Repurposable Drugs for Immunotherapy and Strategies to Find Candidate Drugs
Abstract
:1. Introduction
2. Drug Repurposing
3. Repurposing Drugs for Immunotherapy
3.1. Rapamycin
3.2. Metoformin
3.3. Pentostatin
3.4. MSDC-0160
3.5. Aspirin
3.6. Celecoxib
3.7. Niclosamide
3.8. Denosumab
3.9. Riluzole
3.10. Digoxin
4. Discovery of Repurposing Drugs on the Basis of Gene Expression Analyses
4.1. Vorinostat
4.2. Mocetinostat
4.3. Menadione
4.4. Letrozole
5. Discussion
5.1. Methodology for Searching for New Repurposing Drugs
5.1.1. Based on Clinical Big Data for Original Indication
5.1.2. In Silico Approach
5.1.3. Comprehensive Analysis In Vitro or In Vivo
5.2. Usefulness of Repurposing Drugs in Immunotherapy
5.3. Usefulness of Examining Changes in Gene Expression
5.3.1. The Role of Examining Gene Expression in Searching for New Repurposing Drugs
5.3.2. Cancer Drug Screening from the Perspective of Genetic Alteration
5.3.3. Discovery of New Repurposing Drugs Using Chimeric Mice Gene Expression Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Finck, A.V.; Blanchard, T.; Roselle, C.P.; Golinelli, G.; June, C.H. Engineered cellular immunotherapies in cancer and beyond. Nat. Med. 2022, 28, 678–689. [Google Scholar] [CrossRef]
- Oliveira, G.; Wu, C.J. Dynamics and specificities of T cells in cancer immunotherapy. Nat. Rev. Cancer 2023, 23, 295–316. [Google Scholar] [CrossRef]
- Yang, K.; Halima, A.; Chan, T.A. Antigen presentation in cancer—Mechanisms and clinical implications for immunotherapy. Nat. Rev. Clin. Oncol. 2023, 20, 604–623. [Google Scholar] [CrossRef]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef]
- Tambuyzer, E.; Vandendriessche, B.; Austin, C.P.; Brooks, P.J.; Larsson, K.; Miller Needleman, K.I.; Valentine, J.; Davies, K.; Groft, S.C.; Preti, R.; et al. Therapies for rare diseases: Therapeutic modalities, progress and challenges ahead. Nat. Rev. Drug Discov. 2020, 19, 93–111. [Google Scholar] [CrossRef]
- Ioakeim-Skoufa, I.; Tobajas-Ramos, N.; Menditto, E.; Aza-Pascual-Salcedo, M.; Gimeno-Miguel, A.; Orlando, V.; González-Rubio, F.; Fanlo-Villacampa, A.; Lasala-Aza, C.; Ostasz, E.; et al. Drug Repurposing in Oncology: A Systematic Review of Randomized Controlled Clinical Trials. Cancers 2023, 15, 2972. [Google Scholar] [CrossRef]
- Li, G.; Hilgenfeld, R.; Whitley, R.; De Clercq, E. Therapeutic strategies for COVID-19: Progress and lessons learned. Nat. Rev. Drug Discov. 2023, 22, 449–475. [Google Scholar] [CrossRef]
- Meganck, R.M.; Baric, R.S. Developing therapeutic approaches for twenty-first-century emerging infectious viral diseases. Nat. Med. 2021, 27, 401–410. [Google Scholar] [CrossRef]
- Abdelsayed, M.; Kort, E.J.; Jovinge, S.; Mercola, M. Repurposing drugs to treat cardiovascular disease in the era of precision medicine. Nat. Rev. Cardiol. 2022, 19, 751–764. [Google Scholar] [CrossRef]
- Ballard, C.; Aarsland, D.; Cummings, J.; O’Brien, J.; Mills, R.; Molinuevo, J.L.; Fladby, T.; Williams, G.; Doherty, P.; Corbett, A.; et al. Drug repositioning and repurposing for Alzheimer disease. Nat. Rev. Neurol. 2020, 16, 661–673. [Google Scholar] [CrossRef]
- Kingsmore, K.M.; Grammer, A.C.; Lipsky, P.E. Drug repurposing to improve treatment of rheumatic autoimmune inflammatory diseases. Nat. Rev. Rheumatol. 2020, 16, 32–52. [Google Scholar] [CrossRef] [PubMed]
