Fluorescent and Magnetic Radical Dendrimers as Potential Bimodal Imaging Probes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Synthesis and Characterization of Radical Dendrimers Based on Oligo(styryl)Benzenes
3.1.1. Synthesis and Characterization of Amido Radical Dendrimers Derivatives 1 and 2
3.1.2. Synthesis and Characterization of Imino and Amino Radical Dendrimers Derivatives (3–6)
3.1.3. EPR Study of the Radical Dendrimers 1–6
3.2. Fluorimetry Study of the OSB Precursors 7–10 and Radical Dendrimers 1–6
3.3. MRI Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olchowy, C.; Cebulski, K.; Łasecki, M.; Chaber, R.; Olchowy, A.; Kałwak, K.; Zaleska-Dorobisz, U. The Presence of the Gadolinium-Based Contrast Agent Depositions in the Brain and Symptoms of Gadolinium Neurotoxicity—A Systematic Review. PLoS ONE 2017, 12, e0171704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranga, A.; Agarwal, Y.; Garg, K. Gadolinium Based Contrast Agents in Current Practice: Risks of Accumulation and Toxicity in Patients with Normal Renal Function. Indian J. Radiol. Imaging 2017, 27, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Lloveras, V.; Badetti, E.; Chechik, V.; Vidal-Gancedo, J. Magnetic Interactions in Spin-Labeled Au Nanoparticles. J. Phys. Chem. C. 2014, 118, .21622–21629. [Google Scholar] [CrossRef] [Green Version]
- Souto, M.; Lloveras, V.; Vela, S.; Fumanal, M.; Ratera, I.; Veciana, J. Three Redox States of a Diradical Acceptor–Donor–Acceptor Triad: Gating the Magnetic Coupling and the Electron Delocalization. J. Phys. Chem. Lett. 2016, 7, 2234–2239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puigmartí-Luis, J.; Laukhina, E.E.; Laukhin, V.N.; Pérez del Pino, Á.; Mestres, N.; Vidal-Gancedo, J.; Rovira, C.; Amabilino, D.B. Rich Phase Behavior in a Supramolecular Conducting Material Derived from an Organogelator. Adv. Funct. Mater. 2009, 19, 934–941. [Google Scholar] [CrossRef]
- González, S.; Martín, N.; Sánchez, L.; Segura, J.L.; Seoane, C.; Fonseca, I.; Cano, F.H.; Sedó, J.; Vidal-Gancedo, J.; Rovira, C. Synthesis, X-Ray Structure, and Electrochemical Oxidative Coupling Reactions of 1,5- and 2,6-Bis(1,4-Dithiafulven-6-Yl)Naphthalenes. J. Org. Chem. 1999, 64, 3498–3506. [Google Scholar] [CrossRef]
- Sedó, J.; Ruiz, D.; Vidal-Gancedo, J.; Rovira, C.; Bonvoisin, J.; Launay, J.-P.; Veciana, J. Intramolecular Electron Transfer Phenomena in Purely Organic Mixed-Valence High-Spin Ions: A Triplet Anion Case. Adv. Mater. 1996, 8, 748–752. [Google Scholar] [CrossRef]
- González, I.; Pla-Quintana, A.; Roglans, A.; Dachs, A.; Solà, M.; Parella, T.; Farjas, J.; Roura, P.; Lloveras, V.; Vidal-Gancedo, J. Ene Reactions between Two Alkynes? Doors Open to Thermally Induced Cycloisomerization of Macrocyclic Triynes and Enediynes. Chem. Commun. 2010, 46, 2944–2946. [Google Scholar] [CrossRef]
- Lloveras, V.; Badetti, E.; Wurst, K.; Vidal-Gancedo, J. Synthesis, X-Ray Structure, Magnetic Properties, and a Study of Intra/Intermolecular Radical-Radical Interactions of a Triradical TEMPO Compound. ChemPhysChem 2015, 16, 3302–3307. [Google Scholar] [CrossRef]
