Propolis as a Cariostatic Agent in Lozenges and Impact of Storage Conditions on the Stability of Propolis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Ethanol Extract of Propolis
Preparation of Ethanol Extract of Propolis for Microbiological Assay
2.3. Preparation of Lozenges with EEP
2.4. Influence of Physical Factors on Tested Samples
2.4.1. Higher Temperature and Relative Humidity
2.4.2. Ultraviolet Irradiation
2.5. Profile of Thermal Decomposition
2.6. Colorimetric Analysis in CIE L*a*b* System
2.7. Optical Microscopy Images
2.8. Bacterial Strains
2.9. Determination of the Minimum Inhibitory Concentration and Minimum Bactericidal Concentration of EEP
2.10. Determination of Minimum Inhibitory Concentration and Minimum Bactericidal Concentration of Lozenges with Propolis
2.11. Statistical Analysis
3. Results and Discussion
3.1. Prepared Propolis Lozenges
3.1.1. Thermal Decomposition Behavior and Thermal Compatibility of Ingredients of the Formulation
3.1.2. Influence of Stress Condition on the Tested Formulation
3.2. Microbiological Analysis of EEP and Prepared Lozenges
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aas, J.A.; Griffen, A.L.; Dardis, S.R.; Lee, A.M.; Olsen, I.; Dewhirst, F.E.; Leys, E.J.; Paster, B.J. Bacteria of Dental Caries in Primary and Permanent Teeth in Children and Young Adults. J. Clin. Microbiol. 2008, 46, 1407. [Google Scholar] [CrossRef] [Green Version]
- Yoshimasu, Y.; Ikeda, T.; Sakai, N.; Yagi, A.; Hirayama, S.; Morinaga, Y.; Furukawa, S.; Nakao, R. Rapid Bactericidal Action of Propolis against Porphyromonas Gingivalis. J. Dent. Res. 2018, 97, 928–936. [Google Scholar] [CrossRef] [PubMed]
- Zulhendri, F.; Felitti, R.; Fearnley, J.; Ravalia, M. The Use of Propolis in Dentistry, Oral Health, and Medicine: A Review. J. Oral Biosci. 2021, 63, 23–34. [Google Scholar] [CrossRef]
- Gomes-Filho, I.S.; Passos, J.S.; Da Cruz, S.S. Respiratory Disease and the Role of Oral Bacteria. J. Oral Microbiol. 2010, 2, 5811. [Google Scholar] [CrossRef] [PubMed]
- Shahinozzaman, M.; Basak, B.; Emran, R.; Rozario, P.; Obanda, D.N. Artepillin C: A Comprehensive Review of Its Chemistry, Bioavailability, and Pharmacological Properties. Fitoterapia 2020, 147, 104775. [Google Scholar] [CrossRef]
- ICH. ICH Harmonised Tripartite Guideline: Stability Testing of New Drug Substances and Products, Q1A (R2); ICH: Geneva, Switzerland, 2003. [Google Scholar]
- Salvador, R.; Jampilek, J.; Ramos, P.; Broncel, M. Influence of Storage Conditions on the Stability of Gum Arabic and Tragacanth. Molecules 2022, 27, 1510. [Google Scholar] [CrossRef]
- ICH. ICH Harmonised Tripartite Guideline: Stability Testing: Photostability Testing of New Drug Substances and Products, Q1B; ICH: Geneva, Switzerland, 1996. [Google Scholar]
- Rojek, B.; Wesolowski, M. Compatibility Studies of Hydrocortisone with Excipients Using Thermogravimetric Analysis Supported by Multivariate Statistical Analysis. J. Therm. Anal. Calorim. 2017, 127, 543–553. [Google Scholar] [CrossRef] [Green Version]
- Kolisnyk, T.; Vashchenko, O.; Ruban, O.; Fil, N.; Slipchenko, G. Assessing Compatibility of Excipients Selected for a Sustained Release Formulation of Bilberry Leaf Extract. Braz. J. Pharm. Sci. 2022, 58, e19753. [Google Scholar] [CrossRef]
