Incretins-Based Therapies and Their Cardiovascular Effects: New Game-Changers for the Management of Patients with Diabetes and Cardiovascular Disease
Abstract
:1. Introduction
2. Methods
3. Physiological Mechanisms of Incretins
3.1. Acute and Chronic Effects of GLP-1 on Pancreatic β Cells
3.2. Effects of GLP-1 on Other Cell Lines
4. Effect of GLP1 Agonists and DPP4 Inhibitors in Atherosclerotic Process Modulation
4.1. Macrophages and Lymphocytes
4.2. Endothelium
4.2.1. Reactive Oxygen Species and Nitric Oxide Production
4.2.2. Apoptosis and Inflammation
4.2.3. Barrier Properties
4.2.4. Adhesion Molecules
4.2.5. Endothelial Mesenchymal Transition
4.3. Vascular Smooth Muscle Cells
4.4. Platelets
5. Effects of Incretin-Based Drugs on Lipid Metabolism
6. Effects on Atherosclerotic Plaque Composition and Intimal Hyperplasia in the Pre-Clinical Setting
7. Cardiovascular Effects of GLP-1RA in Clinical Studies
7.1. Effects of GLP-1RA on Cardiovascular Risk Factors
7.2. Effects of GLP-1RA on Cardiovascular Events
7.3. Effects of GLP-1 RAs in the Setting of MI and PCI
Molecule | Setting | Main Results | |
---|---|---|---|
GLP-1 RA | |||
Lønborg et al., 2012 [144] | Exenatide | Patients with STEMI and TIMI flow 0/1 undergoing primary PCI | ↓ infarct size (Particularly in those patients with a short duration of ischemia ≤132 min) |
Woo et al., 2013 [150] | Exenatide | Patients with STEMI and TIMI flow 0 undergoing primary PCI | ↓ infarct size ↑ left ventricular function |
Chen et al., 2016 [151] | Liraglutide | Patients with STEMI undergoing primary PCI | ↑ myocardial salvage index ↓ infarct size ↓ serum CRP |
Chen et al., 2015 [152] | Liraglutide | Patients with STEMI undergoing primary PCI | ↑ left ventricular function at 3 months post PCI ↓ no reflow |
Trevisan et al., 2021 [155] | GLP-1 RAs | Diabetic patients after a first event of MI | ↓ MACE (stroke, heart failure, re-infarction, cardiovascular death) |
DPP4-I | |||
Leibovitz et al., 2013 [156] | Sitagliptin | Diabetic patients presenting with ACS | ↓ in-hospital complications ↓ 30-day MACE (stent thrombosis, urgent revascularization, post event ischemia, 30-day mortality, re-infarction or re-ischemia, re-admission, stroke/TIA) |
Kato et al., 2016 [157] | Alogliptin | Diabetic patients with CAD | ↑ coronary flow reserve ↑ left ventricular function |
GLP-1 RA, DPP4-I | |||
Santos-Pardo et al., 2021 [158] | Diabetic patients undergoing PCI with DES | No effect on risk of stent thrombosis and intra-stent restenosis. |
8. Cardiovascular Effects of DPP-4i in Clinical Studies
8.1. Effects of DPP-4i on Cardiovascular Risk Factors
8.2. Effects of DPP-4i on Cardiovascular Events
8.3. Effects of DPP-4i in the Setting of MI and PCI
9. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pfeffer, M.A.; Claggett, B.; Diaz, R.; Dickstein, K.; Gerstein, H.C.; Køber, L.V.; Lawson, F.C.; Ping, L.; Wei, X.; Lewis, E.F.; et al. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. N. Engl. J. Med. 2015, 373, 2247–2257. [Google Scholar] [CrossRef]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.E.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holman, R.R.; Bethel, M.A.; Mentz, R.J.; Thompson, V.P.; Lokhnygina, Y.; Buse, J.B.; Chan, J.C.; Choi, J.; Gustavson, S.M.; Iqbal, N.; et al. Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 1228–1239. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, A.F.; Green, J.B.; Janmohamed, S.; D’Agostino, R.B.; Granger, C.B.; Jones, N.P.; Leiter, L.A.; Rosenberg, A.E.; Sigmon, K.N.; Somerville, M.C.; et al. Albiglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes and Cardiovascular Disease (Harmony Outcomes): A Double-Blind, Randomised Placebo-Controlled Trial. Lancet 2018, 392, 1519–1529. [Google Scholar] [CrossRef] [Green Version]
- Gerstein, H.C.; Colhoun, H.M.; Dagenais, G.R.; Diaz, R.; Lakshmanan, M.; Pais, P.; Probstfield, J.; Riesmeyer, J.S.; Riddle, M.C.; Rydén, L.; et al. Dulaglutide and Cardiovascular Outcomes in Type 2 Diabetes (REWIND): A Double-Blind, Randomised Placebo-Controlled Trial. Lancet 2019, 394, 121–130. [Google Scholar] [CrossRef]
- Husain, M.; Birkenfeld, A.L.; Donsmark, M.; Dungan, K.; Eliaschewitz, F.G.; Franco, D.R.; Jeppesen, O.K.; Lingvay, I.; Mosenzon, O.; Pedersen, S.D.; et al. Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2019, 381, 841–851. [Google Scholar] [CrossRef] [Green Version]
- Gerstein, H.C.; Sattar, N.; Rosenstock, J.; Ramasundarahettige, C.; Pratley, R.; Lopes, R.D.; Lam, C.S.P.; Khurmi, N.S.; Heenan, L.; Del Prato, S.; et al. Cardiovascular and Renal Outcomes with Efpeglenatide in Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 896–907. [Google Scholar] [CrossRef]
- White, W.B.; Cannon, C.P.; Heller, S.R.; Nissen, S.E.; Bergenstal, R.M.; Bakris, G.L.; Perez, A.T.; Fleck, P.R.; Mehta, C.R.; Kupfer, S.; et al. Alogliptin after Acute Coronary Syndrome in Patients with Type 2 Diabetes. N. Engl. J. Med. 2013, 369, 1327–1335. [Google Scholar] [CrossRef] [Green Version]
- Rosenstock, J.; Perkovic, V.; Johansen, O.E.; Cooper, M.E.; Kahn, S.E.; Marx, N.; Alexander, J.H.; Pencina, M.; Toto, R.D.; Wanner, C.; et al. Effect of Linagliptin vs Placebo on Major Cardiovascular Events in Adults with Type 2 Diabetes and High Cardiovascular and Renal Risk. JAMA 2019, 321, 69. [Google Scholar] [CrossRef]
- Scirica, B.M.; Bhatt, D.L.; Braunwald, E.; Steg, P.G.; Davidson, J.; Hirshberg, B.; Ohman, P.; Frederich, R.; Wiviott, S.D.; Hoffman, E.B.; et al. Saxagliptin and Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus. N. Engl. J. Med. 2013, 369, 1317–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, J.B.; Bethel, M.A.; Armstrong, P.W.; Buse, J.B.; Engel, S.S.; Garg, J.; Josse, R.; Kaufman, K.D.; Koglin, J.; Korn, S.; et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 232–242. [Google Scholar] [CrossRef] [Green Version]
- Rosenstock, J.; Kahn, S.E.; Johansen, O.E.; Zinman, B.; Espeland, M.A.; Woerle, H.J.; Pfarr, E.; Keller, A.; Mattheus, M.; Baanstra, D.; et al. Effect of Linagliptin vs Glimepiride on Major Adverse Cardiovascular Outcomes in Patients with Type 2 Diabetes. JAMA 2019, 322, 1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC Guidelines on Diabetes, Pre-Diabetes, and Cardiovascular Diseases Developed in Collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, E.; Heerspink, H.J.L.; Cuthbertson, D.J.; Wilding, J.P.H. SGLT2 Inhibitors and GLP-1 Receptor Agonists: Established and Emerging Indications. Lancet 2021, 398, 262–276. [Google Scholar] [CrossRef]
- Marx, N.; Husain, M.; Lehrke, M.; Verma, S.; Sattar, N. GLP-1 Receptor Agonists for the Reduction of Atherosclerotic Cardiovascular Risk in Patients with Type 2 Diabetes. Circulation 2022, 146, 1882–1894. [Google Scholar] [CrossRef]