- Lloveras, V.; Badetti, E.; Veciana, J.; Vidal-Gancedo, J. Dynamics of Intramolecular Spin Exchange Interaction of a Nitronyl Nitroxide Diradical in Solution and on Surfaces. Nanoscale 2016, 8, 5049–5058. [Google Scholar] [CrossRef] [Green Version]
- Lloveras, V.; Liko, F.; Pinto, L.F.; Muñoz-Gómez, J.L.; Veciana, J.; Vidal-Gancedo, J. Tuning Spin-Spin Interactions in Radical Dendrimers. ChemPhysChem 2018, 19, 1895–1902. [Google Scholar] [CrossRef] [PubMed]
- Lloveras, V.; Liko, F.; Muñoz-Gómez, J.L.; Veciana, J.; Vidal-Gancedo, J. Redox-Active PTM Radical Dendrimers as Promising Multifunctional Molecular Switches. Chem. Mater. 2019, 31, 9400–9412. [Google Scholar] [CrossRef]
- Zhang, S.; Lloveras, V.; Pulido, D.; Liko, F.; Pinto, L.F.; Albericio, F.; Royo, M.; Vidal-Gancedo, J. Radical Dendrimers Based on Biocompatible Oligoethylene Glycol Dendrimers as Contrast Agents for MRI. Pharmaceutics 2020, 12, 772. [Google Scholar] [CrossRef] [PubMed]
- Lloveras, V.; Vidal-Gancedo, J. Polyphosphorhydrazone-Based Radical Dendrimers. Molecules 2021, 26, 1230. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Lloveras, V.; Lope-Piedrafita, S.; Calero-Pérez, P.; Wu, S.; Paula Candiota, A.; Vidal-Gancedo, J. Metal-Free Radical Dendrimers as MRI Contrast Agents for Glioblastoma Diagnosis: Ex Vivo and In Vivo Approaches. Biomacromolecules 2022, 23, 2767–2777. [Google Scholar] [CrossRef]
- Badetti, E.; Lloveras, V.; Wurst, K.; Sebastián, R.M.; Caminade, A.M.; Majoral, J.P.; Veciana, J.; Vidal-Gancedo, J. Synthesis and Structural Characterization of a Dendrimer Model Compound Based on a Cyclotriphosphazene Core with TEMPO Radicals as Substituents. Org. Lett. 2013, 15, 3490–3493. [Google Scholar] [CrossRef]
- Badetti, E.; Lloveras, V.; Muñoz-Gómez, J.L.; Sebastián, R.M.; Caminade, A.M.; Majoral, J.P.; Veciana, J.; Vidal-Gancedo, J. Radical Dendrimers: A Family of Five Generations of Phosphorus Dendrimers Functionalized with TEMPO Radicals. Macromolecules 2014, 47, 7717–7724. [Google Scholar] [CrossRef] [Green Version]
- Pinto, L.F.; Lloveras, V.; Zhang, S.; Liko, F.; Veciana, J.; Muñoz-Gómez, J.L.; Vidal-Gancedo, J. Fully Water-Soluble Polyphosphorhydrazone-Based Radical Dendrimers Functionalized with Tyr-PROXYL Radicals as Metal-Free MRI T 1 Contrast Agents. ACS Appl. Bio Mater. 2020, 3, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S. Radical Dendrimers as Magnetic Resonance Imaging Contrast Agents. Ph.D. Thesis, Universitat Autónoma de Barcelona, Bellaterra, Spain, 2021. [Google Scholar]
- Afzal, V.; Brasch, R.C.; Nitecki, D.E.; Wolff, S. Nitroxyl Spin Label Contrast Enhancers for Magnetic Resonance Imaging. Studies of Acute Toxicity and Mutagenesis. Investig. Radiol. 1984, 19, 549–552. [Google Scholar] [CrossRef]
- Sosnovsky, G. A Critical Evaluation of the Present Status of Toxicity of Aminoxyl Radicals. J. Pharm. Sci. 1992, 81, 496–499. [Google Scholar] [CrossRef]