- Ramos, P. Application of Thermal Analysis to Evaluate Pharmaceutical Preparations Containing Theophylline. Pharmaceuticals 2022, 15, 1268. [Google Scholar] [CrossRef]
- Gabbott, P. Principles and Applications of Thermal Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 1–388. [Google Scholar] [CrossRef]
- Kurek-Górecka, A.; Keskin, Ş.; Bobis, O.; Felitti, R.; Górecki, M.; Otręba, M.; Stojko, J.; Olczyk, P.; Kolayli, S.; Rzepecka-Stojko, A. Comparison of the Antioxidant Activity of Propolis Samples from Different Geographical Regions. Plants 2022, 11, 1203. [Google Scholar] [CrossRef]
- Gittings, S. Development of Biorelevant Simulated Salivary Fluids for Application in Dissolution Testing. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2016. [Google Scholar]
- Ali, J.; Bong Lee, J.; Gittings, S.; Iachelini, A.; Bennett, J.; Cram, A.; Garnett, M.; Roberts, C.J.; Gershkovich, P. Development and Optimisation of Simulated Salivary Fluid for Biorelevant Oral Cavity Dissolution. Eur. J. Pharm. Biopharm. 2021, 160, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Sznitowska, M. Farmacja Stosowana; PZWL: Warszawa, Poland, 2017. [Google Scholar]
- Kaiser, G.; Strasser, C. Thermal Analysis in the Pharmaceutical Field; Netzsch: Selb, Germany, 2021. [Google Scholar]
- Földvári, M. Handbook of Thermogravimetric System of Minerals and Its Use in Geological Practice; Publishing Scientyfic Books and Periodicals of Hungarian Aceademy of Sciences: Budapest, Hungary, 2011; ISBN 9789636712884. [Google Scholar]
- Echavarría, A.P.; Pagán, J.; Ibarz, A. Kinetics of Color Development in Glucose/Amino Acid Model Systems at Different Temperatures. Sci. Agropecu. 2016, 7, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Subert, J.; Cizmárik, J. Application of Instrumental Colour Measurement in Development and Quality Control of Drugs and Pharmaceutical Excipients. Pharmazie 2008, 63, 331–336. [Google Scholar]
- Clinical & Laboratory Standards Institute: CLSI Guidelines. Available online: https://clsi.org/ (accessed on 11 April 2023).
- Rodríguez-Melcón, C.; Alonso-Calleja, C.; García-Fernández, C.; Carballo, J.; Capita, R. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) for Twelve Antimicrobials (Biocides and Antibiotics) in Eight Strains of Listeria Monocytogenes. Biology 2021, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Di, L.; Mannelli, C.; Battino, M.; Kurek-Górecka, A.; Walczyńska, K.; Walczyńska-Dragon, W.; Felitti, R.; Baron, S.; Olczyk, P. Propolis and Diet Rich in Polyphenols as Cariostatic Agents Reducing Accumulation of Dental Plaque. Molecules 2022, 27, 271. [Google Scholar] [CrossRef]
- Tambur, Z.; Miljković-Selimović, B.; Opačić, D.; Vuković, B.; Malešević, A.; Ivančajić, L.; Aleksić, E. Inhibitory Effects of Propolis and Essential Oils on Oral Bacteria. J. Infect. Dev. Ctries. 2021, 15, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Machorowska-Pienia̧zek, A.; Morawiec, T.; Mertas, A.; Tanasiewicz, M.; Dziedzic, A.; Król, W. Influence of Propolis on Hygiene, Gingival Condition, and Oral Microflora in Patients with Cleft Lip and Palate Treated with Fixed Orthodontic Appliances. Evid.-Based Complement. Altern. Med. 2013, 2013, 1–9. [Google Scholar] [CrossRef]