- Stanciulescu, L.A.; Scafa-Udriste, A.; Dorobantu, M. Exploring the Association between Low-Density Lipoprotein Subfractions and Major Adverse Cardiovascular Outcomes—A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 6669. [Google Scholar] [CrossRef]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Drucker, D.J.; Holst, J.J. The Expanding Incretin Universe: From Basic Biology to Clinical Translation. Diabetologia 2023, 28, 1–5. [Google Scholar] [CrossRef]
- Holst, J.J. The Incretin System in Healthy Humans: The Role of GIP and GLP-1. Metabolism 2019, 96, 46–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pahud de Mortanges, A.; Sinaci, E.; Salvador, D.; Bally, L.; Muka, T.; Wilhelm, M.; Bano, A. GLP-1 Receptor Agonists and Coronary Arteries: From Mechanisms to Events. Front. Pharmacol. 2022, 13, 856111. [Google Scholar] [CrossRef]
- Drucker, D.J. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 2018, 27, 740–756. [Google Scholar] [CrossRef] [Green Version]
- Gallwitz, B. Clinical Use of DPP-4 Inhibitors. Front. Endocrinol. 2019, 10, 389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nauck, M.A.; Meier, J.J. The Incretin Effect in Healthy Individuals and Those with Type 2 Diabetes: Physiology, Pathophysiology, and Response to Therapeutic Interventions. Lancet Diabetes Endocrinol. 2016, 4, 525–536. [Google Scholar] [CrossRef]
- Barg, S.; Huang, P.; Eliasson, L.; Nelson, D.J.; Obermüller, S.; Rorsman, P.; Thévenod, F.; Renström, E. Priming of Insulin Granules for Exocytosis by Granular Cl—Uptake and Acidification. J. Cell Sci. 2001, 114, 2145–2154. [Google Scholar] [CrossRef]
- Rowlands, J.; Heng, J.; Newsholme, P.; Carlessi, R. Pleiotropic Effects of GLP-1 and Analogs on Cell Signaling, Metabolism, and Function. Front. Endocrinol. 2018, 9, 672. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Brubaker, P. Glucagon-like Peptide-1 Treatment Delays the Onset of Diabetes in 8 Week-Old Db/Db Mice. Diabetologia 2002, 45, 1263–1273. [Google Scholar] [CrossRef] [Green Version]
- Cornu, M.; Modi, H.; Kawamori, D.; Kulkarni, R.N.; Joffraud, M.; Thorens, B. Glucagon-like Peptide-1 Increases β-Cell Glucose Competence and Proliferation by Translational Induction of Insulin-like Growth Factor-1 Receptor Expression. J. Biol. Chem. 2010, 285, 10538–10545. [Google Scholar] [CrossRef] [Green Version]
- Müller, T.D.; Finan, B.; Bloom, S.R.; D’Alessio, D.; Drucker, D.J.; Flatt, P.R.; Fritsche, A.; Gribble, F.; Grill, H.J.; Habener, J.F.; et al. Glucagon-like Peptide 1 (GLP-1). Mol. Metab. 2019, 30, 72–130. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.; Dong, Z.; Wang, N.; Wang, W.; Tao, L.; Cao, W.; Liu, Z. Glucagon-Like Peptide 1 Recruits Microvasculature and Increases Glucose Use in Muscle via a Nitric Oxide–Dependent Mechanism. Diabetes 2012, 61, 888–896. [Google Scholar] [CrossRef] [Green Version]
- Pyke, C.; Heller, R.S.; Kirk, R.K.; Ørskov, C.; Reedtz-Runge, S.; Kaastrup, P.; Hvelplund, A.; Bardram, L.; Calatayud, D.; Knudsen, L.B. GLP-1 Receptor Localization in Monkey and Human Tissue: Novel Distribution Revealed with Extensively Validated Monoclonal Antibody. Endocrinology 2014, 155, 1280–1290. [Google Scholar] [CrossRef]
- Nusca, A.; Piccirillo, F.; Viscusi, M.M.; Giannone, S.; Mangiacapra, F.; Melfi, R.; Ricottini, E.; Ussia, G.P.; Grigioni, F. Contrast-Induced Acute Kidney Injury in Diabetic Patients and SGLT-2 Inhibitors: A Preventive Opportunity or Promoting Element? J. Cardiovasc. Pharmacol. 2022, 80, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Gutzwiller, J.-P.; Tschopp, S.; Bock, A.; Zehnder, C.E.; Huber, A.R.; Kreyenbuehl, M.; Gutmann, H.; Drewe, J.; Henzen, C.; Goeke, B.; et al. Glucagon-Like Peptide 1 Induces Natriuresis in Healthy Subjects and in Insulin-Resistant Obese Men. J. Clin. Endocrinol. Metab. 2004, 89, 3055–3061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skov, J. Effects of GLP-1 in the Kidney. Rev. Endocr. Metab. Disord. 2014, 15, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Jessen, L.; Smith, E.P.; Ulrich-Lai, Y.; Herman, J.P.; Seeley, R.J.; Sandoval, D.; D’Alessio, D. Central Nervous System GLP-1 Receptors Regulate Islet Hormone Secretion and Glucose Homeostasis in Male Rats. Endocrinology 2017, 158, 2124–2133. [Google Scholar] [CrossRef] [PubMed]
- Ard, J.; Fitch, A.; Fruh, S.; Herman, L. Weight Loss and Maintenance Related to the Mechanism of Action of Glucagon-Like Peptide 1 Receptor Agonists. Adv. Ther. 2021, 38, 2821–2839. [Google Scholar] [CrossRef]
- During, M.J.; Cao, L.; Zuzga, D.S.; Francis, J.S.; Fitzsimons, H.L.; Jiao, X.; Bland, R.J.; Klugmann, M.; Banks, W.A.; Drucker, D.J.; et al. Glucagon-like Peptide-1 Receptor Is Involved in Learning and Neuroprotection. Nat. Med. 2003, 9, 1173–1179. [Google Scholar] [CrossRef]
- Perry, T.; Greig, N. A New Alzheimers Disease Interventive Strategy: GLP-1. Curr. Drug Targets 2004, 5, 565–571. [Google Scholar] [CrossRef]
- Du, X.; Lu, W.; Lu, Z.; Shao, X.; Hu, C.; Shi, B. Exenatide with Metformin Ameliorated Visceral Adiposity and Insulin Resistance. J. Diabetes Res. 2018, 2018, 4019248. [Google Scholar] [CrossRef] [Green Version]
- Baggio, L.L.; Huang, Q.; Brown, T.J.; Drucker, D.J. A Recombinant Human Glucagon-Like Peptide (GLP)-1–Albumin Protein (Albugon) Mimics Peptidergic Activation of GLP-1 Receptor–Dependent Pathways Coupled with Satiety, Gastrointestinal Motility, and Glucose Homeostasis. Diabetes 2004, 53, 2492–2500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arakawa, M.; Mita, T.; Azuma, K.; Ebato, C.; Goto, H.; Nomiyama, T.; Fujitani, Y.; Hirose, T.; Kawamori, R.; Watada, H. Inhibition of Monocyte Adhesion to Endothelial Cells and Attenuation of Atherosclerotic Lesion by a Glucagon-like Peptide-1 Receptor Agonist, Exendin-4. Diabetes 2010, 59, 1030–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, C. M1 and M2 Macrophages: Oracles of Health and Disease. Crit. Rev. Immunol. 2012, 32, 463–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Z.; Ma, T.; Lin, Y.; Lu, X.; Zhang, C.; Chen, S.; Jian, Z. Retracted: IL-6/STAT3 Pathway Intermediates M1/M2 Macrophage Polarization during the Development of Hepatocellular Carcinoma. J. Cell. Biochem. 2018, 119, 9419–9432. [Google Scholar] [CrossRef]
- Bruen, R.; Curley, S.; Kajani, S.; Crean, D.; O’Reilly, M.E.; Lucitt, M.B.; Godson, C.G.; McGillicuddy, F.C.; Belton, O. Liraglutide Dictates Macrophage Phenotype in Apolipoprotein E Null Mice during Early Atherosclerosis. Cardiovasc. Diabetol. 2017, 16, 143. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Gao, J.; Jia, M.; Ma, X.; Lei, Z.; Da, F.; Yan, F.; Zhang, H.; Zhou, Y.; Li, M.; et al. Exendin-4 Induces Bone Marrow Stromal Cells Migration Through Bone Marrow-Derived Macrophages Polarization via PKA-STAT3 Signaling Pathway. Cell. Physiol. Biochem. 2017, 44, 1696–1714. [Google Scholar] [CrossRef] [Green Version]