- Van Dam, G.M.; Themelis, G.; Crane, L.M.A.; Harlaar, N.J.; Pleijhuis, R.G.; Kelder, W.; Sarantopoulos, A.; De Jong, J.S.; Arts, H.J.G.; Van Der Zee, A.G.J. Intraoperative Tumor-Specific Fluorescence Imaging in Ovarian Cancer by Folate Receptor-α Targeting: First in-Human Results. Nat. Med. 2011, 17, 1315–1319. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Chen, J.; Ma, S.; Liu, Q.; Huang, L.; Chen, X.; Lou, K.; Wang, W. Recent Developments in Multimodality Fluorescence Imaging Probes. Acta Pharm. Sin. B 2018, 8, 320–338. [Google Scholar] [CrossRef]
- Guo, K.; Berezin, M.Y.; Zheng, J.; Akers, W.; Lin, F.; Teng, B.; Vasalatiy, O.; Gandjbakhche, A.; Griffiths, G.L.; Achilefu, S. Near Infrared-Fluorescent and Magnetic Resonance Imaging Molecular Probe with High T1 Relaxivity for In Vivo Multimodal Imaging. Chem. Commun. 2010, 46, 3705–3707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, V.S.R.; Carney, C.E.; MacRenaris, K.W.; Waters, E.A.; Meade, T.J. Multimeric Near IR-MR Contrast Agent for Multimodal in Vivo Imaging. J. Am. Chem. Soc. 2015, 137, 9108–9116. [Google Scholar] [CrossRef]
- Dong, D.; Jing, X.; Zhang, X.; Hu, X.; Wu, Y.; Duan, C. Gadolinium(III)-Fluorescein Complex as a Dual Modal Probe for MRI and Fluorescence Zinc Sensing. Tetrahedron 2012, 68, 306–310. [Google Scholar] [CrossRef]
- Li, H.; Parigi, G.; Luchinat, C.; Meade, T.J. Bimodal Fluorescence-Magnetic Resonance Contrast Agent for Apoptosis Imaging. J. Am. Chem. Soc. 2019, 141, 6224–6233. [Google Scholar] [CrossRef]
- Watkins, A.R. Solvent Effects on Triplet State Quenching by Tetramethylpiperidcme-N-Oxide. Chem. Phys. Lett. 1980, 70, 262–265. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, Y.; Hussain, M.; Kundu, S.; Rane, V.; Hayvali, M.; Yildiz, E.A.; Zhao, J.; Yaglioglu, H.G.; Das, R.; et al. Efficient Radical-Enhanced Intersystem Crossing in an NDI-TEMPO Dyad: Photophysics, Electron Spin Polarization, and Application in Photodynamic Therapy. Chem.-A Eur. J. 2018, 24, 18663–18675. [Google Scholar] [CrossRef]
- Kohtani, S.; Murata, M.; Itoh, M. Resonance Energy Transfer from the Excited Singlet State of Dye Molecules to a Stable Free Radical. Chem. Phys. Lett. 1995, 247, 293–298. [Google Scholar] [CrossRef]
- Samanta, A.; Kamat, P.V. Qenching of Fullerene Triplets by Stable Nitroxide Radicals. Chem. Phys. Lett. 1992, 199, 635–639. [Google Scholar] [CrossRef]
- Hou, M.; Lu, X.; Zhang, Z.; Xia, Q.; Yan, C.; Yu, Z.; Xu, Y.; Liu, R. Conjugated Polymer Containing Organic Radical for Optical/MR Dual-Modality Bioimaging. ACS Appl. Mater. Interfaces 2017, 9, 44316–44323. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.V.T.; Chen, Q.; Paletta, J.T.; Harvey, P.; Jiang, Y.; Zhang, H.; Boska, M.D.; Ottaviani, M.F.; Jasanoff, A.; Rajca, A.; et al. Nitroxide-Based Macromolecular Contrast Agents with Unprecedented Transverse Relaxivity and Stability for Magnetic Resonance Imaging of Tumors. ACS Cent. Sci. 2017, 3, 800–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sowers, M.A.; McCombs, J.R.; Wang, Y.; Paletta, J.T.; Morton, S.W.; Dreaden, E.C.; Boska, M.D.; Ottaviani, M.F.; Hammond, P.T.; Rajca, A.; et al. Redox-Responsive Branched-Bottlebrush Polymers for In Vivo MRI and Fluorescence Imaging. Nature Commun. 2014, 5, 5460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolosa, J.; Serrano de las Heras, G.; Carrión, B.; Segura, T.; Páez, P.L.; de Lera-Garrido, F.J.; Rodríguez-López, J.; García-Martínez, J.C. Structure-Activity Relationships for Poly(Phenylene)Vinylene Derivatives as Antibacterial Agents. ChemistrySelect 2018, 3, 7327–7332. [Google Scholar] [CrossRef]
