Recent Advances in Co-Former Screening and Formation Prediction of Multicomponent Solid Forms of Low Molecular Weight Drugs
Abstract
:1. Introduction
2. Hydrogen Bond Based Methods
2.1. ΔpKa Rule
2.2. Supramolecular Synthons
2.3. Molecular Electrostatic Potential Surfaces (MEPs)
2.4. Hydrogen Bond Propensity (HBP)
3. Non-Hydrogen-Bond Based Methods
3.1. Lattice Energy
3.2. Molecular Complementarity (MC, Fábián’s Method)
3.3. Hansen Solubility Parameter (HSP)
3.4. Conductor-like Screening Model for Real Solvents (COSMO-RS)
3.5. Artificial Intelligence (AI)
3.6. Other Approaches
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | artificial intelligence |
API | active pharmaceutical ingredient |
CED | cohesive energy density |
COSMO-RS | conductor-like screening model for real solvents |
CSD | Cambridge structural database |
FDA | food and drug administration |
GSF | griseofulvin |
MC | molecular complementarity |
MEPs | molecular electrostatic potential surfaces |
MIN | minoxidil |
ML | machine learning |
MOP | 2-amino-4,6-dimethoxypyrimidine |
PLS-DA | partial least square discriminant analysis |
REG | regorafenib |
SPN | spironolactone |
T2 | 5,5′-di(pyridin-4-yl)-2,2′-bithiophene |
TDZH | 1,2,4-thiadiazole derivative |
References
- Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins: Basic science and product development. J. Pharm. Pharmacol. 2010, 62, 1607–1621. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Grohganz, H.; Rades, T.; Löbmann, K. Comparison of co-former performance in co-amorphous formulations: Single amino acids, amino acid physical mixtures, amino acid salts and dipeptides as co-formers. Eur. J. Pharm. Sci. 2021, 156, 105582. [Google Scholar] [CrossRef]
- Rocha, B.; de Morais, L.A.; Viana, M.C.; Carneiro, G. Promising strategies for improving oral bioavailability of poor water-soluble drugs. Expert Opin. Drug Discov. 2023, 18, 615–627. [Google Scholar] [CrossRef]
- Fu, P.; Zhang, J.; Li, H.; Mak, M.; Xu, W.; Tao, Z. Extracellular vesicles as delivery systems at nano-/micro-scale. Adv. Drug Deliv. Rev. 2021, 179, 113910. [Google Scholar] [CrossRef]
- Makvandi, P.; Josic, U.; Delfi, M.; Pinelli, F.; Jahed, V.; Kaya, E.; Ashrafizadeh, M.; Zarepour, A.; Rossi, F.; Zarrabi, A.; et al. Drug Delivery (Nano)Platforms for Oral and Dental Applications: Tissue Regeneration, Infection Control, and Cancer Management. Adv. Sci. 2021, 8, 2004014. [Google Scholar] [CrossRef]
- Pires, P.C.; Paiva-Santos, A.C.; Veiga, F. Nano and Microemulsions for the Treatment of Depressive and Anxiety Disorders: An Efficient Approach to Improve Solubility, Brain Bioavailability and Therapeutic Efficacy. Pharmaceutics 2022, 14, 2825. [Google Scholar] [CrossRef]
- Tran, P.H.L.; Tran, T.T.D. Dosage form designs for the controlled drug release of solid dispersions. Int. J. Pharm. 2020, 581, 119274. [Google Scholar] [CrossRef]
- Blagden, N.; de Matas, M.; Gavan, P.T.; York, P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Drug Deliv. Rev. 2007, 59, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Bolla, G.; Sarma, B.; Nangia, A.K. Crystal Engineering of Pharmaceutical Cocrystals in the Discovery and Development of Improved Drugs. Chem. Rev. 2022, 122, 11514–11603. [Google Scholar] [CrossRef]
- Amidon, G.L.; Lennernäs, H.; Shah, V.P.; Crison, J.R. A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of in Vitro Drug Product Dissolution and in Vivo Bioavailability. Pharm. Res. 1995, 12, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Desiraju, G.R. Crystal engineering: The design of organic solids. In Materials Science Monographs; Elsevier: Amsterdam, The Netherlands, 1989; Volume 54. [Google Scholar]
- Wu, W.; Wang, Y.; Löbmann, K.; Grohganz, H.; Rades, T. Transformations between Co-Amorphous and Co-Crystal Systems and Their Influence on the Formation and Physical Stability of Co-Amorphous Systems. Mol. Pharm. 2019, 16, 1294–1304. [Google Scholar] [CrossRef] [PubMed]
- Guide for Industry. Regulatory Classification of Pharmaceutical Cocrystals; U.S. Department of Health and Human Services Food and Drug Administration Center for Rug Evaluation and Research (CDER): Washington, DC, USA, 2018. Available online: https://www.fda.gov/media/81824/download (accessed on 18 July 2023).
