding demonstrates that the CTA residue is
exposed to an environment characterized by a polarity comparable to that of n-hexane and
PDMS. This is consistent with the preferential formation of more compact folded domains
with hydrophobic siloxane core shielded by hydrophilic PEG chains (Figure 9e). This was
also showed by SAXS analysis by copolymer with higher SiMA contents.

4. Conclusions

PEGMA (or TEGMA)-co-SiMAx amphiphilic copolymers with modulated solubility in
water, were synthesized by RAFT controlled polymerization. All water-soluble copolymers
demonstrated reversible LCST-like thermoresponsive features, typically with a cloud-point
temperature Tcp which was predominantly dependent on the hydrophilic oligo(ethylene
glycol) side chain length and the percentage of the hydrophobic SiMA comonomer. By
easily varying these structural parameters, the Tcp of copolymer water solutions (10 g L–1)
was tailored to span a wide range (from ~85 ◦C to ~27 ◦C), passing across the physiolog-
ical temperature. Thermoresponsiveness was also affected by the concentration of the
copolymer in solution.

The copolymer nanostructures in water below Tcp were deeply characterized by
DLS and SAXS. The Dh increased with the SiMA content, varying from 17 nm to 70 nm
in going from PEGMA-co-SiMA10 to PEGMA-co-SiMA45. These dimensions suggested
the formation of multichain micellar nanostructures whose multicore pearl necklace-like
morphology was clearly proved by SAXS for both PEGMA and TEGMA-based copolymers
richer in SiMA counits. By contrast, copolymers showed a random coil conformation in
THF, given the non-selective nature of this solvent as opposite to water. The covalently
linked RAFT CTA moiety exhibited a solvatochromic effect as a result of its preferential
compartmentalization in the apolar environment typical of the hydrophobic cores of the
micelles in water.

In conclusion, these amphiphilic copolymers, owing to simple chemical modification,
were susceptible to modulations in their nano-assembling capacity and responses to exter-
nal stimuli. In particular, the copolymers of the series TEGMA-co-SiMAx, with the shorter
hydrophilic side chain and characterized by the lower Tcp range (41–27 ◦C), are the most
promising for application as thermoresponsive carriers with a trigger across the human
physiological temperature. In several examples, the dimension of such nano-assemblies
was in the sub-100 nm realm. These features make them worth investigating as smart
carriers for the encapsulation and delivery of hydrophobic molecules, especially drugs
and bioimaging agents. A gradual increase in the hydrophobic character of the micelle
compartments was observed by increasing the SiMA content in the copolymer; thus, we can
speculate that different micelles acting as carriers could accommodate functional molecules
with different degrees of hydrophobicity.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pharmaceutics15061703/s1, Table S1: Reaction conditions for the RAFT
synthesis of copolymers PEGMA-co-SIMAx and TEGMA-co-SiMAx. Figure S1: 1H NMR spectrum of
PEGMA-co-SiMA45 in acetone-d6. Figure S2: 1H NMR spectrum of TEGMA-co-SiMA48 in acetone-d6.

https://www.mdpi.com/article/10.3390/pharmaceutics15061703/s1
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