- Low, Z.; Lani, R.; Tiong, V.; Poh, C.; AbuBakar, S.; Hassandarvish, P. COVID-19 Therapeutic Potential of Natural Products. Int. J. Mol. Sci. 2023, 24, 9589. [Google Scholar] [CrossRef] [PubMed]
- Reay, W.R.; Cairns, M.J. Advancing the use of genome-wide association studies for drug repurposing. Nat. Rev. Genet. 2021, 22, 658–671. [Google Scholar] [CrossRef] [PubMed]
- Bevacqua, M.; Baldo, F.; Pastore, S.; Valencic, E.; Tommasini, A.; Maestro, A.; Rabusin, M.; Arbo, A.; Barbi, E. Off-label use of sirolimus and everolimus in a pediatric center: A case series and review of the literature. Pediatr. Drugs 2019, 21, 185–193. [Google Scholar] [CrossRef]
- Teachey, D.T.; Obzut, D.A.; Axsom, K.; Choi, J.K.; Goldsmith, K.C.; Hall, J.; Hulitt, J.; Manno, C.S.; Maris, J.M.; Rhodin, N.; et al. Rapamycin improves lymphoproliferative disease in murine autoimmune lymphoproliferative syndrome (ALPS). Blood 2006, 108, 1965–1971. [Google Scholar] [CrossRef]
- Kasznicki, J.; Sliwinska, A.; Drzewoski, J. Metformin in cancer prevention and therapy. Ann. Transl. Med. 2014, 2, 57. [Google Scholar] [CrossRef]
- Ahn, H.K.; Lee, Y.H.; Koo, K.C. Current status and application of metformin for prostate cancer: A comprehensive review. Int. J. Mol. Sci. 2020, 21, 8540. [Google Scholar] [CrossRef]
- Zakikhani, M.; Dowling, R.; Fantus, I.G.; Sonenberg, N.; Pollak, M. Metformin is an amp kinase-dependent growth inhibitor for breast cancer cells. Cancer Res. 2006, 66, 10269–10273. [Google Scholar] [CrossRef]
- Grever, M.R.; Abdel-Wahab, O.; Andritsos, L.A.; Banerji, V.; Barrientos, J.; Blachly, J.S.; Call, T.G.; Catovsky, D.; Dearden, C.; Demeter, J.; et al. Consensus guidelines for the diagnosis and management of patients with classic hairy cell leukemia. Blood 2017, 129, 553–560. [Google Scholar] [CrossRef]
- Johnston, J.B. Mechanism of action of pentostatin and cladribine in hairy cell leukemia. Leuk. Lymphoma 2011, 52 (Suppl. S2), 43–45. [Google Scholar] [CrossRef]
- Mallet, D.; Goutaudier, R.; Barbier, E.L.; Carnicella, S.; Colca, J.R.; Fauvelle, F.; Boulet, S. Re-routing metabolism by the mitochondrial pyruvate carrier inhibitor MSDC-0160 attenuates neurodegeneration in a rat model of Parkinson’s disease. Mol. Neurobiol. 2022, 59, 6170–6182. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Tyson, T.; George, S.; Hildebrandt, E.N.; Steiner, J.A.; Madaj, Z.; Schulz, E.; Machiela, E.; McDonald, W.G.; Escobar Galvis, M.L.; et al. Mitochondrial pyruvate carrier regulates autophagy, inflammation, and neurodegeneration in experimental models of Parkinson’s disease. Sci. Transl. Med. 2016, 8, 368ra174. [Google Scholar] [CrossRef]
- Riesenberg, B.P.; Ansa-Addo, E.A.; Gutierrez, J.; Timmers, C.D.; Liu, B.; Li, Z. Cutting Edge: Targeting Thrombocytes to Rewire Anticancer Immunity in the Tumor Microenvironment and Potentiate Efficacy of PD-1 Blockade. J. Immunol. 2019, 203, 1105–1110. [Google Scholar] [CrossRef]
- Gilligan, M.M.; Gartung, A.; Sulciner, M.L.; Norris, P.C.; Sukhatme, V.P.; Bielenberg, D.R.; Huang, S.; Kieran, M.W.; Serhan, C.N.; Panigrahy, D. Aspirin-triggered proresolving mediators stimulate resolution in cancer. Proc. Natl. Acad. Sci. USA 2019, 116, 6292–6297. [Google Scholar] [CrossRef] [PubMed]
- De Jaeghere, E.A.; Tuyaerts, S.; Van Nuffel, A.M.T.; Belmans, A.; Bogaerts, K.; Baiden-Amissah, R.; Lippens, L.; Vuylsteke, P.; Henry, S.; Trinh, X.B.; et al. Pembrolizumab, radiotherapy, and an immunomodulatory five-drug cocktail in pretreated patients with persistent, recurrent, or metastatic cervical or endometrial carcinoma: Results of the phase II PRIMMO study. Cancer Immunol. Immunother. 2023, 72, 475–491. [Google Scholar] [CrossRef]