- Healy, A.M.; Worku, Z.A.; Kumar, D.; Madi, A.M. Pharmaceutical solvates, hydrates and amorphous forms: A special emphasis on cocrystals. Adv. Drug Deliv. Rev. 2017, 117, 25–46. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.; Walker, G. Recent strategies in spray drying for the enhanced bioavailability of poorly water-soluble drugs. J. Control. Release 2018, 269, 110–127. [Google Scholar] [CrossRef]
- Aitipamula, S.; Banerjee, R.; Bansal, A.K.; Biradha, K.; Cheney, M.L.; Choudhury, A.R.; Desiraju, G.R.; Dikundwar, A.G.; Dubey, R.; Duggirala, N.; et al. Polymorphs, Salts, and Cocrystals: What’s in a Name? Cryst. Growth Des. 2012, 12, 2147–2152. [Google Scholar] [CrossRef]
- Chieng, N.; Aaltonen, J.; Saville, D.; Rades, T. Physical characterization and stability of amorphous indomethacin and ranitidine hydrochloride binary systems prepared by mechanical activation. Eur. J. Pharm. Biopharm. 2009, 71, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, T.; Marques, S.; das Neves, J.; Sarmento, B. Amorphous solid dispersions: Rational selection of a manufacturing process. Adv. Drug Deliv. Rev. 2016, 100, 85–101. [Google Scholar] [CrossRef]
- Han, J.; Wei, Y.; Lu, Y.; Wang, R.; Zhang, J.; Gao, Y.; Qian, S. Co-amorphous systems for the delivery of poorly water-soluble drugs: Recent advances and an update. Expert Opin. Drug Deliv. 2020, 17, 1411–1435. [Google Scholar] [CrossRef]
- Shi, Q.; Moinuddin, S.M.; Cai, T. Advances in coamorphous drug delivery systems. Acta Pharm. Sin. B 2019, 9, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Dengale, S.J.; Ranjan, O.P.; Hussen, S.S.; Krishna, B.S.M.; Musmade, P.B.; Gautham Shenoy, G.; Bhat, K. Preparation and characterization of co-amorphous Ritonavir–Indomethacin systems by solvent evaporation technique: Improved dissolution behavior and physical stability without evidence of intermolecular interactions. Eur. J. Pharm. Sci. 2014, 62, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Grant, D.J.W. Crystal structures of drugs: Advances in determination, prediction and engineering. Nat. Rev. Drug Discov. 2004, 3, 42–57. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Luo, W.; Zheng, Z.; Wei, G.; Liu, S.; Jiang, Y.; Yang, H. Prediction of co-amorphous formation using non-bonded interaction energy: Molecular dynamic simulation and experimental validation. Chem. Eng. Sci. 2023, 272, 118618. [Google Scholar] [CrossRef]
- Srirambhatla, V.K.; Kraft, A.; Watt, S.; Powell, A.V. Crystal Design Approaches for the Synthesis of Paracetamol Co-Crystals. Cryst. Growth Des. 2012, 12, 4870–4879. [Google Scholar] [CrossRef]
- Lemmerer, A.; Govindraju, S.; Johnston, M.; Motloung, X.; Savig, K.L. Co-crystals and molecular salts of carboxylic acid/pyridine complexes: Can calculated pKa’s predict proton transfer? A case study of nine complexes. CrystEngComm 2015, 17, 3591–3595. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, B.; Gao, Y.; Zhang, J.; Shi, L. Baicalein–Nicotinamide Cocrystal with Enhanced Solubility, Dissolution, and Oral Bioavailability. J. Pharm. Sci. 2014, 103, 2330–2337. [Google Scholar] [CrossRef]
- Stanton, M.K.; Bak, A. Physicochemical Properties of Pharmaceutical Co-Crystals: A Case Study of Ten AMG 517 Co-Crystals. Cryst. Growth Des. 2008, 8, 3856–3862. [Google Scholar] [CrossRef]
- Shattock, T.R.; Arora, K.K.; Vishweshwar, P.; Zaworotko, M.J. Hierarchy of Supramolecular Synthons: Persistent Carboxylic Acid Pyridine Hydrogen Bonds in Cocrystals That also Contain a Hydroxyl Moiety. Cryst. Growth Des. 2008, 8, 4533–4545. [Google Scholar] [CrossRef]
- Li, D.; Li, J.; Deng, Z.; Zhang, H. The discovery of new cocrystals of 5-fluorocytosine using amine–carboxylate supramolecular synthon. J. Drug Deliv. Sci. Technol. 2022, 78, 103934. [Google Scholar] [CrossRef]
- Domingos, S.; Fernandes, A.; Duarte, M.T.; Piedade, M.F.M. New Multicomponent Sulfadimethoxine Crystal Forms: Sulfonamides as Participants in Supramolecular Interactions. Cryst. Growth Des. 2016, 16, 1879–1892. [Google Scholar] [CrossRef]
- Jia, J.-L.; Dai, X.-L.; Che, H.-J.; Li, M.-T.; Zhuang, X.-M.; Lu, T.-B.; Chen, J.-M. Cocrystals of regorafenib with dicarboxylic acids: Synthesis, characterization and property evaluation. CrystEngComm 2021, 23, 653–662. [Google Scholar] [CrossRef]
- Das, B.; Baruah, J.B. Supramolecular Synthons and Hydrates in Stabilization of Multicomponent Crystals of Nicotinamide and Isonicotinamide with N-Containing Aromatic Dicarboxylic Acids. Cryst. Growth Des. 2011, 11, 5522–5532. [Google Scholar] [CrossRef]
- Goswami, P.K.; Kumar, V.; Ramanan, A. Multicomponent solids of diclofenac with pyridine based coformers. J. Mol. Struct. 2020, 1210, 128066. [Google Scholar] [CrossRef]
- Sarkar, N.; Parkin, S.; Huckaba, A.J. Structural Study of Hydrogen-Bond Driven Cocrystallization of Pyridyl-Bithiophene Based Compounds. Cryst. Growth Des. 2021, 21, 4337–4345. [Google Scholar] [CrossRef]
- Grecu, T.; Prohens, R.; McCabe, J.F.; Carrington, E.J.; Wright, J.S.; Brammer, L.; Hunter, C.A. Cocrystals of spironolactone and griseofulvin based on an in silico screening method. CrystEngComm 2017, 19, 3592–3599. [Google Scholar] [CrossRef]