- Vinué, Á.; Navarro, J.; Herrero-Cervera, A.; García-Cubas, M.; Andrés-Blasco, I.; Martínez-Hervás, S.; Real, J.T.; Ascaso, J.F.; González-Navarro, H. The GLP-1 Analogue Lixisenatide Decreases Atherosclerosis in Insulin-Resistant Mice by Modulating Macrophage Phenotype. Diabetologia 2017, 60, 1801–1812. [Google Scholar] [CrossRef]
- Yunna, C.; Mengru, H.; Lei, W.; Weidong, C. Macrophage M1/M2 Polarization. Eur. J. Pharmacol. 2020, 877, 173090. [Google Scholar] [CrossRef]
- Yang, J.; Park, Y.; Zhang, H.; Gao, X.; Wilson, E.; Zimmer, W.; Abbott, L.; Zhang, C. Role of MCP-1 in Tumor Necrosis Factor-α-Induced Endothelial Dysfunction in Type 2 Diabetic Mice. Am. J. Physiol. Circ. Physiol. 2009, 297, H1208–H1216. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Wang, L.; Qiu, Z.; Xu, Y.; Hua, R. Autophagy Triggers Endoplasmic Reticulum Stress and C/EBP Homologous Protein-Mediated Apoptosis in OGD/R-Treated Neurons in a Caspase-12-Independent Manner. J. Neurophysiol. 2021, 126, 1740–1750. [Google Scholar] [CrossRef]
- Bułdak, Ł.; Machnik, G.; Bułdak, R.J.; Łabuzek, K.; Bołdys, A.; Okopień, B. Exenatide and Metformin Express Their Anti-Inflammatory Effects on Human Monocytes/Macrophages by the Attenuation of MAPKs and NFκB Signaling. Naunyn. Schmiedebergs. Arch. Pharmacol. 2016, 389, 1103–1115. [Google Scholar] [CrossRef]
- Younis, A.; Eskenazi, D.; Goldkorn, R.; Leor, J.; Naftali-Shani, N.; Fisman, E.Z.; Tenenbaum, A.; Goldenberg, I.; Klempfner, R. The Addition of Vildagliptin to Metformin Prevents the Elevation of Interleukin 1ß in Patients with Type 2 Diabetes and Coronary Artery Disease: A Prospective, Randomized, Open-Label Study. Cardiovasc. Diabetol. 2017, 16, 69. [Google Scholar] [CrossRef] [Green Version]
- Ta, N.N.; Schuyler, C.A.; Li, Y.; Lopes-Virella, M.F.; Huang, Y. DPP-4 (CD26) Inhibitor Alogliptin Inhibits Atherosclerosis in Diabetic Apolipoprotein E–Deficient Mice. J. Cardiovasc. Pharmacol. 2011, 58, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Kern, M.; Klöting, N.; Niessen, H.G.; Thomas, L.; Stiller, D.; Mark, M.; Klein, T.; Blüher, M. Linagliptin Improves Insulin Sensitivity and Hepatic Steatosis in Diet-Induced Obesity. PLoS ONE 2012, 7, e38744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kronlage, M.; Song, J.; Sorokin, L.; Isfort, K.; Schwerdtle, T.; Leipziger, J.; Robaye, B.; Conley, P.B.; Kim, H.-C.; Sargin, S.; et al. Autocrine Purinergic Receptor Signaling Is Essential for Macrophage Chemotaxis. Sci. Signal. 2010, 3, ra55. [Google Scholar] [CrossRef] [PubMed]
- Shah, Z.; Kampfrath, T.; Deiuliis, J.A.; Zhong, J.; Pineda, C.; Ying, Z.; Xu, X.; Lu, B.; Moffatt-Bruce, S.; Durairaj, R.; et al. Long-Term Dipeptidyl-Peptidase 4 Inhibition Reduces Atherosclerosis and Inflammation via Effects on Monocyte Recruitment and Chemotaxis. Circulation 2011, 124, 2338–2349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Yang, Y.; Lei, Y.; Tzvetkov, N.T.; Liu, X.; Yeung, A.W.K.; Xu, S.; Atanasov, A.G. Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacol. Rev. 2019, 71, 596–670. [Google Scholar] [CrossRef]
- Tashiro, Y.; Sato, K.; Watanabe, T.; Nohtomi, K.; Terasaki, M.; Nagashima, M.; Hirano, T. A Glucagon-like Peptide-1 Analog Liraglutide Suppresses Macrophage Foam Cell Formation and Atherosclerosis. Peptides 2014, 54, 19–26. [Google Scholar] [CrossRef]
- Dai, Y.; Dai, D.; Wang, X.; Ding, Z.; Li, C.; Mehta, J.L. GLP-1 Agonists Inhibit Ox-LDL Uptake in Macrophages by Activating Protein Kinase A. J. Cardiovasc. Pharmacol. 2014, 64, 47–52. [Google Scholar] [CrossRef]
- Smigiel, K.S.; Srivastava, S.; Stolley, J.M.; Campbell, D.J. Regulatory T-Cell Homeostasis: Steady-State Maintenance and Modulation during Inflammation. Immunol. Rev. 2014, 259, 40–59. [Google Scholar] [CrossRef] [Green Version]
- Gorrell, M.D.; Gysbers, V.; McCaughan, G.W. CD26: A Multifunctional Integral Membrane and Secreted Protein of Activated Lymphocytes. Scand. J. Immunol. 2001, 54, 249–264. [Google Scholar] [CrossRef]
- Lee, S.A.; Kim, Y.R.; Yang, E.J.; Kwon, E.-J.; Kim, S.H.; Kang, S.H.; Park, D.B.; Oh, B.-C.; Kim, J.; Heo, S.T.; et al. CD26/DPP4 Levels in Peripheral Blood and T Cells in Patients with Type 2 Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2013, 98, 2553–2561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujisaka, S.; Usui, I.; Kanatani, Y.; Ikutani, M.; Takasaki, I.; Tsuneyama, K.; Tabuchi, Y.; Bukhari, A.; Yamazaki, Y.; Suzuki, H.; et al. Telmisartan Improves Insulin Resistance and Modulates Adipose Tissue Macrophage Polarization in High-Fat-Fed Mice. Endocrinology 2011, 152, 1789–1799. [Google Scholar] [CrossRef] [PubMed]
- Alter, M.L.; Ott, I.M.; von Websky, K.; Tsuprykov, O.; Sharkovska, Y.; Krause-Relle, K.; Raila, J.; Henze, A.; Klein, T.; Hocher, B. DPP-4 Inhibition on Top of Angiotensin Receptor Blockade Offers a New Therapeutic Approach for Diabetic Nephropathy. Kidney Blood Press. Res. 2012, 36, 119–130. [Google Scholar] [CrossRef]
- Souza-Mello, V.; Gregório, B.M.; Cardoso-de-Lemos, F.S.; de Carvalho, L.; Aguila, M.B.; Mandarim-de-Lacerda, C.A. Comparative Effects of Telmisartan, Sitagliptin and Metformin Alone or in Combination on Obesity, Insulin Resistance, and Liver and Pancreas Remodelling in C57BL/6 Mice Fed on a Very High-Fat Diet. Clin. Sci. 2010, 119, 239–250. [Google Scholar] [CrossRef]
- Aroor, A.R.; Sowers, J.R.; Jia, G.; DeMarco, V.G. Pleiotropic Effects of the Dipeptidylpeptidase-4 Inhibitors on the Cardiovascular System. Am. J. Physiol. Circ. Physiol. 2014, 307, H477–H492. [Google Scholar] [CrossRef]
- Cameron-Vendrig, A.; Mundil, D.; Husain, M. Antiatherothrombotic Effects of Dipeptidyl Peptidase Inhibitors. Curr. Atheroscler. Rep. 2014, 16, 408. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Guo, L.; Xing, J.; Li, P.; Sang, H.; Hu, X.; Du, Y.; Zhao, L.; Song, R.; Gu, H. The Protective Role of DPP4 Inhibitors in Atherosclerosis. Eur. J. Pharmacol. 2020, 875, 173037. [Google Scholar] [CrossRef]
- Gimbrone, M.A.; García-Cardeña, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016, 118, 620–636. [Google Scholar] [CrossRef]
- Frey, R.S.; Ushio–Fukai, M.; Malik, A.B. NADPH Oxidase-Dependent Signaling in Endothelial Cells: Role in Physiology and Pathophysiology. Antioxid. Redox Signal. 2009, 11, 791–810. [Google Scholar] [CrossRef]
