Ultrasmall Solid-Lipid Nanoparticles via the Polysorbate Sorbitan Phase-Inversion Temperature Technique: A Promising Vehicle for Antioxidant Delivery into the Skin
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.1.1. Chemicals
2.1.2. Cells
2.1.3. Tissues
2.2. Methods
2.2.1. SLN Formulation
2.2.2. SLN Purification
2.2.3. Phase-Transition Study
2.2.4. Compound Loading in SLNs
2.2.5. SLN Characterization
2.2.6. RBC Scratch
2.2.7. Wound-Healing Assay
- -
- negative control: EMEM with 2% of FBS, penicillin and streptomycin (100 units/mL), essential amino acids;
- -
- positive control: HA 1% in EMEM;
- -
- TOCO SLNs dispersed in EMEM at 1% v/v;
- -
- HA/TOCO SLNs: TOCO SLNs dispersed in 1% HA solution.
2.2.8. Skin-Permeation Studies
2.2.9. 6-cum Spectrophotometric Analysis
2.2.10. HPLC Analysis
3. Results
3.1. Formulation Screening and Characterization of SLNs
- -
- 2% lipid, 4% Sp, 8% Tw20;
- -
- 2% lipid, 2% Sp, 5% Tw20;
- -
- 2% lipid, 4% Sp, 5% Tw20.
3.2. Formulation and Characterization of TOCO SLNs
3.3. Wound-Healing Assay
3.4. Skin-Permeation Studies
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Souto, E.B.; Müller, R.H. Cosmetic Features and Applications of Lipid Nanoparticles (SLN®, NLC®). Int. J. Cosmet. Sci. 2008, 30, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Khezri, K.; Saeedi, M.; Dizaj, S.M. Application of Nanoparticles in Percutaneous Delivery of Active Ingredients in Cosmetic Preparations. Biomed. Pharmacother. 2018, 106, 1499–1505. [Google Scholar] [CrossRef]
- Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid Nanoparticles (SLN, NLC) in Cosmetic and Pharmaceutical Dermal Products. Int. J. Pharm. 2009, 366, 170–184. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, J. Lipid Nanoparticles Based Cosmetics with Potential Application in Alleviating Skin Disorders. Cosmetics 2021, 8, 84. [Google Scholar] [CrossRef]
- Battaglia, L.; Ugazio, E. Lipid Nano- and Microparticles: An Overview of Patent-Related Research. J. Nanomater. 2019, 2019, 2834941. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, L.; Gallarate, M. Lipid Nanoparticles: State of the Art, New Preparation Methods and Challenges in Drug Delivery. Expert Opin. Drug Deliv. 2012, 9, 497–508. [Google Scholar] [CrossRef]
- Ugazio, E.; Gastaldi, L.; Brunella, V.; Scalarone, D.; Jadhav, S.A.; Oliaro-Bosso, S.; Zonari, D.; Berlier, G.; Miletto, I.; Sapino, S. Thermoresponsive Mesoporous Silica Nanoparticles as a Carrier for Skin Delivery of Quercetin. Int. J. Pharm. 2016, 511, 446–454. [Google Scholar] [CrossRef]
- Battaglia, L.; Dianzani, C.; Muntoni, E.; Scorziello, F. Method for the Preparation of Lipid Nanoparticles. WO2020/254934 A1, 24 December 2020. [Google Scholar]