- Meyerhardt, J.A.; Shi, Q.; Fuchs, C.S.; Meyer, J.; Niedzwiecki, D.; Zemla, T.; Kumthekar, P.; Guthrie, K.A.; Couture, F.; Kuebler, P.; et al. Effect of Celecoxib vs Placebo Added to Standard Adjuvant Therapy on Disease-Free Survival Among Patients with Stage III Colon Cancer: The CALGB/SWOG 80702 (Alliance) Randomized Clinical Trial. JAMA 2021, 325, 1277–1286. [Google Scholar] [CrossRef] [PubMed]
- Jänne, P.A.; Mayer, R.J. Chemoprevention of colorectal cancer. N. Engl. J. Med. 2000, 342, 1960–1968. [Google Scholar] [CrossRef]
- Liu, J.; Ding, H.; Quan, H.; Han, J. Anthelminthic niclosamide inhibits tumor growth and invasion in cisplatin-resistant human epidermal growth factor receptor 2-positive breast cancer. Oncol. Lett. 2021, 22, 666. [Google Scholar] [CrossRef]
- Chien, M.H.; Ho, Y.C.; Yang, S.F.; Yang, Y.C.; Lai, S.Y.; Chen, W.S.; Chen, M.J.; Yeh, C.B. Niclosamide, an oral antihelmintic drug, exhibits antimetastatic activity in hepatocellular carcinoma cells through downregulating twist-mediated CD10 expression. Environ. Toxicol. 2018, 33, 659–669. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, L.; Xie, N.; Nice, E.C.; Zhang, T.; Cui, Y.; Huang, C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct. Target. Ther. 2020, 5, 113. [Google Scholar] [CrossRef]
- Luo, F.; Luo, M.; Rong, Q.X.; Zhang, H.; Chen, Z.; Wang, F.; Zhao, H.Y.; Fu, L.W. Niclosamide, an antihelmintic drug, enhances efficacy of PD-1/PD-L1 immune checkpoint blockade in non-small cell lung cancer. J. Immunother. Cancer 2019, 7, 245. [Google Scholar] [CrossRef] [PubMed]
- Burock, S.; Daum, S.; Keilholz, U.; Neumann, K.; Walther, W.; Stein, U. Phase II trial to investigate the safety and efficacy of orally applied niclosamide in patients with metachronous or sychronous metastases of a colorectal cancer progressing after therapy: The NIKOLO trial. BMC Cancer 2018, 18, 297. [Google Scholar] [CrossRef] [PubMed]
- Hanada, R.; Hanada, T.; Sigl, V.; Schramek, D.; Penninger, J.M. RANKL/RANK-beyond bones. J. Mol. Med. 2011, 89, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.; Clézardin, P.; Márquez-Rodas, I.; Niepel, D.; Gedye, C. The RANK-RANKL axis: An opportunity for drug repurposing in cancer? Clin. Transl. Oncol. 2019, 21, 977–991. [Google Scholar] [CrossRef] [PubMed]
- Namkoong, J.; Shin, S.S.; Lee, H.J.; Marín, Y.E.; Wall, B.A.; Goydos, J.S.; Chen, S. Metabotropic glutamate receptor 1 and glutamate signaling in human melanoma. Cancer Res. 2007, 67, 2298–2305. [Google Scholar] [CrossRef]
- Yip, D.; Le, M.N.; Chan, J.L.; Lee, J.H.; Mehnert, J.A.; Yudd, A.; Kempf, J.; Shih, W.J.; Chen, S.; Goydos, J.S. A phase 0 trial of riluzole in patients with resectable stage III and IV melanoma. Clin. Cancer Res. 2009, 15, 3896–3902. [Google Scholar] [CrossRef]
- Mehnert, J.M.; Silk, A.W.; Lee, J.H.; Dudek, L.; Jeong, B.S.; Li, J.; Schenkel, J.M.; Sadimin, E.; Kane, M.; Lin, H.; et al. A phase II trial of riluzole, an antagonist of metabotropic glutamate receptor 1 (GRM1) signaling, in patients with advanced melanoma. Pigment. Cell Melanoma Res. 2018, 31, 534–540. [Google Scholar] [CrossRef]
- Lee, H.J.; Wall, B.A.; Wangari-Talbot, J.; Shin, S.S.; Rosenberg, S.; Chan, J.L.; Namkoong, J.; Goydos, J.S.; Chen, S. Glutamatergic pathway targeting in melanoma: Single-agent and combinatorial therapies. Clin. Cancer Res. 2011, 17, 7080–7092. [Google Scholar] [CrossRef]