- Mehta, B.K.; Singh, S.S.; Chaturvedi, S.; Wahajuddin, M.; Thakur, T.S. Rational Coformer Selection and the Development of New Crystalline Multicomponent Forms of Resveratrol with Enhanced Water Solubility. Cryst. Growth Des. 2018, 18, 1581–1592. [Google Scholar] [CrossRef]
- Surov, A.O.; Voronin, A.P.; Vasilev, N.A.; Ilyukhin, A.B.; Perlovich, G.L. Novel cocrystals of the potent 1,2,4-thiadiazole-based neuroprotector with carboxylic acids: Virtual screening, crystal structures and solubility performance. New J. Chem. 2021, 45, 3034–3047. [Google Scholar] [CrossRef]
- Yang, D.; Cao, J.; Heng, T.; Xing, C.; Yang, S.; Zhang, L.; Lu, Y.; Du, G. Theoretical Calculation and Structural Analysis of the Cocrystals of Three Flavonols with Praziquantel. Cryst. Growth Des. 2021, 21, 2292–2300. [Google Scholar] [CrossRef]
- Delori, A.; Galek, P.T.A.; Pidcock, E.; Patni, M.; Jones, W. Knowledge-based hydrogen bond prediction and the synthesis of salts and cocrystals of the anti-malarial drug pyrimethamine with various drug and GRAS molecules. CrystEngComm 2013, 15, 2916–2928. [Google Scholar] [CrossRef]
- Delori, A.; Galek, P.T.A.; Pidcock, E.; Jones, W. Quantifying Homo- and Heteromolecular Hydrogen Bonds as a Guide for Adduct Formation. Chem.—A Eur. J. 2012, 18, 6835–6846. [Google Scholar] [CrossRef]
- Majumder, M.; Buckton, G.; Rawlinson-Malone, C.F.; Williams, A.C.; Spillman, M.J.; Pidcock, E.; Shankland, K. Application of hydrogen-bond propensity calculations to an indomethacin–nicotinamide (1:1) co-crystal. CrystEngComm 2013, 15, 4041–4044. [Google Scholar] [CrossRef]
- Wang, L.; Yan, Y.; Zhang, X.; Zhou, X. Novel pharmaceutical cocrystal of lenalidomide with nicotinamide: Structural design, evaluation, and thermal phase transition study. Int. J. Pharm. 2022, 613, 121394. [Google Scholar] [CrossRef]
- Habgood, M.; Deij, M.A.; Mazurek, J.; Price, S.L.; ter Horst, J.H. Carbamazepine Co-crystallization with Pyridine Carboxamides: Rationalization by Complementary Phase Diagrams and Crystal Energy Landscapes. Cryst. Growth Des. 2010, 10, 903–912. [Google Scholar] [CrossRef]
- Stepanovs, D.; Jure, M.r.; Kuleshova, L.N.; Hofmann, D.W.M.; Mishnev, A. Cocrystals of Pentoxifylline: In Silico and Experimental Screening. Cryst. Growth Des. 2015, 15, 3652–3660. [Google Scholar] [CrossRef]
- Karki, S.; Friščić, T.; Fábián, L.; Jones, W. New solid forms of artemisinin obtained through cocrystallisation. CrystEngComm 2010, 12, 4038–4041. [Google Scholar] [CrossRef]
- Cadden, J.; Klooster, W.T.; Coles, S.J.; Aitipamula, S. Cocrystals of Leflunomide: Design, Structural, and Physicochemical Evaluation. Cryst. Growth Des. 2019, 19, 3923–3933. [Google Scholar] [CrossRef]
- Alsubaie, M.; Aljohani, M.; Erxleben, A.; McArdle, P. Cocrystal Forms of the BCS Class IV Drug Sulfamethoxazole. Cryst. Growth Des. 2018, 18, 3902–3912. [Google Scholar] [CrossRef]
- Mohammad, M.A.; Alhalaweh, A.; Velaga, S.P. Hansen solubility parameter as a tool to predict cocrystal formation. Int. J. Pharm. 2011, 407, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Thimmasetty, J.; Ghosh, T.; Nayak, N.S.; Raheem, A. Oral Bioavailability Enhancement of Paliperidone by the use of Cocrystalization and Precipitation Inhibition. J. Pharm. Innov. 2021, 16, 160–169. [Google Scholar] [CrossRef]
- Su, M.; Xia, Y.; Shen, Y.; Heng, W.; Wei, Y.; Zhang, L.; Gao, Y.; Zhang, J.; Qian, S. A novel drug–drug coamorphous system without molecular interactions: Improve the physicochemical properties of tadalafil and repaglinide. RSC Adv. 2020, 10, 565–583. [Google Scholar] [CrossRef] [PubMed]
- Roca-Paixão, L.; Correia, N.T.; Affouard, F. Affinity prediction computations and mechanosynthesis of carbamazepine based cocrystals. CrystEngComm 2019, 21, 6991–7001. [Google Scholar] [CrossRef]
- Przybyłek, M.; Ziółkowska, D.; Mroczyńska, K.; Cysewski, P. Applicability of Phenolic Acids as Effective Enhancers of Cocrystal Solubility of Methylxanthines. Cryst. Growth Des. 2017, 17, 2186–2193. [Google Scholar] [CrossRef]
- Guidetti, M.; Hilfiker, R.; Kuentz, M.; Bauer-Brandl, A.; Blatter, F. Exploring the Cocrystal Landscape of Posaconazole by Combining High-Throughput Screening Experimentation with Computational Chemistry. Cryst. Growth Des. 2023, 23, 842–852. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wu, D.; Li, J.; Ji, X.; Qi, L.; Sun, Q.; Wang, A.; Xie, C.; Gong, J.; Chen, W. Multicomponent crystals of clotrimazole: A combined theoretical and experimental study. CrystEngComm 2021, 23, 6977–6993. [Google Scholar] [CrossRef]
- Li, J.; Wu, D.; Xiao, Y.; Li, C.; Ji, X.; Sun, Q.; Chang, D.; Zhou, L.; Jing, D.; Gong, J.; et al. Salts of 2-hydroxybenzylamine with improvements on solubility and stability: Virtual and experimental screening. Eur. J. Pharm. Sci. 2022, 169, 106091. [Google Scholar] [CrossRef] [PubMed]
- Gröls, J.R.; Castro-Dominguez, B. Mechanochemical co-crystallization: Insights and predictions. Comput. Chem. Eng. 2021, 153, 107416. [Google Scholar] [CrossRef]
- Wang, D.; Yang, Z.; Zhu, B.; Mei, X.; Luo, X. Machine-Learning-Guided Cocrystal Prediction Based on Large Data Base. Cryst. Growth Des. 2020, 20, 6610–6621. [Google Scholar] [CrossRef]
- Hao, Y.; Hung, Y.C.; Shimoyama, Y. Investigating Spatial Charge Descriptors for Prediction of Cocrystal Formation Using Machine Learning Algorithms. Cryst. Growth Des. 2022, 22, 6608–6615. [Google Scholar] [CrossRef]