- Millones-Gómez, P.A.; Tay, L.Y.; Jon, C.; Jesús, D.; Torres, M.; Evelyn, R.; Amaranto, B.; Collantes Díaz, E.; Alberto, C.; Medina, M.; et al. Antibacterial, Antibiofilm, and Cytotoxic Activities and Chemical Compositions of Peruvian propolis in an in Vitro Oral Biofilm. F1000Research 2021, 10, 1093. [Google Scholar] [CrossRef] [PubMed]
- Djais, A.A.; Putri, N.; Jemmy; Putri, A.R.; Darwita, R.R.; Bachtiar, B.M. Effect of Propolis on Streptococcus mutans Biofilm Formation. Pesqui. Bras. Em Odontopediatria E Clínica Integr. 2020, 19, e5221. [Google Scholar] [CrossRef]
- Airen, B.; Sarkar, P.A.; Tomar, U.; Bishen, K.A. Antibacterial Effect of Propolis Derived from Tribal Region on Streptococcus mutans and Lactobacillus acidophilus: An in Vitro Study. J. Indian Soc. Pedod. Prev. Dent. 2018, 36, 48–52. [Google Scholar]
- Yuan, J.; Yuan, W.; Guo, Y.; Wu, Q.; Wang, F.; Xuan, H.; Yuan, J.; Yuan, W.; Guo, Y.; Wu, Q.; et al. Anti-Biofilm Activities of Chinese Poplar Propolis Essential Oil against Streptococcus mutans. Nutrients 2022, 14, 3290. [Google Scholar] [CrossRef]
- Dziedzic, A.; Kubina, R.; Wojtyczka, R.D.; Kabała-Dzik, A.; Tanasiewicz, M.; Morawiec, T. The Antibacterial Effect of Ethanol Extract of Polish Propolis on Mutans Streptococci and Lactobacilli Isolated from Saliva. Evid. -Based Complement. Altern. Med. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Daskalaki, D.; Kefi, G.; Kotsiou, K.; Tasioula-Margari, M. Evaluation of Phenolic Compounds Degradation in Virgin Olive Oil during Storage and Heating. J. Food Nutr. Res. 2009, 41, 31–41. [Google Scholar]
- Arruda, C.; Pena Ribeiro, V.; Oliveira Almeida, M.; Aldana Mejía, J.A.; Casoti, R.; Kenupp Bastos, J. Effect of Light, Oxygen and Temperature on the Stability of Artepillin C and p-Coumaric Acid from Brazilian Green Propolis. J. Pharm. Biomed. Anal. 2020, 178, 112922. [Google Scholar] [CrossRef]
- Rocha, B.A.; Rodrigues, M.R.; Bueno, P.C.P.; De Mello Costa-Machado, A.R.; De Oliveira Lima Leite Vaz, M.M.; Nascimento, A.P.; Barud, H.S.; Berretta-Silva, A.A. Preparation and Thermal Characterization of Inclusion Complex of Brazilian Green Propolis and Hydroxypropyl-β-Cyclodextrin: Increased Water Solubility of the Chemical Constituents and Antioxidant Activity. J. Therm. Anal. Calorim. 2011, 108, 87–94. [Google Scholar] [CrossRef]
- Lim, J.R.; Chua, L.S.; Soo, J. Study of Stingless Bee (Heterotrigona Itama) Propolis Using LC-MS/MS and TGA-FTIR. Appl. Food Res. 2023, 3, 100252. [Google Scholar] [CrossRef]
- da Costa Silva, V.; do Nascimento, T.G.; Mergulhão, N.L.O.N.; Freitas, J.D.; Duarte, I.F.B.; de Bulhões, L.C.G.; Dornelas, C.B.; de Araújo, J.X.; dos Santos, J.; Silva, A.C.A.; et al. Development of a Polymeric Membrane Impregnated with Poly-Lactic Acid (PLA) Nanoparticles Loaded with Red Propolis (RP). Molecules 2022, 27, 6959. [Google Scholar] [CrossRef] [PubMed]
- Murakami, F.S.; Lang, K.L.; Mendes, C.; Cruz, A.P.; Filho, M.A.S.C.; Silva, M.A.S. Physico-Chemical Solid-State Characterization of Omeprazole Sodium: Thermal, Spectroscopic and Crystallinity Studies. J. Pharm. Biomed. Anal. 2009, 49, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Hajinezhad, S.; Razavizadeh, B.M.; Niazmand, R. Study of Antimicrobial and Physicochemical Properties of LDPE/Propolis Extruded Films. Polym. Bull. 2019, 77, 4335–4353. [Google Scholar] [CrossRef]