- Batchuluun, B.; Inoguchi, T.; Sonoda, N.; Sasaki, S.; Inoue, T.; Fujimura, Y.; Miura, D.; Takayanagi, R. Metformin and Liraglutide Ameliorate High Glucose-Induced Oxidative Stress via Inhibition of PKC-NAD(P)H Oxidase Pathway in Human Aortic Endothelial Cells. Atherosclerosis 2014, 232, 156–164. [Google Scholar] [CrossRef]
- Youle, R.J.; Narendra, D.P. Mechanisms of Mitophagy. Nat. Rev. Mol. Cell Biol. 2011, 12, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Vives-Bauza, C.; Zhou, C.; Huang, Y.; Cui, M.; de Vries, R.L.A.; Kim, J.; May, J.; Tocilescu, M.A.; Liu, W.; Ko, H.S.; et al. PINK1-Dependent Recruitment of Parkin to Mitochondria in Mitophagy. Proc. Natl. Acad. Sci. USA 2010, 107, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, S.; Chen, X.; Wang, Z.; Wang, X.; Zhou, Q.; Fang, W.; Zheng, C. Liraglutide Prevents High Glucose Induced HUVECs Dysfunction via Inhibition of PINK1/Parkin-Dependent Mitophagy. Mol. Cell. Endocrinol. 2022, 545, 111560. [Google Scholar] [CrossRef]
- Davignon, J.; Ganz, P. Role of Endothelial Dysfunction in Atherosclerosis. Circulation 2004, 109, III-27. [Google Scholar] [CrossRef] [Green Version]
- Matsubara, J.; Sugiyama, S.; Sugamura, K.; Nakamura, T.; Fujiwara, Y.; Akiyama, E.; Kurokawa, H.; Nozaki, T.; Ohba, K.; Konishi, M.; et al. A Dipeptidyl Peptidase-4 Inhibitor, Des-Fluoro-Sitagliptin, Improves Endothelial Function and Reduces Atherosclerotic Lesion Formation in Apolipoprotein E–Deficient Mice. J. Am. Coll. Cardiol. 2012, 59, 265–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, V.; Sessa, W.C. Endothelial NOS: Perspective and Recent Developments. Br. J. Pharmacol. 2019, 176, 189–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.-M.; Huang, A.; Kaley, G.; Sun, D. ENOS Uncoupling and Endothelial Dysfunction in Aged Vessels. Am. J. Physiol. Circ. Physiol. 2009, 297, H1829–H1836. [Google Scholar] [CrossRef] [Green Version]
- Koska, J.; Sands, M.; Burciu, C.; D’Souza, K.M.; Raravikar, K.; Liu, J.; Truran, S.; Franco, D.A.; Schwartz, E.A.; Schwenke, D.C.; et al. Exenatide Protects Against Glucose- and Lipid-Induced Endothelial Dysfunction: Evidence for Direct Vasodilation Effect of GLP-1 Receptor Agonists in Humans. Diabetes 2015, 64, 2624–2635. [Google Scholar] [CrossRef] [Green Version]
- Wei, R.; Ma, S.; Wang, C.; Ke, J.; Yang, J.; Li, W.; Liu, Y.; Hou, W.; Feng, X.; Wang, G.; et al. Exenatide Exerts Direct Protective Effects on Endothelial Cells through the AMPK/Akt/ENOS Pathway in a GLP-1 Receptor-Dependent Manner. Am. J. Physiol. Metab. 2016, 310, E947–E957. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Mehta, J.L.; Chen, M. Glucagon-like Peptide-1 Receptor Agonist Liraglutide Inhibits Endothelin-1 in Endothelial Cell by Repressing Nuclear Factor-Kappa B Activation. Cardiovasc. Drugs Ther. 2013, 27, 371–380. [Google Scholar] [CrossRef] [PubMed]
- TANG, S.-T.; SU, H.; ZHANG, Q.; TANG, H.-Q.; WANG, C.-J.; ZHOU, Q.; WEI, W.; ZHU, H.-Q.; WANG, Y. Sitagliptin Inhibits Endothelin-1 Expression in the Aortic Endothelium of Rats with Streptozotocin-Induced Diabetes by Suppressing the Nuclear Factor-ΚB/IκBα System through the Activation of AMP-Activated Protein Kinase. Int. J. Mol. Med. 2016, 37, 1558–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, Z.; Pineda, C.; Kampfrath, T.; Maiseyeu, A.; Ying, Z.; Racoma, I.; Deiuliis, J.; Xu, X.; Sun, Q.; Moffatt-Bruce, S.; et al. Acute DPP-4 Inhibition Modulates Vascular Tone through GLP-1 Independent Pathways. Vascul. Pharmacol. 2011, 55, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Mason, R.P.; Jacob, R.F.; Kubant, R.; Walter, M.F.; Bellamine, A.; Jacoby, A.; Mizuno, Y.; Malinski, T. Effect of Enhanced Glycemic Control with Saxagliptin on Endothelial Nitric Oxide Release and CD40 Levels in Obese Rats. J. Atheroscler. Thromb. 2011, 18, 774–783. [Google Scholar] [CrossRef] [Green Version]
- Oeseburg, H.; de Boer, R.A.; Buikema, H.; van der Harst, P.; van Gilst, W.H.; Silljé, H.H.W. Glucagon-Like Peptide 1 Prevents Reactive Oxygen Species–Induced Endothelial Cell Senescence through the Activation of Protein Kinase A. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1407–1414. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Hu, Y.; He, S.; Ye, Q.; Lv, Z.; Liu, J.; Chen, X. Dulaglutide Inhibits High Glucose-Induced Endothelial Dysfunction and NLRP3 Inflammasome Activation. Arch. Biochem. Biophys. 2019, 671, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Li, Q.; Liu, Y.; Ren, Q.; Gao, J.; Tian, Y.; Li, J.; Zhang, B.; Sun, H.; Liu, S. A GLP-1 Analog Liraglutide Reduces Intimal Hyperplasia after Coronary Stent Implantation via Regulation of Glycemic Variability and NLRP3 Inflammasome/IL-10 Signaling in Diabetic Swine. Front. Pharmacol. 2020, 11, 372. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhou, Y.; Wang, Y.; Wei, X.; Wu, L.; Wang, T.; Ma, A. Exendin-4 Reverses High Glucose-Induced Endothelial Progenitor Cell Dysfunction via SDF-1β/CXCR7–AMPK/P38-MAPK/IL-6 Axis. Acta Diabetol. 2020, 57, 1315–1326. [Google Scholar] [CrossRef]
- Hattori, Y.; Jojima, T.; Tomizawa, A.; Satoh, H.; Hattori, S.; Kasai, K.; Hayashi, T. Retraction Note: A Glucagon-like Peptide-1 (GLP-1) Analogue, Liraglutide, Upregulates Nitric Oxide Production and Exerts Anti-Inflammatory Action in Endothelial Cells. Diabetologia 2012, 55, 533. [Google Scholar] [CrossRef] [Green Version]
- Adams, C.J.; Kopp, M.C.; Larburu, N.; Nowak, P.R.; Ali, M.M.U. Structure and Molecular Mechanism of ER Stress Signaling by the Unfolded Protein Response Signal Activator IRE1. Front. Mol. Biosci. 2019, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhou, Y.; Wang, Y.; Wei, X.; Wang, T.; Ma, A. Exendin-4 Regulates Endoplasmic Reticulum Stress to Protect Endothelial Progenitor Cells from High-Glucose Damage. Mol. Cell. Probes 2020, 51, 101527. [Google Scholar] [CrossRef]
- Kapadia, P.; Bikkina, P.; Landicho, M.A.; Parekh, S.; Haas, M.J.; Mooradian, A.D. Effect of Anti-Hyperglycemic Drugs on Endoplasmic Reticulum (ER) Stress in Human Coronary Artery Endothelial Cells. Eur. J. Pharmacol. 2021, 907, 174249. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Orekhov, A.N.; Bobryshev, Y.V. Endothelial Barrier and Its Abnormalities in Cardiovascular Disease. Front. Physiol. 2015, 6, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, A.Q.; Zhao, L.; Zhou, T.F.; Zhang, M.Q.; Qin, X.M. Exendin-4 Promotes Endothelial Barrier Enhancement via PKA- and Epac1-Dependent Rac1 Activation. Am. J. Physiol. Physiol. 2015, 308, C164–C175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, S.; Tang, H.; Su, H.; Wang, Y.; Zhou, Q.; Zhang, Q.; Wang, Y.; Zhu, H. Glucagon-like Peptide-1 Attenuates Endothelial Barrier Injury in Diabetes via CAMP/PKA Mediated down-Regulation of MLC Phosphorylation. Biomed. Pharmacother. 2019, 113, 108667. [Google Scholar] [CrossRef] [PubMed]