- Gröls, J.R.; Castro-Dominguez, B. Intelligent Mechanochemical Design of Co-Amorphous Mixtures. Cryst. Growth Des. 2022, 22, 2989–2996. [Google Scholar] [CrossRef]
- Fink, E.; Brunsteiner, M.; Mitsche, S.; Schröttner, H.; Paudel, A.; Zellnitz-Neugebauer, S. Data-Driven Prediction of the Formation of Co-Amorphous Systems. Pharmaceutics 2023, 15, 347. [Google Scholar] [CrossRef]
- Wang, M.; Ma, Y.; Shi, P.; Du, S.; Wu, S.; Gong, J. Similar but Not the Same: Difference in the Ability to Form Cocrystals between Nimesulide and the Pyridine Analogues. Cryst. Growth Des. 2021, 21, 287–296. [Google Scholar] [CrossRef]
- Meng-Lund, H.; Kasten, G.; Jensen, K.T.; Poso, A.; Pantsar, T.; Rades, T.; Rantanen, J.; Grohganz, H. The use of molecular descriptors in the development of co-amorphous formulations. Eur. J. Pharm. Sci. 2018, 119, 31–38. [Google Scholar] [CrossRef]
- Childs, S.L.; Stahly, G.P.; Park, A. The Salt−Cocrystal Continuum: The Influence of Crystal Structure on Ionization State. Mol. Pharm. 2007, 4, 323–338. [Google Scholar] [CrossRef]
- Wu, D.; Li, J.; Xiao, Y.; Ji, X.; Li, C.; Zhang, B.; Hou, B.; Zhou, L.; Xie, C.; Gong, J.; et al. New Salts and Cocrystals of Pymetrozine with Improvements on Solubility and Humidity Stability: Experimental and Theoretical Study. Cryst. Growth Des. 2021, 21, 2371–2388. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, B.; Yao, Q.; Hou, B.; Zhou, L.; Xie, C.; Gong, J.; Hao, H.; Chen, W. Evaluation on Cocrystal Screening Methods and Synthesis of Multicomponent Crystals: A Case Study. Cryst. Growth Des. 2021, 21, 4531–4546. [Google Scholar] [CrossRef]
- Li, B.; Hu, Y.; Guo, Y.; Xu, R.; Fang, X.; Xiao, X.; Jiang, C.; Lu, S. Coamorphous System of Florfenicol-Oxymatrine for Improving the Solubility and Dissolution Rate of Florfenicol: Preparation, Characterization and Molecular Dynamics Simulation. J. Pharm. Sci. 2021, 110, 2544–2554. [Google Scholar] [CrossRef]
- Deng, Y.; Deng, W.; Huang, W.; Zheng, Z.; Zhang, R.; Liu, S.; Jiang, Y. Norfloxacin co-amorphous salt systems: Effects of molecular descriptors on the formation and physical stability of co-amorphous systems. Chem. Eng. Sci. 2022, 253, 117549. [Google Scholar] [CrossRef]
- Huang, K.-S.; Britton, D.; Etter, M.C.; Byrn, S.R. A novel class of phenol–pyridine co-crystals for second harmonic generation. J. Mater. Chem. 1997, 7, 713–720. [Google Scholar] [CrossRef]
- Kumar, A.; Nanda, A. In-silico methods of cocrystal screening: A review on tools for rational design of pharmaceutical cocrystals. J. Drug Deliv. Sci. Technol. 2021, 63, 102527. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, Y.; Xie, F.; Tang, J.; Zhang, R.; Yang, H.; Jiang, Y.; Liu, S. Minoxidil Multi-Component Crystals with Aromatic Carboxylic Acids: Theoretical Calculation and Structural Analysis. Cryst. Growth Des. 2022, 22, 3941–3953. [Google Scholar] [CrossRef]
- Cruz-Cabeza, A.J. Acid–base crystalline complexes and the pKa rule. CrystEngComm 2012, 14, 6362–6365. [Google Scholar] [CrossRef]
- Desiraju, G.R. Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis. Angew. Chem. Int. Ed. Engl. 1995, 34, 2311–2327. [Google Scholar] [CrossRef]
- Chadwick, K.; Sadiq, G.; Davey, R.J.; Seaton, C.C.; Pritchard, R.G.; Parkin, A. Designing Acid Acid Co-Crystals—The Use of Hammett Substitution Constants. Cryst. Growth Des. 2009, 9, 1278–1279. [Google Scholar] [CrossRef]
- Aakeröy, C.B.; Salmon, D.J. Building co-crystals with molecular sense and supramolecular sensibility. CrystEngComm 2005, 7, 439–448. [Google Scholar] [CrossRef]
- Saha, S.; Desiraju, G.R. Acid···Amide Supramolecular Synthon in Cocrystals: From Spectroscopic Detection to Property Engineering. J. Am. Chem. Soc. 2018, 140, 6361–6373. [Google Scholar] [CrossRef] [PubMed]
- Domingos, S.; André, V.; Quaresma, S.; Martins, I.C.B.; Minas da Piedade, M.F.; Duarte, M.T. New forms of old drugs: Improving without changing. J. Pharm. Pharmacol. 2015, 67, 830–846. [Google Scholar] [CrossRef] [PubMed]
- Ganie, A.A.; Rashid, S.; Ahangar, A.A.; Ismail, T.M.; Sajith, P.K.; Dar, A.A. Expanding the Scope of Hydroxyl-pyridine Supramolecular Synthon to Design Molecular Solids. Cryst. Growth Des. 2022, 22, 1972–1983. [Google Scholar] [CrossRef]
- Babu, N.J.; Reddy, L.S.; Nangia, A. Amide−N-Oxide Heterosynthon and Amide Dimer Homosynthon in Cocrystals of Carboxamide Drugs and Pyridine N-Oxides. Mol. Pharm. 2007, 4, 417–434. [Google Scholar] [CrossRef]
- Goud, N.R.; Babu, N.J.; Nangia, A. Sulfonamide−Pyridine-N-oxide Cocrystals. Cryst. Growth Des. 2011, 11, 1930–1939. [Google Scholar] [CrossRef]
- Bolla, G.; Mittapalli, S.; Nangia, A. Celecoxib cocrystal polymorphs with cyclic amides: Synthons of a sulfonamide drug with carboxamide coformers. CrystEngComm 2014, 16, 24–27. [Google Scholar] [CrossRef]
- Musumeci, D.; Hunter, C.A.; Prohens, R.; Scuderi, S.; McCabe, J.F. Virtual cocrystal screening. Chem. Sci. 2011, 2, 883–890. [Google Scholar] [CrossRef]
- Hunter, C.A. Quantifying Intermolecular Interactions: Guidelines for the Molecular Recognition Toolbox. Angew. Chem. Int. Ed. 2004, 43, 5310–5324. [Google Scholar] [CrossRef]