- Ramos, P. Thermal compatibility assessment of selected excipients used in the oral anti-cancer formulation containing busulfan. Farmacia 2022, 70, 3. [Google Scholar] [CrossRef]
- Sajjan, P.; Laxminarayan, N.; Prakash Kar, P.; Sajjanar, M. Chlorhexidine as an Antimicrobial Agent in Dentistry-A Review. Oral Health Dent. Manag. 2016, 15, 93–100. [Google Scholar]
- Quintas, V.; Prada-López, I.; Donos, N.; Suárez-Quintanilla, D.; Tomás, I. In Situ Neutralisation of the Antibacterial Effect of 0.2% Chlorhexidine on Salivary Microbiota: Quantification of Substantivity. Arch. Oral Biol. 2015, 60, 1109–1116. [Google Scholar] [CrossRef]
- Mathur, S.; Mathur, T.; Srivastava, R.; Khatri, R. Chlorhexidine: The Gold Standard in Chemical Plaque Control. Rev. Artic. Natl. J. Physiol. Pharm. Pharmacol. 2011, 1, 45–50. [Google Scholar]
- Yazdanian, M.; Motallaei, M.N.; Tahmasebi, E.; Tebyaniyan, H.; Alam, M.; Abbasi, K.; Seifalian, A.; Ranjbar, R.; Yazdanian, A.; Hosseini, H.M.; et al. Chemical Characterization and Cytotoxic/Antibacterial Effects of Nine Iranian Propolis Extracts on Human Fibroblast Cells and Oral Bacteria. Biomed. Res. Int. 2022, 2022. [Google Scholar] [CrossRef]
- Jafarzadeh Kashi, T.S.; Kasra Kermanshahi, R.; Erfan, M.; Vahid Dastjerdi, E.; Rezaei, Y.; Tabatabaei, F.S. Evaluating the In-Vitro Antibacterial Effect of Iranian Propolis on Oral Microorganisms. Iran J. Pharm. Res. 2011, 10, 363. [Google Scholar] [PubMed]
- Barrientos, L.; Herrera, C.L.; Montenegro, G.; Ortega, X.; Veloz, J.; Alvear, M.; Cuevas, A.; Saavedra, N.; Salazar, L.A. Chemical and Botanical Characterization of Chilean propolis and Biological Activity on Cariogenic Bacteria Streptococcus mutans and Streptococcus sobrinus. Braz. J. Microbiol. 2013, 44, 577–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, H.; Rosalen, P.L.; Cury, J.A.; Ambrosano, G.M.B.; Murata, R.M.; Yatsuda, R.; Ikegaki, M.; Alencar, S.M.; Park, Y.K. Effect of a New Variety of Apis Mellifera Propolis on Mutans Streptococci. Curr. Microbiol. 2000, 41, 192–196. [Google Scholar] [CrossRef]
- Szliszka, E.; Sokół-ŁȨtowska, A.; Kucharska, A.Z.; Jaworska, D.; Czuba, Z.P.; Król, W. Ethanolic Extract of Polish Propolis: Chemical Composition and TRAIL-R2 Death Receptor Targeting Apoptotic Activity against Prostate Cancer Cells. Evid. -Based Complement. Altern. Med. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Kurek-Górecka, A.; Rzepecka-Stojko, A.; Górecki, M.; Stojko, J.; Sosada, M.; Swierczek-Zieba, G. Structure and Antioxidant Activity of Polyphenols Derived from Propolis. Molecules 2013, 19, 78–101. [Google Scholar] [CrossRef] [Green Version]
- Uzel, A.; Sorkun, K.; Önçaǧ, Ö.; Çoǧulu, D.; Gençay, Ö.; Salih, B. Chemical Compositions and Antimicrobial Activities of Four Different Anatolian Propolis Samples. Microbiol. Res. 2005, 160, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.L.; de Leite, K.L.F.; Pacheco-Filho, E.F.; de Miranda Pereira, A.F.; Romanos, M.T.V.; Maia, L.C.; Fonseca-Gonçalves, A.; Padilha, W.W.N.; Cavalcanti, Y.W. Efficacy of Red Propolis Hydro-Alcoholic Extract in Controlling Streptococcus mutans Biofilm Build-up and Dental Enamel Demineralization. Arch. Oral Biol. 2018, 93, 56–65. [Google Scholar] [CrossRef]