- Marks, L.S.; Kolmen, S.N. Tween 20 Shock in Dogs and Related Fibrinogen Changes. Am. J. Physiol. Leg. Content 1971, 220, 218–221. [Google Scholar] [CrossRef] [Green Version]
- Siekmann, B.; Westesen, K. Thermoanalysis of the Recrystallization Process of Melt-Homogenized Glyceride Nanoparticles. Colloids Surf. B Biointerfaces 1994, 3, 159–175. [Google Scholar] [CrossRef]
- Freitas, C.; Müller, R.H. Correlation between Long-Term Stability of Solid Lipid Nanoparticles (SLNTM) and Crystallinity of the Lipid Phase. Eur. J. Pharm. Biopharm. 1999, 47, 125–132. [Google Scholar] [CrossRef]
- Beck, H.; Bracher, M. Percutaneous Absorption/Penetration in Vitro Pig Skin. In Cosmetics Europe: Guidelines for Percutaneous Absorption/Penetration; Cosmetics Europe: Brussels, Belgium, 1997; pp. 16–22. [Google Scholar]
- Argenziano, M.; Haimhoffer, A.; Bastiancich, C.; Jicsinszky, L.; Caldera, F.; Trotta, F.; Scutera, S.; Alotto, D.; Fumagalli, M.; Musso, T.; et al. In vitro Enhanced Skin Permeation and Retention of Imiquimod Loaded in β-Cyclodextrin Nanosponge Hydrogel. Pharmaceutics 2019, 11, 138. [Google Scholar] [CrossRef] [Green Version]
- Capetti, F.; Sgorbini, B.; Cagliero, C.; Argenziano, M.; Cavalli, R.; Milano, L.; Bicchi, C.; Rubiolo, P. Melaleuca Alternifolia Essential Oil: Evaluation of Skin Permeation and Distribution from Topical Formulations with a Solvent-Free Analytical Method. Planta Medica 2020, 86, 442–450. [Google Scholar] [CrossRef]
- Chawla, J.; Mahajan, R.K. Cloud Point Studies of Tween and Glycol in the Presence of Salts. J. Dispers. Sci. Technol. 2011, 32, 822–827. [Google Scholar] [CrossRef]
- Hunter, R.J. Foundations of Colloid Science, 2nd ed.; Oxford University Press: Oxford, UK, 1986; ISBN 978-0-19-850502-0. [Google Scholar]
- Hou, D.; Xie, C.; Huang, K.; Zhu, C. The Production and Characteristics of Solid Lipid Nanoparticles (SLNs). Biomaterials 2003, 24, 1781–1785. [Google Scholar] [CrossRef]
- Liu, J.; Gong, T.; Wang, C.; Zhong, Z.; Zhang, Z. Solid Lipid Nanoparticles Loaded with Insulin by Sodium Cholate-Phosphatidylcholine-Based Mixed Micelles: Preparation and Characterization. Int. J. Pharm. 2007, 340, 153–162. [Google Scholar] [CrossRef]
- Lohan, S.B.; Bauersachs, S.; Ahlberg, S.; Baisaeng, N.; Keck, C.M.; Müller, R.H.; Witte, E.; Wolk, K.; Hackbarth, S.; Röder, B.; et al. Ultra-Small Lipid Nanoparticles Promote the Penetration of Coenzyme Q10 in Skin Cells and Counteract Oxidative Stress. Eur. J. Pharm. Biopharm. 2015, 89, 201–207. [Google Scholar] [CrossRef]
- Garcês, A.; Amaral, M.H.; Lobo, J.M.S.; Silva, A.C. Formulations Based on Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for Cutaneous Use: A Review. Eur. J. Pharm. Sci. 2018, 112, 159–167. [Google Scholar] [CrossRef]
- Bustad, L.K.; McClellan, R.O. Swine in Biomedical Research. Science 1966, 152, 1526–1530. [Google Scholar] [CrossRef] [PubMed]