- Aakeröy, C.B.; Desper, J.; Smith, M.M. Constructing, deconstructing, and reconstructing ternary supermolecules. Chem. Commun. 2007, 38, 3936–3938. [Google Scholar] [CrossRef]
- Grecu, T.; Hunter, C.A.; Gardiner, E.J.; McCabe, J.F. Validation of a Computational Cocrystal Prediction Tool: Comparison of Virtual and Experimental Cocrystal Screening Results. Cryst. Growth Des. 2014, 14, 165–171. [Google Scholar] [CrossRef]
- Etter, M.C. Hydrogen bonds as design elements in organic chemistry. J. Phys. Chem. 1991, 95, 4601–4610. [Google Scholar] [CrossRef]
- Pagliari, A.B.; Meyer, A.R.; Solner, V.B.; Rosa, J.M.L.; Hörner, M.; Bonacorso, H.G.; Zanatta, N.; Martins, M.A.P. Effect of hydrogen bonds and π⋯π interactions on the crystallization of phenyl-perfluorophenyl amides: Understanding the self-organization of a cocrystal. CrystEngComm 2022, 24, 5348–5363. [Google Scholar] [CrossRef]
- Yeo, C.I.; Tan, Y.S.; Kwong, H.C.; Lee, V.S.; Tiekink, E.R.T. I⋯N halogen bonding in 1:1 co-crystals formed between 1,4-diiodotetrafluorobenzene and the isomeric n-pyridinealdazines (n = 2, 3 and 4): Assessment of supramolecular association and influence upon solid-state photoluminescence properties. CrystEngComm 2022, 24, 7579–7591. [Google Scholar] [CrossRef]
- Wzgarda-Raj, K.; Palusiak, M.; Wojtulewski, S.; Rybarczyk-Pirek, A.J. The role of sulfur interactions in crystal architecture: Experimental and quantum theoretical studies on hydrogen, halogen, and chalcogen bonds in trithiocyanuric acid–pyridine N-oxide co-crystals. CrystEngComm 2021, 23, 324–334. [Google Scholar] [CrossRef]
- Galek, P.T.A.; Allen, F.H.; Fábián, L.; Feeder, N. Knowledge-based H-bond prediction to aid experimental polymorph screening. CrystEngComm 2009, 11, 2634–2639. [Google Scholar] [CrossRef]
- Cheney, M.L.; Shan, N.; Healey, E.R.; Hanna, M.; Wojtas, L.; Zaworotko, M.J.; Sava, V.; Song, S.; Sanchez-Ramos, J.R. Effects of Crystal Form on Solubility and Pharmacokinetics: A Crystal Engineering Case Study of Lamotrigine. Cryst. Growth Des. 2010, 10, 394–405. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, N.; Sinha, A.S.; Aakeröy, C.B. Systematic investigation of hydrogen-bond propensities for informing co-crystal design and assembly. CrystEngComm 2019, 21, 6048–6055. [Google Scholar] [CrossRef]
- Sarkar, N.; Gonnella, N.C.; Krawiec, M.; Xin, D.; Aakeröy, C.B. Evaluating the Predictive Abilities of Protocols Based on Hydrogen-Bond Propensity, Molecular Complementarity, and Hydrogen-Bond Energy for Cocrystal Screening. Cryst. Growth Des. 2020, 20, 7320–7327. [Google Scholar] [CrossRef]
- Wood, P.A.; Feeder, N.; Furlow, M.; Galek, P.T.A.; Groom, C.R.; Pidcock, E. Knowledge-based approaches to co-crystal design. CrystEngComm 2014, 16, 5839–5848. [Google Scholar] [CrossRef]
- Taylor, C.R.; Day, G.M. Evaluating the Energetic Driving Force for Cocrystal Formation. Cryst. Growth Des. 2018, 18, 892–904. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.C.S.; Kendrick, J.; Neumann, M.A.; Leusen, F.J.J. Towards ab initio screening of co-crystal formation through lattice energy calculations and crystal structure prediction of nicotinamide, isonicotinamide, picolinamide and paracetamol multi-component crystals. CrystEngComm 2013, 15, 3799–3807. [Google Scholar] [CrossRef]
- Vener, M.V.; Levina, E.O.; Koloskov, O.A.; Rykounov, A.A.; Voronin, A.P.; Tsirelson, V.G. Evaluation of the Lattice Energy of the Two-Component Molecular Crystals Using Solid-State Density Functional Theory. Cryst. Growth Des. 2014, 14, 4997–5003. [Google Scholar] [CrossRef]
- Hofmann, D.W.M.; Apostolakis, J. Crystal structure prediction by data mining. J. Mol. Struct. 2003, 647, 17–39. [Google Scholar] [CrossRef]
- Hoser, A.A.; Kamiński, D.M.; Matwijczuk, A.; Niewiadomy, A.; Gagoś, M.; Woźniak, K. On polymorphism of 2-(4-fluorophenylamino)-5-(2,4-dihydroxybenzeno)-1,3,4-thiadiazole (FABT) DMSO solvates. CrystEngComm 2013, 15, 1978–1988. [Google Scholar] [CrossRef]
- Dominiak, P.; Espinosa, E.; Ángyán, J. Modern Charge-Density Analysis; Springer: Berlin/Heidelberg, Germany, 2011; pp. 387–433. [Google Scholar]
- Kuleshova, L.N.; Hofmann, D.W.M.; Boese, R. Lattice energy calculation—A quick tool for screening of cocrystals and estimation of relative solubility. Case of flavonoids. Chem. Phys. Lett. 2013, 564, 26–32. [Google Scholar] [CrossRef]
- Sun, G.; Jin, Y.; Li, S.; Yang, Z.; Shi, B.; Chang, C.; Abramov, Y.A. Virtual Coformer Screening by Crystal Structure Predictions: Crucial Role of Crystallinity in Pharmaceutical Cocrystallization. J. Phys. Chem. Lett. 2020, 11, 8832–8838. [Google Scholar] [CrossRef]
- Surov, A.O.; Voronin, A.P.; Vasilev, N.A.; Churakov, A.V.; Perlovich, G.L. Cocrystals of Fluconazole with Aromatic Carboxylic Acids: Competition between Anhydrous and Hydrated Solid Forms. Cryst. Growth Des. 2020, 20, 1218–1228. [Google Scholar] [CrossRef]
- Fábián, L. Cambridge Structural Database Analysis of Molecular Complementarity in Cocrystals. Cryst. Growth Des. 2009, 9, 1436–1443. [Google Scholar] [CrossRef]
- Pallipurath, A.R.; Civati, F.; Eziashi, M.; Omar, E.; McArdle, P.; Erxleben, A. Tailoring Cocrystal and Salt Formation and Controlling the Crystal Habit of Diflunisal. Cryst. Growth Des. 2016, 16, 6468–6478. [Google Scholar] [CrossRef]