- de Figueiredo, K.A.; da Silva, H.D.P.; Miranda, S.L.F.; Gonçalves, F.J.D.S.; de Sousa, A.P.; de Figueiredo, L.C.; Feres, M.; Bueno-Silva, B. Brazilian Red Propolis Is as Effective as Amoxicillin in Controlling Red-Complex of Multispecies Subgingival Mature Biofilm In Vitro. Antibiotics 2020, 9, 432. [Google Scholar] [CrossRef] [PubMed]
- Otręba, M.; Marek, Ł.; Tyczyńska, N.; Stojko, J.; Kurek-Górecka, A.; Górecki, M.; Olczyk, P.; Rzepecka-Stojko, A. Propolis as Natural Product in the Oral Cavity Bacterial Infections Treatment: A Systematic Review. Appl. Sci. 2022, 12, 10123. [Google Scholar] [CrossRef]
- Cairo, R.; Gomes, R.; Márcio, W.; Rocha, S.; Lemos, S.; Abreu, R.; Rodrigues, V. Periodontitis treatment with brazilian green propolis gel. Pharmacologyonline 2006, 3, 336–341. [Google Scholar]
- Kolayli, S.; Palabiyik, I.; Atik, D.S.; Keskin, M.; Bozdeveci, A.; Karaoglu, S.A. Comparison of Antibacterial and Antifungal Effects of Different Varieties of Honey and Propolis Samples. Acta Aliment. 2020, 49, 515–523. [Google Scholar] [CrossRef]
- Komosinska-Vassev, K.; Olczyk, P.; Ramos, P.; Mencner, Ł.; Derkacz, A.; Waluga, E.; Krysik, K.; Olczyk, K.; Pilawa, B. The Influence of Storage Temperature and UV-Irradiation on Free Radical Scavenging Properties of Ethanolic Extracts of Propolis. Acta Pol. Pharm. -Drug Res. 2017, 74, 1833–1840. [Google Scholar]
Sample | Onset [°C] | Mid [°C] | Inflection [°C] | End [°C] | Mass Change [%] |
---|---|---|---|---|---|
Pure propolis | 211.4 | 312.4 | 316.2 | 403.6 | −41.01 |
Lozenge base | 189.1 | 263 | 289.9 | 319.9 | −69.02 |
Propolis lozenge | 197.3 | 249.1 | 228.6 | 286.2 | −71.25 |
Propolis lozenge exposed to 40 °C/75%HR/14 days | 181.4 | 247.6 | 225.3 | 302.7 | −64.06 |
Propolis lozenge exposed to UV/30 min | 188 | 248 | 232.6 | 304.2 | −75.57 |
Propolis lozenge exposed to UV/60 min | 184.7 | 251.7 | 236.1 | 308.4 | −63.38 |
Sample | Stage | DTG | D2TG | ||
---|---|---|---|---|---|
Peak [°C] | Mass Change [%/min.] | Peak Min. [°C] | Peak Max. [°C] | ||
Pure propolis | I | 145.5 | −1.1 | 125.8 | 145.9 |
II | 206.4 | −2.52 | 183.4 | 219.4 | |
III | 348.5 | −3.4 | 256.3 | 364.8 | |
IV | - | - | - | - | |
Lozenge base | I | 56.9 | −0.81 | 42.7 | 64.2 |
II | 143.8 | −1.66 | 137.8 | 157.5 | |
III | 241.4 | −7.18 | 199.3 | 252.5 | |
IV | 288.3 | −7.35 | 278.3 | 300.1 | |
Propolis lozenge | I | 59.3 | −0.98 | 49 | 67.4 |
II | 132.8 | −1.68 | 94.4 | 142 | |
III | 227.2 | −9.24 | 208.9 | 243.4 | |
IV | 285.7 | −6.89 | 274.6 | 297 | |
Propolis lozenge exposed to 40 °C/75%HR/14 days | I | 55.1 | −1.18 | 45.3 | 62.8 |
II | 122.2 | −1.91 | 112.1 | 131 | |
III | 227.2 | −7.09 | 195.9 | 241.9 | |
IV | 284.3 | −6.26 | 271.4 | 295.1 | |
Propolis lozenge exposed to UV/30 min | I | 59.1 | −0.63 | 43.3 | 63.5 |
II | 104.9 | −0.88 | 91.5 | 113.8 | |
III | 233.2 | −8.44 | 206.6 | 249.7 | |
IV | 286.2 | −7.19 | 275.6 | 298.5 | |
Propolis lozenge exposed to UV/60 min | I | 59.8 | −1.11 | 39 | 73 |
II | 109.4 | −1.74 | 73 | 135 | |
III | 234.7 | −6.96 | 135 | 261 | |
IV | 286 | −6.08 | 261 | 375 |
Sample | Stage | Onset [°C] | Peak [°C] | Area [K × s] | Type of Reaction |
---|---|---|---|---|---|