- Abla, M.J.; Banga, A.K. Formulation of tocopherol nanocarriers and in vitro delivery into human skin. Int. J. Cosmet. Sci. 2014, 36, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, N.; Akhtar, N.; Menaa, F.; Alharbi, W.; Alaryani, F.S.S.; Alqahtani, A.M.; Ahmad, F. Fabrication of Ethosomes Containing Tocopherol Acetate to Enhance Transdermal Permeation: In vitro and ex vivo Characterizations. Gels 2022, 8, 335. [Google Scholar] [CrossRef] [PubMed]
- Caddeo, C.; Manca, M.L.; Peris, J.E.; Usach, I.; Diez-Sales, O.; Matos, M.; Fernàndez-Busquets, X.; Fadda, A.M.; Manconi, M. Tocopherol-loaded transfersomes: In vitro antioxidant activity and efficacy in skin regeneration. Int. J. Pharm. 2018, 551, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Moddaresi, M.; Brown, M.B.; Tamburic, S.; Jones, S.A. Tocopheryl acetate disposition in porcine and human skin when administered using lipid nanocarriers. J. Pharm. Pharmacol. 2010, 62, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Garcia, F.; Santos, J.; Viegas, R.; Yong, H.; Nardacchione, T.; Silva, W.; Medina, G.; Vitoria, M.; Badra, L. Materials Science & Engineering C Microemulsion co-delivering vitamin A and vitamin E as a new platform for topical treatment of acute skin in fl ammation. Mater. Sci. Eng. C 2020, 110, 110639. [Google Scholar] [CrossRef]
- Uchino, T.; Fujimori, S.; Hatta, I.; Miyazaki, Y.; Kamiya, D.; Fujino, H.; Suzuki, R.; Kirishita, Y.; Eda, T.; Murashima, K.; et al. Development of novel polyglycerol fatty acid ester-based nanoparticles for the dermal delivery of tocopherol acetate. Int. J. Pharm. 2021, 592, 120004. [Google Scholar] [CrossRef] [PubMed]
- Kichou, H.; Caritá, A.C.; Gillet, G.; Bougassaa, L.; Perse, X.; Soucé, M.; Gressin, L.; Chourpa, I.; Bonnier, F.; Munnier, E. Efficiency of emulsifier-free emulsions in delivering caffeine and α-tocopherol to human skin. Int. J. Cosmet. Sci. 2023, 45, 329–344. [Google Scholar] [CrossRef]
- Nada, A.; Zaghloul, A.-A.; Al-Soraj, M.; Al-Basarah, Y. Comparative ex vivo and in vitro permeation kinetics of tocopherol in liquid formulations. Asian J. Pharm. 2018, 12, S74–S80. [Google Scholar]
- Harun, M.S.; Wong, T.W.; Fong, C.W. Advancing skin delivery of α-tocopherol and γ-tocotrienol for dermatitis treatment via nanotechnology and microwave technology. Int. J. Pharm. 2021, 593, 120099. [Google Scholar] [CrossRef]
- Della Sala, F.; Silvestri, T.; Borzacchiello, A.; Mayol, L.; Ambrosio, L.; Biondi, M. Hyaluronan-coated nanoparticles for active tumor targeting: Influence of polysaccharide molecular weight on cell uptake. Colloids Surf. B Biointerfaces 2022, 210, 112240. [Google Scholar] [CrossRef]