- Li, J.; Li, C.; Ji, X.; Sun, Q.; Li, Z.; Liu, H.; Zhou, L.; Jing, D.; Gong, J.; Chen, W. Combined virtual and experimental screening of multicomponent crystals of 2,4-dichlorophenoxyacetic acid. New J. Chem. 2022, 46, 8708–8719. [Google Scholar] [CrossRef]
- Hildebrand, J.H.; Scott, R.L. The Solubility of Nonelectrolytes; Reinhold Publishing Corporation: New York, NY, USA, 1950. [Google Scholar]
- Desai, P.P.; Patravale, V.B. Curcumin Cocrystal Micelles—Multifunctional Nanocomposites for Management of Neurodegenerative Ailments. J. Pharm. Sci. 2018, 107, 1143–1156. [Google Scholar] [CrossRef]
- Hancock, B.C.; York, P.; Rowe, R.C. The use of solubility parameters in pharmaceutical dosage form design. Int. J. Pharm. 1997, 148, 1–21. [Google Scholar] [CrossRef]
- Hansen, C. Three Dimensional Solubility Parameter and Solvent Diffusion Coefficient. Importance in Surface Coating Formulation; Danish Technical Press: København, Denmark, 1967. [Google Scholar]
- van Krevelen, D.W.F.; Hoftyzer, P.J. Properties of Polymers, Their Estimation and Correlation with Chemical Structure; Elsevier: Amsterdam, The Netherlands, 1972. [Google Scholar]
- Greenhalgh, D.J.; Williams, A.C.; Timmins, P.; York, P. Solubility parameters as predictors of miscibility in solid dispersions. J. Pharm. Sci. 1999, 88, 1182–1190. [Google Scholar] [CrossRef]
- Bagley, E.B.; Nelson, T.P.; Scigliano, J.M. Three-Dimensional Solubility Parameters and Their Relationship to Internal Pressure Measurements in Polar and Hydrogen Bonding Solvents. J. Paint. Technol. 1971, 43, 35–42. [Google Scholar]
- Manin, A.N.; Drozd, K.V.; Surov, A.O.; Churakov, A.V.; Volkova, T.V.; Perlovich, G.L. Identification of a previously unreported co-crystal form of acetazolamide: A combination of multiple experimental and virtual screening methods. Phys. Chem. Chem. Phys. 2020, 22, 20867–20879. [Google Scholar] [CrossRef]
- Breitkreutz, J. Prediction of intestinal drug absorption properties by three-dimensional solubility parameters. Pharm Res 1998, 15, 1370–1375. [Google Scholar] [CrossRef]
- Basavoju, S.; Boström, D.; Velaga, S.P. Indomethacin-saccharin cocrystal: Design, synthesis and preliminary pharmaceutical characterization. Pharm. Res. 2008, 25, 530–541. [Google Scholar] [CrossRef]
- Repka, M.A.; Bandari, S.; Kallakunta, V.R.; Vo, A.Q.; McFall, H.; Pimparade, M.B.; Bhagurkar, A.M. Melt extrusion with poorly soluble drugs—An integrated review. Int. J. Pharm. 2018, 535, 68–85. [Google Scholar] [CrossRef]
- Van Krevelen, D.W. Properties of Polymers, 3rd ed.; Van Krevelen, D.W., Ed.; Elsevier: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Vebber, G.C.; Pranke, P.; Pereira, C.N. Calculating hansen solubility parameters of polymers with genetic algorithms. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Mihalovits, M. Determination of the Hansen solubility parameters from solubility data using an improved evaluation approach, the concentric spheroids method. J. Mol. Liq. 2022, 364, 119911. [Google Scholar] [CrossRef]
- Klamt, A. The COSMO and COSMO-RS solvation models. WIREs Comput. Mol. Sci. 2018, 8, e1338. [Google Scholar] [CrossRef]
- Loschen, C.; Klamt, A. Solubility prediction, solvate and cocrystal screening as tools for rational crystal engineering. J. Pharm. Pharmacol. 2015, 67, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Klamt, A.; Leonhard, K. Validation of the COSMO-RS electrostatics by Monte-Carlo simulations. Fluid Phase Equilibria 2007, 261, 162–167. [Google Scholar] [CrossRef]
- Sülzner, N.; Haberhauer, J.; Hättig, C.; Hellweg, A. Prediction of acid pKa values in the solvent acetone based on COSMO-RS. J. Comput. Chem. 2022, 43, 1011–1022. [Google Scholar] [CrossRef] [PubMed]
- Eckert, F.; Klamt, A. Fast solvent screening via quantum chemistry: COSMO-RS approach. AIChE J. 2002, 48, 369–385. [Google Scholar] [CrossRef]
- Buggert, M.; Cadena, C.; Mokrushina, L.; Smirnova, I.; Maginn, E.J.; Arlt, W. COSMO-RS Calculations of Partition Coefficients: Different Tools for Conformation Search. Chem. Eng. Technol. 2009, 32, 977–986. [Google Scholar] [CrossRef]
- Loschen, C.; Klamt, A. New Developments in Prediction of Solid-State Solubility and Cocrystallization Using COSMO-RS Theory. In Computational Pharmaceutical Solid State Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 211–233. [Google Scholar]
- Alhadid, A.; Jandl, C.; Mokrushina, L.; Minceva, M. Nonideality and cocrystal formation in l-menthol/xylenol eutectic systems. J. Mol. Liq. 2022, 367, 120582. [Google Scholar] [CrossRef]
- Alhadid, A.; Jandl, C.; Mokrushina, L.; Minceva, M. Cocrystal Formation in l-Menthol/Phenol Eutectic System: Experimental Study and Thermodynamic Modeling. Cryst. Growth Des. 2022, 22, 3973–3980. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, Z.; Guo, J.; Li, H.; Liu, Y.; Guo, Y.; Li, M.; Pu, X. Coupling complementary strategy to flexible graph neural network for quick discovery of coformer in diverse co-crystal materials. Nat. Commun. 2021, 12, 5950. [Google Scholar] [CrossRef] [PubMed]
- Heng, T.; Yang, D.; Wang, R.; Zhang, L.; Lu, Y.; Du, G. Progress in Research on Artificial Intelligence Applied to Polymorphism and Cocrystal Prediction. ACS Omega 2021, 6, 15543–15550. [Google Scholar] [CrossRef] [PubMed]