- Fadini, G.P.; Sartore, S.; Agostini, C.; Avogaro, A. Significance of Endothelial Progenitor Cells in Subjects with Diabetes. Diabetes Care 2007, 30, 1305–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tepper, O.M.; Galiano, R.D.; Capla, J.M.; Kalka, C.; Gagne, P.J.; Jacobowitz, G.R.; Levine, J.P.; Gurtner, G.C. Human Endothelial Progenitor Cells from Type II Diabetics Exhibit Impaired Proliferation, Adhesion, and Incorporation into Vascular Structures. Circulation 2002, 106, 2781–2786. [Google Scholar] [CrossRef] [Green Version]
- Shigeta, T.; Aoyama, M.; Bando, Y.K.; Monji, A.; Mitsui, T.; Takatsu, M.; Cheng, X.-W.; Okumura, T.; Hirashiki, A.; Nagata, K.; et al. Dipeptidyl Peptidase-4 Modulates Left Ventricular Dysfunction in Chronic Heart Failure via Angiogenesis-Dependent and -Independent Actions. Circulation 2012, 126, 1838–1851. [Google Scholar] [CrossRef] [Green Version]
- Hocher, B.; Sharkovska, Y.; Mark, M.; Klein, T.; Pfab, T. The Novel DPP-4 Inhibitors Linagliptin and BI 14361 Reduce Infarct Size after Myocardial Ischemia/Reperfusion in Rats. Int. J. Cardiol. 2013, 167, 87–93. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Shih, C.-M.; Tsao, N.-W.; Lin, Y.-W.; Huang, P.-H.; Wu, S.-C.; Lee, A.-W.; Kao, Y.-T.; Chang, N.-C.; Nakagami, H.; et al. Dipeptidyl Peptidase-4 Inhibitor Improves Neovascularization by Increasing Circulating Endothelial Progenitor Cells. Br. J. Pharmacol. 2012, 167, 1506–1519. [Google Scholar] [CrossRef] [Green Version]
- Helmstädter, J.; Frenis, K.; Filippou, K.; Grill, A.; Dib, M.; Kalinovic, S.; Pawelke, F.; Kus, K.; Kröller-Schön, S.; Oelze, M.; et al. Endothelial GLP-1 (Glucagon-Like Peptide-1) Receptor Mediates Cardiovascular Protection by Liraglutide in Mice with Experimental Arterial Hypertension. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 145–158. [Google Scholar] [CrossRef]
- Chang, W.; Zhu, F.; Zheng, H.; Zhou, Z.; Miao, P.; Zhao, L.; Mao, Z. Glucagon-like Peptide-1 Receptor Agonist Dulaglutide Prevents Ox-LDL-Induced Adhesion of Monocytes to Human Endothelial Cells: An Implication in the Treatment of Atherosclerosis. Mol. Immunol. 2019, 116, 73–79. [Google Scholar] [CrossRef]
- Piera-Velazquez, S.; Jimenez, S.A. Endothelial to Mesenchymal Transition: Role in Physiology and in the Pathogenesis of Human Diseases. Physiol. Rev. 2019, 99, 1281–1324. [Google Scholar] [CrossRef]
- Tsai, T.-H.; Lee, C.-H.; Cheng, C.-I.; Fang, Y.-N.; Chung, S.-Y.; Chen, S.-M.; Lin, C.-J.; Wu, C.-J.; Hang, C.-L.; Chen, W.-Y. Liraglutide Inhibits Endothelial-to-Mesenchymal Transition and Attenuates Neointima Formation after Endovascular Injury in Streptozotocin-Induced Diabetic Mice. Cells 2019, 8, 589. [Google Scholar] [CrossRef] [Green Version]
- Bennett, M.R.; Sinha, S.; Owens, G.K. Vascular Smooth Muscle Cells in Atherosclerosis. Circ. Res. 2016, 118, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Ji, Y.; Jiang, X.; Zhou, L.; Xu, Y.; Li, Y.; Jiang, W.; Meng, P.; Liu, X. Liraglutide Attenuates High Glucose-Induced Abnormal Cell Migration, Proliferation, and Apoptosis of Vascular Smooth Muscle Cells by Activating the GLP-1 Receptor, and Inhibiting ERK1/2 and PI3K/Akt Signaling Pathways. Cardiovasc. Diabetol. 2015, 14, 18. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.-D.; Zhou, Z.; Yu, X.; Zheng, X.-L.; Tang, C.-K. Myocardin: A Novel Player in Atherosclerosis. Atherosclerosis 2017, 257, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Di, B.; Li, H.-W.; Li, W.; Hua, B. Liraglutide Inhibited AGEs Induced Coronary Smooth Muscle Cell Phenotypic Transition through Inhibiting the NF-ΚB Signal Pathway. Peptides 2019, 112, 125–132. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, M.; Zhou, T.; Shen, Q.; Qin, X. Exendin-4 Promotes the Vascular Smooth Muscle Cell Re-Differentiation through AMPK/SIRT1/FOXO3a Signaling Pathways. Atherosclerosis 2018, 276, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Mercanti, F.; Dai, D.; Wang, X.; Ding, Z.; Pothineni, N.V.; Mehta, J.L. LOX-1, a Bridge between GLP-1R and Mitochondrial ROS Generation in Human Vascular Smooth Muscle Cells. Biochem. Biophys. Res. Commun. 2013, 437, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Diebold, B.A.; Hughes, Y.; Lambeth, J.D. Nox1-Dependent Reactive Oxygen Generation Is Regulated by Rac1. J. Biol. Chem. 2006, 281, 17718–17726. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Li, A.Q.; Zhou, T.F.; Zhang, M.Q.; Qin, X.M. Exendin-4 Alleviates Angiotensin II-Induced Senescence in Vascular Smooth Muscle Cells by Inhibiting Rac1 Activation via a CAMP/PKA-Dependent Pathway. Am. J. Physiol. Physiol. 2014, 307, C1130–C1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallego-Colon, E.; Klych-Ratuszny, A.; Kosowska, A.; Garczorz, W.; Aghdam, M.R.F.; Wozniak, M.; Francuz, T. Exenatide Modulates Metalloproteinase Expression in Human Cardiac Smooth Muscle Cells via the Inhibition of Akt Signaling Pathway. Pharmacol. Rep. 2018, 70, 178–183. [Google Scholar] [CrossRef]
- Lim, S.; Choi, S.H.; Shin, H.; Cho, B.J.; Park, H.S.; Ahn, B.Y.; Kang, S.M.; Yoon, J.W.; Jang, H.C.; Kim, Y.-B.; et al. Effect of a Dipeptidyl Peptidase-IV Inhibitor, Des-Fluoro-Sitagliptin, on Neointimal Formation after Balloon Injury in Rats. PLoS ONE 2012, 7, e35007. [Google Scholar] [CrossRef]
- Wronkowitz, N.; Görgens, S.W.; Romacho, T.; Villalobos, L.A.; Sánchez-Ferrer, C.F.; Peiró, C.; Sell, H.; Eckel, J. Soluble DPP4 Induces Inflammation and Proliferation of Human Smooth Muscle Cells via Protease-Activated Receptor 2. Biochim. Biophys. Acta Mol. Basis Dis. 2014, 1842, 1613–1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, H.; Nomiyama, T.; Terawaki, Y.; Horikawa, T.; Kawanami, T.; Hamaguchi, Y.; Tanaka, T.; Motonaga, R.; Fukuda, T.; Tanabe, M.; et al. Combined Treatment with DPP-4 Inhibitor Linagliptin and SGLT2 Inhibitor Empagliflozin Attenuates Neointima Formation after Vascular Injury in Diabetic Mice. Biochem. Biophys. Rep. 2019, 18, 100640. [Google Scholar] [CrossRef]
- Choi, S.H.; Park, S.; Oh, C.J.; Leem, J.; Park, K.-G.; Lee, I.-K. Dipeptidyl Peptidase-4 Inhibition by Gemigliptin Prevents Abnormal Vascular Remodeling via NF-E2-Related Factor 2 Activation. Vascul. Pharmacol. 2015, 73, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, J.; He, M.; Han, H.; Xie, W.; Wang, H.; Kong, H. Dipeptidyl Peptidase IV (DPP-4) Inhibition Alleviates Pulmonary Arterial Remodeling in Experimental Pulmonary Hypertension. Lab. Investig. 2018, 98, 1333–1346. [Google Scholar] [CrossRef]