- Della Sala, F.; Longobardo, G.; Fabozzi, A.; di Gennaro, M.; Borzacchiello, A. Hyaluronic acid-based wound dressing with antimicrobial properties for wound healing application. Appl. Sci. 2022, 12, 3091. [Google Scholar] [CrossRef]
- Della Sala, F.; di Gennaro, M.; Lista, G.; Messina, F.; Valente, T.; Borzacchiello, A. Effect of Composition of Lung Biomimetic Niche on The Mesenchymal Stem Cell Differentiation Toward Alveolar Type II Pneumocytes. Macromol. Biosci. 2023, 23, e2300035. [Google Scholar] [CrossRef]
- Makvandi, P.; Caccavale, C.; Della Sala, F.D.; Zeppetelli, S.; Veneziano, R.; Borzacchiello, A. Natural Formulations Provide Antioxidant Complement to Hyaluronic Acid-Based Topical Applications Used in Wound Healing. Polymers 2020, 12, 1847. [Google Scholar] [CrossRef] [PubMed]
Time (min) | % Water | % MeOH |
---|---|---|
0 | 60 | 40 |
5 | 0 | 100 |
10 | 0 | 100 |
11 | 60 | 40 |
Lipid (2%) | Sp Grade | Sp and Tw Ratio | ||
---|---|---|---|---|
4% Sp 4, 8% Tw20% | 2% Sp, 5% Tw20 | 4% Sp, 5% Tw20 | ||
Tp | Sp60 | SLNs 2% Tp 4% Sp60 8% Tw20 | SLNs 2% Tp 2% Sp60 5% Tw20 | - |
Tm | Sp60 | SLNs 2% Tm 4% Sp60 8% Tw20 | SLNs 2% Tm 2% Sp60 5% Tw20 | - |
Cp | Sp60 | SLNs 2% Cp 4% Sp60 8% Tw20 | SLNs 2% Cp 2% Sp60 5% Tw20 | - |
Hh | Sp60 | SLNs 2% Hh 4% Sp60 8% Tw20 | SLNs 2% Hh 2% Sp60 5% Tw20 | - |
Sp40 | SLNs 2% Hh 4% Sp40 8% Tw20 | - | - | |
Sp80 | SLNs 2% Hh 4% Sp80 8% Tw20 | SLNs 2% Hh 2% Sp80 5% Tw20 | SLNs 2% Hh 4% Sp80 5% Tw20 |
Tonset | Tpeak | ΔHfus (J/g) | |
---|---|---|---|
Tp | 61.16 °C | 63.58 °C | 166.86 |
Sp60 | 53.48 °C | 58.18 °C | 69.54 |
SLNs 2% Tp 2% Sp60 5% Tw20 | 58.28 °C | 61.81 °C | 16.84 |
SLNs 2% Tp 4% Sp60 8% Tw20 | 46.02 °C | 51.94 °C | 29.31 |
Tm | 59.56 °C | 60.18 °C | 207.35 |
SLNs 2% Tm 2% Sp60 5% Tw20 | 55.90 °C | 56.61 °C | 31.53 |
SLNs 2% Tm 4% Sp60 8% Tw20 | 44.01 °C | 52.01 °C | 18.53 |
Cp | 76.60 °C | 77.58 °C | 70.00 |
SLNs 2% Cp 2% Sp60 5% Tw20 | 73.94 °C | 75.43 °C | 15.57 |
SLNs Cp 2% Sp60 4% Tw20 8% | 66.25 °C | 71.71 °C | 4.10 |
Hh | 53.44 °C | 54.34 °C | 206.05 |
Sp40 | 43.59 °C | 47.44 °C | 66.76 |
SLNs 2% Hh 4% Sp40 8% Tw20 | 49.23 °C | 52.51 °C | 21.41 |
SLNs 2% Hh 4% Sp60 8% Tw20 | 50.53 °C | 51.14 °C | 4.33 |
SLNs 2% Hh 4% Sp80 8% Tw20 | 52.61 °C | 54.21 °C | 44.77 |
SLNs | Blank SLNs Purified by Size Exclusion | 6-cum SLNs Purified by Size Exclusion | 6-cum SLNs Purified by Dextran-Gradient Centrifugation and Resuspension | |||
---|---|---|---|---|---|---|
Mean Size (nm) | PDI | Mean Size (nm) | PDI | Mean Size (nm) | PDI | |
2% Tp 4% Sp60 8% Tw20 | 711.4 ± 50.8 | 0.327 | 255.9 ± 7.1 ** | 0.293 | 293.9 ± 6.2 | 0.256 |
2% Tp 2% Sp60 5% Tw20 | N.D. | N.D. | 168.5 ± 3.3 | 0.237 | 139.8 ± 35.9 | 0.281 |
2% Tm 4% Sp60 8% Tw20 | 202.2 ± 4.0 | 0.159 | 75.1 ± 2.0 **** | 0.255 | 219.7 ± 6.3 §§§§ | 0.248 |
2% Tm 2% Sp60 5%Tw20 | N.D. | N.D. | 170.1 ± 0.1 | 0.184 | 469.3 ± 138.4 | 0.284 |