- Wicker, J.G.P.; Crowley, L.M.; Robshaw, O.; Little, E.J.; Stokes, S.P.; Cooper, R.I.; Lawrence, S.E. Will they co-crystallize? CrystEngComm 2017, 19, 5336–5340. [Google Scholar] [CrossRef]
- Barmpalexis, P.; Karagianni, A.; Nikolakakis, I.; Kachrimanis, K. Artificial neural networks (ANNs) and partial least squares (PLS) regression in the quantitative analysis of cocrystal formulations by Raman and ATR-FTIR spectroscopy. J. Pharm. Biomed. Anal. 2018, 158, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Przybyłek, M.; Jeliński, T.; Słabuszewska, J.; Ziółkowska, D.; Mroczyńska, K.; Cysewski, P. Application of Multivariate Adaptive Regression Splines (MARSplines) Methodology for Screening of Dicarboxylic Acid Cocrystal Using 1D and 2D Molecular Descriptors. Cryst. Growth Des. 2019, 19, 3876–3887. [Google Scholar] [CrossRef]
- Devogelaer, J.-J.; Meekes, H.; Tinnemans, P.; Vlieg, E.; de Gelder, R. Co-crystal Prediction by Artificial Neural Networks. Angew. Chem. Int. Ed. 2020, 59, 21711–21718. [Google Scholar] [CrossRef]
- Chambers, L.I.; Grohganz, H.; Palmelund, H.; Löbmann, K.; Rades, T.; Musa, O.M.; Steed, J.W. Predictive identification of co-formers in co-amorphous systems. Eur. J. Pharm. Sci. 2021, 157, 105636. [Google Scholar] [CrossRef]
- ter Horst, J.H.; Deij, M.A.; Cains, P.W. Discovering New Co-Crystals. Cryst. Growth Des. 2009, 9, 1531–1537. [Google Scholar] [CrossRef]
Prediction Method | System | API | Co-Former | Preparation Method | Key Findings | Ref. |
---|---|---|---|---|---|---|
MEPs (only for multicomponent crystal forms) | multicomponent crystal forms | 5,5′-di(pyridin-3-yl)-2,2′-bithiophene, 5,5′-di(pyridin-4-yl)-2,2′-bithiophene (T2) | 7 aromatic and one aliphatic acid | liquid-assisted grinding |
| [34] |
multicomponent crystal forms | kaempferol, quercetin, myricetin | praziquantel | suspension-stirring |
| [38] | |
multicomponent crystal forms | spironolactone, griseofulvin | 4-tert-butylpheno, phenol, 2,5-xylenol | liquid-assisted grinding |
| [35] | |
multicomponent crystal forms | resveratrol | 4,4′-bipyridine, piperazine, phenazine, 1,10-phenanthroline, 1,4-diazabicyclo [2.2.2]octane, methenamine, acridine, succinimide, N,N-dimethyl-4-aminopyridine | solvent evaporation |
| [36] | |
multicomponent crystal forms | 1,2,4-thiadiazole derivative (TDZH) | 6 acids: oxalic, maleic, fumaric, adipic, vanillic and gallic | liquid-assisted grinding, solvent evaporation |
| [37] | |
supramolecular synthon (only for multicomponent crystal forms) | multicomponent crystal forms | 5-fluorocytosine | sarcosine, dimethylglycine | liquid-assisted grinding |
| [29] |
multicomponent crystal forms | sulfadimethoxine | isonicotinamide, 4,4′-bipyridine, piperazine, 4,4′-trimethylenedipiperidine, 1,4-diazabicyclo [2.2.2]octane | liquid-assisted grinding, solvent evaporation |
| [30] | |
multicomponent crystal forms | regorafenib | malonic acid, glutaric acid, pimelic acid | liquid-assisted grinding |
| [31] | |
multicomponent crystal forms | nicotinamide, isonicotinamide | 3,5-pyrazole dicarboxylic acid, dipicolinic acid, quinolinic acid | solvent evaporation |
| [32] | |
multicomponent crystal forms | diclofenac | 4,4′-bipyridine; 1,2-bis(4-pyridyl)ethane; 1,2-bis(4-pyridyl)propane; 2-aminopyridine, 3-aminopyridine, 4-aminopyridine, ethylenediamine | liquid-assisted grinding, solvent evaporation |
| [33] | |
HBP (only for multicomponent crystal forms) | multicomponent crystal forms | pyrimethamine | carbamazepine, theophylline, aspirin, α-ketoglutaric acid, saccharin, p-coumaric acid | solvent evaporation |
| [39] |
multicomponent crystal forms | pyrimethamine | oxalic acid, malonic acid, acetylenedicarboxylic acid, adipic acid, pimelic acid, suberic acid, azelaic acid | solvent evaporation |
| [40] | |
multicomponent crystal forms | indomethacin | nicotinamide | milling |
| [41] | |
multicomponent crystal forms | lenalidomide | nicotinamide | solid-state/liquid-assisted grinding |
| [42] | |
ΔpKa rule (only for multi-component crystal forms) | multicomponent crystal forms | paracetamol | trans-1,4-diaminocyclohexane, 1,2-bis(4-pyridyl)ethane, 1,2-di(4-pyridyl)ethylene | liquid-assisted grinding, solvent evaporation |
| [24] |
multi-component crystal forms | 2-chloro-4-nitrobenzoic acid | 2-bromopyridine, 3-amino-2-bromopyridine, 3-amino-2-chloropyridine, 2-amino-5-nitropyridine, 2-amino-3-bromopyridine, 2-chloro-3-hydroxypyridine, 2-amino-5-bromopyridine, 2-amino-5-chloropyridine, 2,6-dimethylpyridine | solvent evaporation |
| [25] | |
multicomponent crystal forms | baicalein | dicotinamide | solvent evaporation, rotary evaporation, and cogrinding. |
| [26] | |
multicomponent crystal forms | AMG 517 | 10 acids: benzoic, trans-cinnamic, 2,5-dihydroxybenzoic, glutaric, glycolic, trans-2-hexanoic, 2-hydroxycaproic, l(+)-lactic, sorbic acid, l(+)-tartaric | slow cooling and solvent evaporation |
| [27] | |
multicomponent crystal forms | 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 3-hydroxypyridine | pyrazine, 4-phenylpyridine, 1.2-bis(4-pyridyl)ethane, 4.4-bipyridine, quinoxaline, tetramethylpyrazine, trans-1,2-bis(4pyridyl)ethane, benzoic acid, isophthalic acid, | grinding, solvent-drop grinding, solvent-drop grinding |
| [28] |