- Ji, Y.; Ge, Y.; Xu, X.; Ye, S.; Fan, Y.; Zhang, J.; Mei, L.; Zhang, X.; Ying, L.; Yang, T.; et al. Vildagliptin Reduces Stenosis of Injured Carotid Artery in Diabetic Mouse through Inhibiting Vascular Smooth Muscle Cell Proliferation via ER Stress/NF-ΚB Pathway. Front. Pharmacol. 2019, 10, 142. [Google Scholar] [CrossRef]
- Ervinna, N.; Mita, T.; Yasunari, E.; Azuma, K.; Tanaka, R.; Fujimura, S.; Sukmawati, D.; Nomiyama, T.; Kanazawa, A.; Kawamori, R.; et al. Anagliptin, a DPP-4 Inhibitor, Suppresses Proliferation of Vascular Smooth Muscles and Monocyte Inflammatory Reaction and Attenuates Atherosclerosis in Male Apo E-Deficient Mice. Endocrinology 2013, 154, 1260–1270. [Google Scholar] [CrossRef] [Green Version]
- Nusca, A.; Tuccinardi, D.; Pieralice, S.; Giannone, S.; Carpenito, M.; Monte, L.; Watanabe, M.; Cavallari, I.; Maddaloni, E.; Ussia, G.P.; et al. Platelet Effects of Anti-Diabetic Therapies: New Perspectives in the Management of Patients with Diabetes and Cardiovascular Disease. Front. Pharmacol. 2021, 12, 670155. [Google Scholar] [CrossRef]
- Vinik, A.I.; Erbas, T.; Park, T.S.; Nolan, R.; Pittenger, G.L. Platelet Dysfunction in Type 2 Diabetes. Diabetes Care 2001, 24, 1476–1485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, D.J. Factors Contributing to Increased Platelet Reactivity in People with Diabetes. Diabetes Care 2009, 32, 525–527. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Woo, V.; Bose, R. Platelet Hyperactivity and Abnormal Ca2+ Homeostasis in Diabetes Mellitus. Am. J. Physiol. Circ. Physiol. 2001, 280, H1480–H1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cameron-Vendrig, A.; Reheman, A.; Siraj, M.A.; Xu, X.R.; Wang, Y.; Lei, X.; Afroze, T.; Shikatani, E.; El-Mounayri, O.; Noyan, H.; et al. Glucagon-Like Peptide 1 Receptor Activation Attenuates Platelet Aggregation and Thrombosis. Diabetes 2016, 65, 1714–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steven, S.; Jurk, K.; Kopp, M.; Kröller-Schön, S.; Mikhed, Y.; Schwierczek, K.; Roohani, S.; Kashani, F.; Oelze, M.; Klein, T.; et al. Glucagon-like Peptide-1 Receptor Signalling Reduces Microvascular Thrombosis, Nitro-Oxidative Stress and Platelet Activation in Endotoxaemic Mice. Br. J. Pharmacol. 2017, 174, 1620–1632. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Jin, C.; Nakamura, K.; Jin, T.; Xin, M.; Wan, Y.; Yue, X.; Jin, S.; Wang, H.; Inoue, A.; et al. Increased Dipeptidyl Peptidase-4 Accelerates Chronic Stress-Related Thrombosis in a Mouse Carotid Artery Model. J. Hypertens. 2020, 38, 1504–1513. [Google Scholar] [CrossRef]
- Rondina, M.T.; Weyrich, A.S. Targeting Phosphodiesterases in Anti-Platelet Therapy. In Antiplatelet Agents; Springer: Berlin/Heidelberg, Germany, 2012; pp. 225–238. [Google Scholar]
- Li, D.; Chen, K.; Sinha, N.; Zhang, X.; Wang, Y.; Sinha, A.; Romeo, F.; Mehta, J. The Effects of PPAR-? Ligand Pioglitazone on Platelet Aggregation and Arterial Thrombus Formation. Cardiovasc. Res. 2005, 65, 907–912. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.K.; Verma, A.K.; Kailashiya, J.; Singh, S.K.; Kumar, N. Sitagliptin: Anti-Platelet Effect in Diabetes and Healthy Volunteers. Platelets 2012, 23, 565–570. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, H.; Ma, X.; Zhang, Y.; Lu, S.; Wang, Y.; Zong, C.; Qin, D.; Wang, Y.; Yingfeng Yang, Y.; et al. GLP-1/GLP-1R Signaling in Regulation of Adipocyte Differentiation and Lipogenesis. Cell. Physiol. Biochem. 2017, 42, 1165–1176. [Google Scholar] [CrossRef]
- Ben-Shlomo, S.; Zvibel, I.; Shnell, M.; Shlomai, A.; Chepurko, E.; Halpern, Z.; Barzilai, N.; Oren, R.; Fishman, S. Glucagon-like Peptide-1 Reduces Hepatic Lipogenesis via Activation of AMP-Activated Protein Kinase. J. Hepatol. 2011, 54, 1214–1223. [Google Scholar] [CrossRef]
- Parlevliet, E.T.; Wang, Y.; Geerling, J.J.; Schröder-Van der Elst, J.P.; Picha, K.; O’Neil, K.; Stojanovic-Susulic, V.; Ort, T.; Havekes, L.M.; Romijn, J.A.; et al. GLP-1 Receptor Activation Inhibits VLDL Production and Reverses Hepatic Steatosis by Decreasing Hepatic Lipogenesis in High-Fat-Fed APOE*3-Leiden Mice. PLoS ONE 2012, 7, e49152. [Google Scholar] [CrossRef] [Green Version]
- Zilleßen, P.; Celner, J.; Kretschmann, A.; Pfeifer, A.; Racké, K.; Mayer, P. Metabolic Role of Dipeptidyl Peptidase 4 (DPP4) in Primary Human (Pre)Adipocytes. Sci. Rep. 2016, 6, 23074. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Lin, B.; Zheng, X.; Chen, Z.; Cao, H.; Xu, H.; Liang, H.; Weng, J. GLP-1 Receptor Agonist Promotes Brown Remodelling in Mouse White Adipose Tissue through SIRT1. Diabetologia 2016, 59, 1059–1069. [Google Scholar] [CrossRef] [Green Version]
- Tomovic, K.; Lazarevic, J.; Kocic, G.; Deljanin-Ilic, M.; Anderluh, M.; Smelcerovic, A. Mechanisms and Pathways of Anti-Inflammatory Activity of DPP-4 Inhibitors in Cardiovascular and Renal Protection. Med. Res. Rev. 2019, 39, 404–422. [Google Scholar] [CrossRef] [Green Version]
- Patel, V.; Joharapurkar, A.; Dhanesha, N.; Kshirsagar, S.; Detroja, J.; Patel, K.; Gandhi, T.; Patel, K.; Bahekar, R.; Jain, M. Combination of Omeprazole with GLP-1 Agonist Therapy Improves Insulin Sensitivity and Antioxidant Activity in Liver in Type 1 Diabetic Mice. Pharmacol. Rep. 2013, 65, 927–936. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, M.; Watanabe, T.; Terasaki, M.; Tomoyasu, M.; Nohtomi, K.; Kim-Kaneyama, J.; Miyazaki, A.; Hirano, T. Native Incretins Prevent the Development of Atherosclerotic Lesions in Apolipoprotein E Knockout Mice. Diabetologia 2011, 54, 2649–2659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudo, M.; Li, Y.; Hiro, T.; Takayama, T.; Mitsumata, M.; Shiomi, M.; Sugitani, M.; Matsumoto, T.; Hao, H.; Hirayama, A. Inhibition of Plaque Progression and Promotion of Plaque Stability by Glucagon-like Peptide-1 Receptor Agonist: Serial in Vivo Findings from IMap-IVUS in Watanabe Heritable Hyperlipidemic Rabbits. Atherosclerosis 2017, 265, 283–291. [Google Scholar] [CrossRef]
- Balestrieri, M.L.; Rizzo, M.R.; Barbieri, M.; Paolisso, P.; D’Onofrio, N.; Giovane, A.; Siniscalchi, M.; Minicucci, F.; Sardu, C.; D’Andrea, D.; et al. Sirtuin 6 Expression and Inflammatory Activity in Diabetic Atherosclerotic Plaques: Effects of Incretin Treatment. Diabetes 2015, 64, 1395–1406. [Google Scholar] [CrossRef] [Green Version]
- Piotrowski, K.; Becker, M.; Zugwurst, J.; Biller-Friedmann, I.; Spoettl, G.; Greif, M.; Leber, A.W.; Becker, A.; Laubender, R.P.; Lebherz, C.; et al. Circulating Concentrations of GLP-1 Are Associated with Coronary Atherosclerosis in Humans. Cardiovasc. Diabetol. 2013, 12, 117. [Google Scholar] [CrossRef] [Green Version]