Pure propolis | I | 41 | 47.1 | 138.14 | endo |
II | 189 | 226.6 | 19.1399 | exo | |
III | 333.6 | 355.8 | 57.7894 | exo | |
Lozenge base | I | 32 | 35.2 | 128.921 | endo |
II | 245.2 | 262.6 | 26.7208 | exo | |
III | 296.4 | 306.8 | 33.9138 | exo | |
Propolis lozenge | I | 43 | 48.7 | 214.585 | endo |
II | 228.7 | 255.6 | 95.5586 | exo | |
III | 285 | 306 | 52.9155 | exo | |
Propolis lozenge exposed to 40 °C/75%HR/14 days | I | 43 | 57.2 | 123.59 | endo |
II | 220 | 255.3 | 68.1004 | exo | |
III | 283.8 | 303.8 | 49.8703 | exo | |
Propolis lozenge exposed to UV/30 min | I | 30 | 33.4 | 474.942 | endo |
II | 242.1 | 263.9 | 61.1707 | exo | |
III | 294.2 | 308.6 | 47.8503 | exo | |
Propolis lozenge exposed to UV/60 min | I | 35 | 40.4 | 226.767 | endo |
II | 249.4 | 259.8 | 31.603 | exo | |
III | 297.4 | 309.3 | 24.4174 | exo |
Propolis Lozenges | L* [±SD] | a* [±SD] | b* [±SD] | ΔE [±SD] | BI [±SD] |
---|---|---|---|---|---|
Initial | 39.72 [±0.09] | 20.10 [±0.05] | 40.10 [±0.13] | - | 241.52 [±0.13] |
40 °C/75% RH/14 days | 35.97 [±0.31] | 17.98 [±0.31] | 33.24 [±0.01] | 8.10 [±0.31] | 208.87 [±0.31] |
UV/30 min | 39.93 [±0.06] | 19.60 [±0.02] | 38.88 [±0.08] | 1.34 [±0.08] | 226.57 [±0.08] |
UV/60 min | 37.69 [±0.48] | 16.65 [±0.14] | 33.54 [±0.30] | 7.69 [±0.30] | 193.82 [±0.30] |
Tested Bacteria | EEP | Lozenges | Lozenges after a Conditioning Test | Control Positive | Control Negative | |||||
---|---|---|---|---|---|---|---|---|---|---|
MIC [µg/mL] | MBC [µg/mL] | MIC [µg/mL] | MBC [µg/mL] | MIC [µg/mL] | MBC [µg/mL] | MIC [µg/mL] | MBC [µg/mL] | MIC* | MBC* | |
Streptococcus mutans | 25 | 50 | <100 | <100 | <100 | <100 | <2000 | <2000 | 1 × 105 CFU/mL | 1 × 105 CFU/mL |
Streptococcus salivarius | 50 | 100 | <100 | <100 | <100 | <100 | <2000 | <2000 | 1 × 105 CFU/mL | 1 × 105 CFU/mL |
Streptococcus mitis | 25 | 50 | <100 | <100 | <100 | <100 | <2000 | <2000 | 1 × 105 CFU/mL | 1 × 105 CFU/mL |
Streptococcus oralis | 50 | 50 | <100 | <100 | <100 | <100 | <2000 | <2000 | 1 × 105 CFU/mL | 1 × 105 CFU/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurek-Górecka, A.; Ramos, P.; Kłósek, M.; Bobela, E.; Czuba, Z.P.; Balwierz, R.; Olczyk, P. Propolis as a Cariostatic Agent in Lozenges and Impact of Storage Conditions on the Stability of Propolis. Pharmaceutics 2023, 15, 1768. https://doi.org/10.3390/pharmaceutics15061768
Kurek-Górecka A, Ramos P, Kłósek M, Bobela E, Czuba ZP, Balwierz R, Olczyk P. Propolis as a Cariostatic Agent in Lozenges and Impact of Storage Conditions on the Stability of Propolis. Pharmaceutics. 2023; 15(6):1768. https://doi.org/10.3390/pharmaceutics15061768
Chicago/Turabian StyleKurek-Górecka, Anna, Paweł Ramos, Małgorzata Kłósek, Elżbieta Bobela, Zenon P. Czuba, Radosław Balwierz, and Paweł Olczyk. 2023. "Propolis as a Cariostatic Agent in Lozenges and Impact of Storage Conditions on the Stability of Propolis" Pharmaceutics 15, no. 6: 1768. https://doi.org/10.3390/pharmaceutics15061768
APA StyleKurek-Górecka, A., Ramos, P., Kłósek, M., Bobela, E., Czuba, Z. P., Balwierz, R., & Olczyk, P. (2023). Propolis as a Cariostatic Agent in Lozenges and Impact of Storage Conditions on the Stability of Propolis. Pharmaceutics, 15(6), 1768. https://doi.org/10.3390/pharmaceutics15061768