Prediction Method | System | API | Co-former | Preparation Method | Key Findings | Ref. |
---|---|---|---|---|---|---|
HSP (for both multicomponent crystal forms and co-amorphous systems) | multicomponent crystal forms | indomethacin | nicotinamide, saccharin, 4,4′-bipyridine cinnamic acid | liquid-assisted grinding, reaction crystallization |
| [48] |
multicomponent crystal forms | paliperidone | benzamide, nicotinamide, para hydroxy benzoic acid | solvent evaporation |
| [49] | |
co-amorphous | tadalafil | repaglinide | solvent evaporation |
| [50] | |
co-amorphous | florfenicol | oxymatrine | solvent evaporation |
| [66] | |
co-amorphous | norfloxacin | saccharin, naproxen, indomethacin, l-phenylalanine, l-arginine, l-tryptophan | dry ball mill |
| [67] | |
COSMO-RS (only for multicomponent crystal forms) | multicomponent crystal forms | carbamazepine | dl-mandelic acid, dl-tartaric acid, indomethacin | liquid-assisted grinding |
| [51] |
multicomponent crystal forms | caffeine, theophylline | 8 phenolic acids | liquid-assisted grinding |
| [52] | |
multicomponent crystal forms | posaconazole | 4-aminobenzoic acid, l-malic acid, succinic acid, fumaric acid, ferulic acid, maleic acid, citric acid, l-hydroxy-2-naphthoic acid, gentisic acid, salicylic acid, l-lactic acid, adipic acid, 3,4-dihydroxybenzoic acid | high-throughput slurry, liquid-assisted grinding, reaction crystallization |
| [53] | |
multicomponent crystal forms | clotrimazole | 3,5-dinitrosalicylic acid, 3,5-dinitrobenzoic acid indole-6-carboxylic acid, syringic acid, 3-nitrobenzoic acid, 1,4-naphthalenedicarboxylic acid, pyromellitic acid, 2,3-dihydroxybenzoic acid, 1,2,4-benzenetricarboxylic acid | liquid-assisted grinding, slurry suspension, solvent evaporation |
| [54] | |
multicomponent crystal forms | 2-hydroxybenzylamine | succinic acid, p-aminobenzoic acid, p-nitrobenzoic acid, o-nitrobenzoic acid, p-toluic acid, 2,3-dihydroxybenzoic acid, 3,4-dihydroxybenzoic acid, p-nitrophenol, 5-hydroxyisophthalic acid | liquid-assisted grinding |
| [55] | |
MC (only for multi-component crystal forms) | multicomponent crystal forms | artemisinin | resorcinol, orcinol | liquid-assisted grinding |
| [45] |
multicomponent crystal forms | leflunomide | pyrogallol, 3-hydroxybenzoic acid, 2-picolinic acid, 2-aminopyrimidine | liquid-assisted grinding |
| [46] | |
co-amorphous and multi-component crystal forms | sulfamethoxazole | acetamide, propionamide, isonicotinamide, 2-hydroxypyridine, pyrazine, imidazole, oxalic acid dihydrate, N-hydroxysuccinimide, 1,2-di(4-pyridyl)ethylene, 1,2-di(4-pyridyl)ethylene, 1,3-di(4-pyridyl)propane, 4,4′-bipyridine, 4-phenylpyridine, benzamidine, carbamazepine, deoxycholic acid, hexamethylenetetramine, sodium deoxycholate | neat grinding, solvent evaporation |
| [47] | |
lattice energy (only for multicomponent crystal forms) | multicomponent crystal forms | carbamazepine | isonicotinamide | cooling crystallization, slurry |
| [43] |
multi-component crystals | pentoxifylline | aspirin, salicylic acid, benzoic acid | neat and liquid-assisted grinding, solvent evaporation |
| [44] | |
Artificial intelligence (for both multicomponent crystal forms and co-amorphous systems) | multicomponent crystal forms | diclofenac | iIsonicotinamide, 2-pyrrolidinone, 4,4′-Bipyridine. | neat grinding |
| [56] |
multicomponent crystal forms | captopril | l-proline, sarcosine | liquid-assisted grinding |
| [57] | |
multicomponent crystal forms | norfloxacin | nicotinamide, 4,4′-vinylenedipyridine | neat grinding |
| [58] | |
co-amorphous | folic acid | nicotinamide, l-isoleucine, anthranilic acid, citric acid, theophylline, theobromine. | neat grinding |
| [59] | |
co-amorphous | glycopyrronium bromide | budesonide, ethambutol | neat grinding |
| [60] | |
multicomponent crystal forms | nimesulide | 4,4′-bipyridine, trans-1,2-bis(4-pyridyl)ethylene, 1,2-bis(4-pyridyl)ethyne, 1,2-bis(4-pyridyl)ethane | liquid-assisted grinding, slurry |
| [61] | |
co-amorphous | carvedilol, mebendazole, carbamazepine, furosemide, indomethacin, simvastatin | 20 natural amino acids | neat grinding |
| [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Liu, S.; Jiang, Y.; Martins, I.C.B.; Rades, T. Recent Advances in Co-Former Screening and Formation Prediction of Multicomponent Solid Forms of Low Molecular Weight Drugs. Pharmaceutics 2023, 15, 2174. https://doi.org/10.3390/pharmaceutics15092174
Deng Y, Liu S, Jiang Y, Martins ICB, Rades T. Recent Advances in Co-Former Screening and Formation Prediction of Multicomponent Solid Forms of Low Molecular Weight Drugs. Pharmaceutics. 2023; 15(9):2174. https://doi.org/10.3390/pharmaceutics15092174
Chicago/Turabian StyleDeng, Yuehua, Shiyuan Liu, Yanbin Jiang, Inês C. B. Martins, and Thomas Rades. 2023. "Recent Advances in Co-Former Screening and Formation Prediction of Multicomponent Solid Forms of Low Molecular Weight Drugs" Pharmaceutics 15, no. 9: 2174. https://doi.org/10.3390/pharmaceutics15092174
APA StyleDeng, Y., Liu, S., Jiang, Y., Martins, I. C. B., & Rades, T. (2023). Recent Advances in Co-Former Screening and Formation Prediction of Multicomponent Solid Forms of Low Molecular Weight Drugs. Pharmaceutics, 15(9), 2174. https://doi.org/10.3390/pharmaceutics15092174