- Nusca, A.; Lauria Pantano, A.; Melfi, R.; Proscia, C.; Maddaloni, E.; Contuzzi, R.; Mangiacapra, F.; Palermo, A.; Manfrini, S.; Pozzilli, P.; et al. Glycemic Variability Assessed by Continuous Glucose Monitoring and Short-Term Outcome in Diabetic Patients Undergoing Percutaneous Coronary Intervention: An Observational Pilot Study. J. Diabetes Res. 2015, 2015, 250201. [Google Scholar] [CrossRef] [Green Version]
- Timmers, L.; Henriques, J.P.S.; de Kleijn, D.P.V.; DeVries, J.H.; Kemperman, H.; Steendijk, P.; Verlaan, C.W.J.; Kerver, M.; Piek, J.J.; Doevendans, P.A.; et al. Exenatide Reduces Infarct Size and Improves Cardiac Function in a Porcine Model of Ischemia and Reperfusion Injury. J. Am. Coll. Cardiol. 2009, 53, 501–510. [Google Scholar] [CrossRef] [Green Version]
- Lønborg, J.; Kelbæk, H.; Vejlstrup, N.; Bøtker, H.E.; Kim, W.Y.; Holmvang, L.; Jørgensen, E.; Helqvist, S.; Saunamäki, K.; Terkelsen, C.J.; et al. Exenatide Reduces Final Infarct Size in Patients With ST-Segment–Elevation Myocardial Infarction and Short-Duration of Ischemia. Circ. Cardiovasc. Interv. 2012, 5, 288–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.-H.; Hsieh, M.-J.; Chang, S.-H.; Hung, K.-C.; Wang, C.-J.; Hsu, M.-Y.; Juang, J.-H.; Hsieh, I.-C.; Wen, M.-S.; Liu, S.-J. Nanofibrous Vildagliptin-Eluting Stents Enhance Re-Endothelialization and Reduce Neointimal Formation in Diabetes: In Vitro and in Vivo. Int. J. Nanomed. 2019, 14, 7503–7513. [Google Scholar] [CrossRef] [Green Version]
- Volpe, M.; Gallo, G. Systolic Blood Pressure Target Less than 120 MmHg: The ‘Chariot Allegory’ in Hypertension? J. Hypertens. 2020, 38, 1462–1463. [Google Scholar] [CrossRef] [PubMed]
- Anholm, C.; Kumarathurai, P.; Pedersen, L.R.; Samkani, A.; Walzem, R.L.; Nielsen, O.W.; Kristiansen, O.P.; Fenger, M.; Madsbad, S.; Sajadieh, A.; et al. Liraglutide in Combination with Metformin May Improve the Atherogenic Lipid Profile and Decrease C-Reactive Protein Level in Statin Treated Obese Patients with Coronary Artery Disease and Newly Diagnosed Type 2 Diabetes: A Randomized Trial. Atherosclerosis 2019, 288, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Jiang, X.; Chen, X. Liraglutide and Metformin Alone or Combined Therapy for Type 2 Diabetes Patients Complicated with Coronary Artery Disease. Lipids Health Dis. 2017, 16, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sattar, N.; Lee, M.M.Y.; Kristensen, S.L.; Branch, K.R.H.; Del Prato, S.; Khurmi, N.S.; Lam, C.S.P.; Lopes, R.D.; McMurray, J.J.V.; Pratley, R.E.; et al. Cardiovascular, Mortality, and Kidney Outcomes with GLP-1 Receptor Agonists in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Trials. Lancet Diabetes Endocrinol. 2021, 9, 653–662. [Google Scholar] [CrossRef]
- Woo, J.S.; Kim, W.; Ha, S.J.; Kim, J.B.; Kim, S.-J.; Kim, W.-S.; Seon, H.J.; Kim, K.S. Cardioprotective Effects of Exenatide in Patients with ST-Segment–Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 2252–2260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.R.; Chen, Y.D.; Tian, F.; Yang, N.; Cheng, L.Q.; Hu, S.Y.; Wang, J.; Yang, J.J.; Wang, S.F.; Gu, X.F. Effects of Liraglutide on Reperfusion Injury in Patients with ST-Segment–Elevation Myocardial Infarction. Circ. Cardiovasc. Imaging 2016, 9, e005146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.R.; Hu, S.Y.; Chen, Y.D.; Zhang, Y.; Qian, G.; Wang, J.; Yang, J.J.; Wang, Z.F.; Tian, F.; Ning, Q.X. Effects of Liraglutide on Left Ventricular Function in Patients with ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Am. Heart J. 2015, 170, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.R.; Tian, F.; Chen, Y.D.; Wang, J.; Yang, J.J.; Wang, Z.F.; Da Wang, J.; Ning, Q.X. Effects of Liraglutide on No-Reflow in Patients with Acute ST-Segment Elevation Myocardial Infarction. Int. J. Cardiol. 2016, 208, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Wei, R.; Wang, Y.; Su, T.; Li, Q.; Yang, X.; Chen, X. Protective Effect of Glucagon-like Peptide-1 Agents on Reperfusion Injury for Acute Myocardial Infarction: A Meta-Analysis of Randomized Controlled Trials. Ann. Med. 2017, 49, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Trevisan, M.; Fu, E.L.; Szummer, K.; Norhammar, A.; Lundman, P.; Wanner, C.; Sjölander, A.; Jernberg, T.; Carrero, J.J. Glucagon-like Peptide-1 Receptor Agonists and the Risk of Cardiovascular Events in Diabetes Patients Surviving an Acute Myocardial Infarction. Eur. Hear. J. Cardiovasc. Pharmacother. 2021, 7, 104–111. [Google Scholar] [CrossRef] [Green Version]
- Leibovitz, E.; Gottlieb, S.; Goldenberg, I.; Gevrielov-Yusim, N.; Matetzky, S.; Gavish, D. Sitagliptin Pretreatment in Diabetes Patients Presenting with Acute Coronary Syndrome: Results from the Acute Coronary Syndrome Israeli Survey (ACSIS). Cardiovasc. Diabetol. 2013, 12, 53. [Google Scholar] [CrossRef] [Green Version]
- Kato, S.; Fukui, K.; Kirigaya, H.; Gyotoku, D.; Iinuma, N.; Kusakawa, Y.; Iguchi, K.; Nakachi, T.; Iwasawa, T.; Kimura, K. Inhibition of DPP-4 by Alogliptin Improves Coronary Flow Reserve and Left Ventricular Systolic Function Evaluated by Phase Contrast Cine Magnetic Resonance Imaging in Patients with Type 2 Diabetes and Coronary Artery Disease. Int. J. Cardiol. 2016, 223, 770–775. [Google Scholar] [CrossRef]
- Santos-Pardo, I.; Lagerqvist, B.; Ritsinger, V.; Witt, N.; Norhammar, A.; Nyström, T. Risk of Stent Failure in Patients with Diabetes Treated with Glucagon-like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors: A Nationwide Observational Study. Int. J. Cardiol. 2021, 330, 23–29. [Google Scholar] [CrossRef]
- Monami, M.; Lamanna, C.; Desideri, C.M.; Mannucci, E. DPP-4 Inhibitors and Lipids: Systematic Review and Meta-Analysis. Adv. Ther. 2012, 29, 14–25. [Google Scholar] [CrossRef]
- Ogawa, S.; Ishiki, M.; Nako, K.; Okamura, M.; Senda, M.; Mori, T.; Ito, S. Sitagliptin, a Dipeptidyl Peptidase-4 Inhibitor, Decreases Systolic Blood Pressure in Japanese Hypertensive Patients with Type 2 Diabetes. Tohoku J. Exp. Med. 2011, 223, 133–135. [Google Scholar] [CrossRef] [Green Version]
- Duvnjak, L.; Blaslov, K. Dipeptidyl Peptidase-4 Inhibitors Improve Arterial Stiffness, Blood Pressure, Lipid Profile and Inflammation Parameters in Patients with Type 2 Diabetes Mellitus. Diabetol. Metab. Syndr. 2016, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.E.; Evans, M.; Schweizer, A. Blood pressure and fasting lipid changes after 24 weeks’ treatment with vildagliptin: A pooled analysis in >2000 previously drug-naïve patients with type 2 diabetes mellitus. Vasc. Health Risk Manag. 2016, 12, 337–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzo, M.R.; Barbieri, M.; Marfella, R.; Paolisso, G. Reduction of Oxidative Stress and Inflammation by Blunting Daily Acute Glucose Fluctuations in Patients with Type 2 Diabetes. Diabetes Care 2012, 35, 2076–2082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klempfner, R.; Leor, J.; Tenenbaum, A.; Fisman, E.Z.; Goldenberg, I. Effects of a Vildagliptin/Metformin Combination on Markers of Atherosclerosis, Thrombosis, and Inflammation in Diabetic Patients with Coronary Artery Disease. Cardiovasc. Diabetol. 2012, 11, 60. [Google Scholar] [CrossRef] [Green Version]