2% Cp 4% Sp60 8% Tw20 | 210.8 ± 4.6 | 0.204 | 64.4 ± 0.9 **** | 0.228 | 213.2 ± 3.2 §§§§ | 0.219 |
2% Cp 2% Sp60 5% Tw20 | 579.3 ± 26.6 | 0.228 | 236.0 ± 3.4 * | 0.220 | 347.5 ± 82.1 | 0.203 |
2% Hh 4% Sp60 8% Tw20 | 71.9 ± 0.9 | 0.153 | 46.8 ± 1.8 *** | 0.309 | 145.6 ± 36.7 | 0.463 |
2% Hh 2% Sp60 5% Tw20 | 315.8 ± 4.1 | 0.088 | 98.8 ± 1.8 **** | 0.251 | 122.8 ± 2.9 | 0.290 |
2% Hh 4% Sp40 8% Tw20 | 100.5 ± 0.8 | 0.132 | 56.6 ± 0.5 **** | 0.219 | 190.3 ± 3.1 §§§§ | 0.331 |
2% Hh 4% Sp80 8% Tw20 | 71.2 ± 3.6 **** | 0.266 | 132.7 ± 1.5 | 0.184 | 233.7 ± 6.7 §§§ | 0.257 |
2% Hh 2% Sp80 5% Tw20 | 296.1 ± 0.9 | 0.151 | 192.6 ± 1.7 **** | 0.197 | 210.9 ± 15.4 | 0.252 |
2% Hh 4% Sp80 5% Tw20 | 91.0 ± 1.5 | 0.127 | 84.1 ± 1.1 | 0.251 | 250.2 ± 8.4 §§§§ | 0.291 |
Mean Size (nm) | PDI | Loaded Compound Concentration after Purification (μg/mL) | |
---|---|---|---|
Blank SLNs | 297.2 ± 4.1 | 0.185 | - |
TOCO SLNs | 108.6 ± 0.8 | 0.162 | 2250 ± 250 |
6-cum TOCO SLNs | 97.0 ± 0.1 | 0.102 | TOCO: 2990 ± 304 6-cum: 15.2 ± 2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Della Sala, F.; Borzacchiello, A.; Dianzani, C.; Muntoni, E.; Argenziano, M.; Capucchio, M.T.; Valsania, M.C.; Bozza, A.; Garelli, S.; Di Muro, M.; et al. Ultrasmall Solid-Lipid Nanoparticles via the Polysorbate Sorbitan Phase-Inversion Temperature Technique: A Promising Vehicle for Antioxidant Delivery into the Skin. Pharmaceutics 2023, 15, 1962. https://doi.org/10.3390/pharmaceutics15071962
Della Sala F, Borzacchiello A, Dianzani C, Muntoni E, Argenziano M, Capucchio MT, Valsania MC, Bozza A, Garelli S, Di Muro M, et al. Ultrasmall Solid-Lipid Nanoparticles via the Polysorbate Sorbitan Phase-Inversion Temperature Technique: A Promising Vehicle for Antioxidant Delivery into the Skin. Pharmaceutics. 2023; 15(7):1962. https://doi.org/10.3390/pharmaceutics15071962
Chicago/Turabian StyleDella Sala, Francesca, Assunta Borzacchiello, Chiara Dianzani, Elisabetta Muntoni, Monica Argenziano, Maria Teresa Capucchio, Maria Carmen Valsania, Annalisa Bozza, Sara Garelli, Maria Di Muro, and et al. 2023. "Ultrasmall Solid-Lipid Nanoparticles via the Polysorbate Sorbitan Phase-Inversion Temperature Technique: A Promising Vehicle for Antioxidant Delivery into the Skin" Pharmaceutics 15, no. 7: 1962. https://doi.org/10.3390/pharmaceutics15071962
APA StyleDella Sala, F., Borzacchiello, A., Dianzani, C., Muntoni, E., Argenziano, M., Capucchio, M. T., Valsania, M. C., Bozza, A., Garelli, S., Di Muro, M., Scorziello, F., & Battaglia, L. (2023). Ultrasmall Solid-Lipid Nanoparticles via the Polysorbate Sorbitan Phase-Inversion Temperature Technique: A Promising Vehicle for Antioxidant Delivery into the Skin. Pharmaceutics, 15(7), 1962. https://doi.org/10.3390/pharmaceutics15071962