- Domínguez, R.; Tolosa, J.; Moral, M.; Bravo, I.; Canales-Vázquez, J.; Rodríguez-López, J.; Garzón-Ruiz, A.; García-Martínez, J.C. PH-Controlled Self-Assembly of X-Shaped Conjugated Molecules: The Case of 1,2,4,5-Tetrastyrylbenzene. J. Phys. Chem. C 2018, 122, 19937–19945. [Google Scholar] [CrossRef]
- Moral, M.; Domínguez, R.; Fernández-Liencres, M.P.; Garzón-Ruiz, A.; García-Martínez, J.C.; Navarro, A. Photophysical Features and Semiconducting Properties of Propeller-Shaped Oligo(Styryl)Benzenes. J. Chem. Phys. 2019, 150, 064309. [Google Scholar] [CrossRef]
- Kunz, T.K.; Wolf, M.O. Electrodeposition and Properties of TEMPO Functionalized Polythiophene Thin Films. Polym. Chem. 2011, 2, 640–644. [Google Scholar] [CrossRef]
- Breuer, E.; Aurich, H.U.; Nielsen, A.; Patai, S.; Rappoport, Z. Nitrones, Nitronates and Nitroxides; Breuer, E., Aurich, H.G., Nielsen, A., Eds.; John Wiley & Sons, Inc.: Chichester, UK, 2010; ISBN 9780470772195. [Google Scholar]
- Chernick, E.T.; Casillas, R.; Zirzlmeier, J.; Gardner, D.M.; Gruber, M.; Kropp, H.; Meyer, K.; Wasielewski, M.R.; Guldi, D.M.; Tykwinski, R.R. Pentacene Appended to a TEMPO Stable Free Radical: The Effect of Magnetic Exchange Coupling on Photoexcited Pentacene. J. Am. Chem. Soc. 2015, 137, 857–863. [Google Scholar] [CrossRef]
- Guzen, K.P.; Guarezemini, A.S.; Órfão, A.T.G.; Cella, R.; Pereira, C.M.P.; Stefani, H.A. Eco-Friendly Synthesis of Imines by Ultrasound Irradiation. Tetrahedron Lett. 2007, 48, 1845–1848. [Google Scholar] [CrossRef]
- Garcia-Martinez, J.C.; Diez-Barra, E.; Rodriguez-Lopez, J. Conjugated Dendrimers with Oly(Phenylenevinylene) and Poly(Phenyleneethynylene) Scaffolds. Curr. Org. Synth. 2008, 5, 267–290. [Google Scholar] [CrossRef]
- Domínguez, R.; Moral, M.; Fernández-Liencres, M.P.; Peña-Ruiz, T.; Tolosa, J.; Canales-Vázquez, J.; García-Martínez, J.C.; Navarro, A.; Garzón-Ruiz, A. Understanding the Driving Mechanisms of Enhanced Luminescence Emission of Oligo(Styryl)Benzenes and Tri(Styryl)-s-Triazine. Chem.-A Eur. J. 2020, 26, 3373–3384. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Bustos, J.; del Hierro, I.; Sánchez-Ruiz, A.; García-Martínez, J.C.; Pérez, Y. Tuning of Type-I and Type-II Mechanisms for Visible Light Degradation in Tris(Styryl)Benzene-Sensitized TiO2 Nanoparticles. Dye Pigment. 2021, 184, 108802. [Google Scholar] [CrossRef]
- Sánchez-Ruiz, A.; Sousa-Hervés, A.; Tolosa Barrilero, J.; Navarro, A.; Garcia-Martinez, J.C. Aggregation-Induced Emission Properties in Fully π-Conjugated Polymers, Dendrimers, and Oligomers. Polymers 2021, 13, 213. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Shahrivarkevishahi, A.; Lumata, J.L.; Luzuriaga, M.A.; Hagge, L.M.; Benjamin, C.E.; Brohlin, O.R.; Parish, C.R.; Firouzi, H.R.; Nielsen, S.O.; et al. Supramolecular and Biomacromolecular Enhancement of Metal-Free Magnetic Resonance Imaging Contrast Agents. Chem. Sci. 2020, 11, 2045–2050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | 300 K | 120 K | |||