- Gitt, A.K.; Bramlage, P.; Binz, C.; Krekler, M.; Deeg, E.; Tschöpe, D. Prognostic Implications of DPP-4 Inhibitor vs. Sulfonylurea Use on Top of Metformin in a Real World Setting—Results of the 1 Year Follow-up of the Prospective DiaRegis Registry. Int. J. Clin. Pract. 2013, 67, 1005–1014. [Google Scholar] [CrossRef] [PubMed]
- Monami, M.; Dicembrini, I.; Martelli, D.; Mannucci, E. Safety of Dipeptidyl Peptidase-4 Inhibitors: A Meta-Analysis of Randomized Clinical Trials. Curr. Med. Res. Opin. 2011, 27, 57–64. [Google Scholar] [CrossRef]
- Brenner, C.; Adrion, C.; Grabmaier, U.; Theisen, D.; von Ziegler, F.; Leber, A.; Becker, A.; Sohn, H.-Y.; Hoffmann, E.; Mansmann, U.; et al. Sitagliptin plus Granulocyte Colony-Stimulating Factor in Patients Suffering from Acute Myocardial Infarction: A Double-Blind, Randomized Placebo-Controlled Trial of Efficacy and Safety (SITAGRAMI Trial). Int. J. Cardiol. 2016, 205, 23–30. [Google Scholar] [CrossRef]
TARGET | MOLECULAR PATHWAY | FINAL EFFECT |
---|---|---|
IMMUNE SYSTEM | ↑ cAMP-PKA-STAT3 pathway, involved in M2 polarization | Switch to M2 phenotype |
↓ STAT1 activity, responsible for M1 phenotype switch | ||
↑ CD163+ macrophages expression and ↓ inflammatory macrophages in adipose tissue | Anti-inflammatory effect | |
↓ T-cell CD26 expression | ||
NLRP3 inflammasome suppression | ||
VASCULAR SMOOTH MUSCLE CELLS | ↓ ERK phosphorylation | ↓ VSCM proliferation and migration in atherosclerotic plaque |
↑ PAR2 receptor activation | ||
ENDOTHELIUM | ↓ NF-kB, TNF-α and MCP-1 | ↓ foam cells ↓ ROS production ↑ NO production ↑ vasodilatation ↑ EPC recruitment |
↓ ACAT1 e CD36 scavenger receptor | ||
↓ PKCb2-mediated activation of NADPH oxidase | ||
↑ GLP1R/AMPK pathway | ||
↓ NF-kB and ET-1 | ||
↑ SDF-1/CXCR4 signaling pathway | ||
PLATELETS | ↑ cAMP and PKA activation | Microvascular thrombosis reduction |
↓ plasma fibrinogen and PAI-1 | ||
↓ CD40 soluble levels | ||
↓ inflammatory and thrombogenic gene expression |
TARGET | MOLECULAR PATHWAY | FINAL EFFECT |
---|---|---|
IMMUNE SYSTEM | ↓ VCAM-1, ICAM-1, PAI-1 and P-selectin | ↓ leukocyte rolling and vessel infiltration |
VASCULAR SMOOTH MUSCLE CELLS | ↑ MMP-2 and MMP-9 | ↓ proliferation and migration |
↑ cAMP/PKA pathway | ||
ENDOTHELIUM | c-AMP/PKA pathway activation | Endothelial barrier integrity preservation |
PLATELETS | ↑ cAMP-induced PKA activation | ↓ Thrombin-, ADP-, PLT aggregation |
↑ eNOS enzymatic activity | ||
↑ cGMP production | ↑ NO bioavailability and ↓ ROS production | |
↑ VASP-ser239 phosphorylation | ||
↓ PI3-K/Akt and MAPK/erk-2 pathway | ||
↓ platelet P-selectin expression |
ELIXA [1] | LEADER [2] | SUSTAIN-6 [3] | EXSCEL [4] | HARMONY [5] | REWIND [6] | PIONEER-6 [7] | AMPLITUDE [8] | |
---|---|---|---|---|---|---|---|---|
Intervention | Lixisenatide vs. placebo | Liraglutide vs. placebo | Semaglutide vs. placebo | Exenatide vs. placebo | Albiglutide vs. placebo | Dulaglutide vs. placebo | Semaglutide vs. placebo | Efpeglenatide vs. placebo |
Population | 6068 patients with T2D | 9340 patients with T2D | 3297 patients with T2D | 14,752 patients with T2D | 9463 patients with T2D | 9903 patients with T2D | 3183 patients with T2D | 4076 patients with T2D |
Established CVD (%) | 100 | 81 | 83 | 73 | 100 | 31 | 85 | 90 |
Follow-up (years) | 2.1 | 3.8 | 2.1 | 3.2 | 1.6 | 5.4 | 1.3 | 1.8 |
MACE | 1.02 (0.89–1.17) | 0.87 (0.78–0.97) | 0.74 (0.58–0.95) | 0.91 (0.83–1.00) | 0.78 (0.68–0.90) | 0.88 (0.79–0.99) | 0.79 (0.57–1.11) | 0.73 (0.58–0.92) |
CV death | 0.98 (0.78–1.22) | 0.78 (0.66–0.93) | 0.98 (0.65–1.48) | 0.88 (0.76–1.02) | 0.93 (0.73–1.19) | 0.91 (0.78–1.06) | 0.49 (0.27–0.92) | 0.72 (0.50–1.03) |
HHF | 0.96 (0.75–1.23) | 0.87 (0.73–1.05) | 1.11 (0.77–1.61) | 0.94 (0.78–1.13) | 0.85 (0.70–1.04) | 0.93 (0.77–1.12) | 0.86 (0.48–1.44) | 0.61 (0.38–0.98) |
EXAMINE [9] | CAROLINA [13] | SAVOR-TIMI 53 [11] | TECOS [12] | CARMELINA [10] | |
---|---|---|---|---|---|
Intervention | Alogliptin vs. placebo | Linagliptin vs. Glimepiride | Saxagliptin vs. placebo | Sitagliptin vs. placebo | Linagliptin vs. placebo |
Population | 5380 patients with T2D | 6042 patients with T2D | 16,492 patients with T2D | 14,671 patients with T2D | 6979 patients with T2D |
Established CVD (%) | 100 | 34.5 | 78.4 | 100 | 57 |
Follow-up (years) | 1.5 | 6.3 | 2.1 | 3.0 | 2.2 |
MACE | 0.96 (≤1.16) | 0.98 (0.84–1.14) | 1.00 (0.89–1.12) | 0.98 (0.88–1.09) | 1.02 (0.89–1.17) |
CV death | 0.79 (0.60–1.04) | 1.00 (0.81–1.24) | 1.03 (0.87–1.22) | 1.03 (0.89–1.19) | 0.96 (0.81–1.14) |
HHF | 1.19 (0.90–1.58) | 1.21 (0.92–1.59) | 1.27 (1.07–1.51) | 1.00 (0.83–1.20) | 0.90 (0.74–1.08) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernardini, F.; Nusca, A.; Coletti, F.; La Porta, Y.; Piscione, M.; Vespasiano, F.; Mangiacapra, F.; Ricottini, E.; Melfi, R.; Cavallari, I.; et al. Incretins-Based Therapies and Their Cardiovascular Effects: New Game-Changers for the Management of Patients with Diabetes and Cardiovascular Disease. Pharmaceutics 2023, 15, 1858. https://doi.org/10.3390/pharmaceutics15071858
Bernardini F, Nusca A, Coletti F, La Porta Y, Piscione M, Vespasiano F, Mangiacapra F, Ricottini E, Melfi R, Cavallari I, et al. Incretins-Based Therapies and Their Cardiovascular Effects: New Game-Changers for the Management of Patients with Diabetes and Cardiovascular Disease. Pharmaceutics. 2023; 15(7):1858. https://doi.org/10.3390/pharmaceutics15071858
Chicago/Turabian StyleBernardini, Federico, Annunziata Nusca, Federica Coletti, Ylenia La Porta, Mariagrazia Piscione, Francesca Vespasiano, Fabio Mangiacapra, Elisabetta Ricottini, Rosetta Melfi, Ilaria Cavallari, and et al. 2023. "Incretins-Based Therapies and Their Cardiovascular Effects: New Game-Changers for the Management of Patients with Diabetes and Cardiovascular Disease" Pharmaceutics 15, no. 7: 1858. https://doi.org/10.3390/pharmaceutics15071858
APA StyleBernardini, F., Nusca, A., Coletti, F., La Porta, Y., Piscione, M., Vespasiano, F., Mangiacapra, F., Ricottini, E., Melfi, R., Cavallari, I., Ussia, G. P., & Grigioni, F. (2023). Incretins-Based Therapies and Their Cardiovascular Effects: New Game-Changers for the Management of Patients with Diabetes and Cardiovascular Disease. Pharmaceutics, 15(7), 1858. https://doi.org/10.3390/pharmaceutics15071858