---|---|---|---|---|---|
g | aN (G) | ΔHpp (G) | d1/d | Area (a.u.) | |
TEMPO | 2.0061 | 15.7 | 1.20 | 0.53 | 2.47 × 105 |
tri-amido-TEMPO (1) | 2.0059 | 15.5 | 1.61 | 0.66 | 7.22 × 105 |
tri-imino-TEMPO (3) | 2.0060 | 15.4 | 1.59 | 0.63 | 7.12 × 105 |
tri-amino-TEMPO (5) | 2.0057 | 15.4 | 1.62 | 0.60 | 7.31 × 105 |
tetra-amido-TEMPO (2) | 2.0064 | 15.5 | 1.64 | 0.80 | 9.49 × 105 |
tetra-imino-TEMPO (4) | 2.0053 | 15.4 | 1.56 | 0.79 | 9.61 × 105 |
tetra-amino-TEMPO (6) | 2.0057 | 15.4 | 1.40 | 0.75 | 9.52 × 105 |
Compound | λexc (nm) | λem (nm) | Abs. (A) | FL Area (F) | Refraction Index (R) | Quantum Yield |
---|---|---|---|---|---|---|
quinine sulfate | 348 | 452 | 0.074 | 65,192.32 | 1.33 | 0.540 |
tri-acid 7 | 326.5 | 396 | 0.0899 | 52,371.05 | 1.4072 | 0.400 |
tri-amido-TEMPO 1 | 327 | 396 | 0.0967 | 28,274.02 | 1.4072 | 0.201 |
tetra-acid 8 | 350 | 460 | 0.0833 | 30,086.73 | 1.4072 | 0.248 |
tetra-amido-TEMPO 2 | 338 | 458 | 0.0954 | 16,902.84 | 1.4072 | 0.122 |
tri-aldehyde 9 | 340 | 422 | 0.0985 | 5922.78 | 1.4072 | 0.041 |
tri-imino-TEMPO 3 | 338 | 405 | 0.0891 | 5171.24 | 1.4072 | 0.040 |
tri-amino-TEMPO 5 | 319 | 393 | 0.0971 | 12,236.02 | 1.4072 | 0.086 |
tetra-aldehyde 10 | 364 | 471 | 0.0961 | 59,755.09 | 1.4072 | 0.427 |
tetra-imino-TEMPO 4 | 361 | 472 | 0.0801 | 21,039.81 | 1.4072 | 0.180 |
tetra-amino-TEMPO 6 | 344 | 468 | 0.0859 | 9150.83 | 1.4072 | 0.073 |
Compound | r1 (mM−1 s−1) per Molecule | r1 (mM−1 s−1) per Nitroxide Unit |
---|---|---|
TEMPO | 0.079 | 0.079 |
tri-amido-TEMPO 1 | 0.316 | 0.105 |
tri-imino-TEMPO 3 | 0.339 | 0.113 |
tri-amino-TEMPO 5 | 0.321 | 0.107 |
Compound | r1 (mM−1 s−1) per Molecule | r1 (mM−1 s−1) per Radical Unit |
---|---|---|
TEMPO | 0.139 | 0.139 |
tri-amido-TEMPO 1 | 0.530 | 0.177 |
tetra-amido-TEMPO 2 | 0.828 | 0.207 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Lloveras, V.; Wu, Y.; Tolosa, J.; García-Martínez, J.C.; Vidal-Gancedo, J. Fluorescent and Magnetic Radical Dendrimers as Potential Bimodal Imaging Probes. Pharmaceutics 2023, 15, 1776. https://doi.org/10.3390/pharmaceutics15061776
Zhang S, Lloveras V, Wu Y, Tolosa J, García-Martínez JC, Vidal-Gancedo J. Fluorescent and Magnetic Radical Dendrimers as Potential Bimodal Imaging Probes. Pharmaceutics. 2023; 15(6):1776. https://doi.org/10.3390/pharmaceutics15061776
Chicago/Turabian StyleZhang, Songbai, Vega Lloveras, Yufei Wu, Juan Tolosa, Joaquín C. García-Martínez, and José Vidal-Gancedo. 2023. "Fluorescent and Magnetic Radical Dendrimers as Potential Bimodal Imaging Probes" Pharmaceutics 15, no. 6: 1776. https://doi.org/10.3390/pharmaceutics15061776
APA StyleZhang, S., Lloveras, V., Wu, Y., Tolosa, J., García-Martínez, J. C., & Vidal-Gancedo, J. (2023). Fluorescent and Magnetic Radical Dendrimers as Potential Bimodal Imaging Probes. Pharmaceutics, 15(6), 1776. https://doi.org/10.3390/pharmaceutics15061776