- Spencer, K.R.; Portal, D.E.; Aisner, J.; Stein, M.N.; Malhotra, J.; Shih, W.; Chan, N.; Silk, A.W.; Ganesan, S.; Goodin, S.; et al. A phase I trial of riluzole and sorafenib in patients with advanced solid tumors: CTEP #8850. Oncotarget 2023, 14, 302–315. [Google Scholar] [CrossRef]
- Ekins, S.; Williams, A.J.; Krasowski, M.D.; Freundlich, J.S. In silico repositioning of approved drugs for rare and neglected diseases. Drug Discov. Today 2011, 16, 298–310. [Google Scholar] [CrossRef]
- Zhao, S.; Li, X.; Wu, W.; Liu, S.; Shen, M.; Zhang, Z.; He, J. Digoxin reduces the incidence of prostate cancer but increases the cancer-specific mortality: A systematic review and pooled analysis. Andrologia 2021, 53, e14217. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Qian, D.Z.; Tan, Y.S.; Lee, K.; Gao, P.; Ren, Y.R.; Rey, S.; Hammers, H.; Chang, D.; Pili, R.; et al. Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proc. Natl. Acad. Sci. USA 2008, 105, 19579–19586. [Google Scholar] [CrossRef] [PubMed]
- Smyth, G.K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 2004, 3, 3. [Google Scholar] [CrossRef] [PubMed]
- Khanjani, F.; Jafari, L.; Azadiyan, S.; Roozbehi, S.; Moradian, C.; Zahiri, J.; Hasannia, S.; Sajedi, R.H. Drug repositioning based on gene expression data for human HER2-positive breast cancer. Arch. Biochem. Biophys. 2021, 712, 109043. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, X.; Min, Z.; Shadia, A.S.; Yang, S.; Liu, X. MGCD0103 induces apoptosis and simultaneously increases the expression of NF-kB and PD-L1 in classical Hodgkin’s lymphoma. Exp. Ther. Med. 2018, 16, 3827–3834. [Google Scholar] [CrossRef]
- Bourdakou, M.M.; Athanasiadis, E.I.; Spyrou, G.M. Discovering gene re-ranking efficiency and conserved gene-gene relationships derived from gene co-expression network analysis on breast cancer data. Sci. Rep. 2016, 6, 20518. [Google Scholar] [CrossRef]
- Marchionatti, A.M.; Picotto, G.; Narvaez, C.J.; Welsh, J.; Tolosa de Talamoni, N.G. Antiproliferative action of menadione and 1,25(OH)2D3 on breast cancer cells. J. Steroid Biochem. Mol. Biol. 2009, 113, 227–232. [Google Scholar] [CrossRef]
- Bakalova, R.; Semkova, S.; Ivanova, D.; Zhelev, Z.; Miller, T.; Takeshima, T.; Shibata, S.; Lazarova, D.; Aoki, I.; Higashi, T. Selective Targeting of Cancerous Mitochondria and Suppression of Tumor Growth Using Redox-Active Treatment Adjuvant. Oxid. Med. Cell Longev. 2020, 2020, 6212935. [Google Scholar] [CrossRef]
- Sakai, N.; Kamimura, K.; Miyamoto, H.; Ko, M.; Nagoya, T.; Setsu, T.; Sakamaki, A.; Yokoo, T.; Kamimura, H.; Soki, H.; et al. Letrozole ameliorates liver fibrosis through the inhibition of the CTGF pathway and 17β-hydroxysteroid dehydrogenase 13 expression. J. Gastroenterol. 2023, 58, 53–68. [Google Scholar] [CrossRef]
- George, L.A.; Teachey, D.T. Optimal management of autoimmune lymphoproliferative syndrome in children. Paediatr. Drugs 2016, 18, 261–272. [Google Scholar] [CrossRef]
- Saibene, A.M.; Rosso, C.; Felisati, G.; Pignataro, L.; Schindler, A.; Ghilardi, G.; Colletti, G.; Gaffuri, M.; Mozzanica, F. Sirolimus treatment for paediatric head and neck lymphatic malformations: A systematic review. Eur. Arch. Otorhinolaryngol. 2023, 280, 3529–3540. [Google Scholar] [CrossRef] [PubMed]
- Margel, D.; Urbach, D.R.; Lipscombe, L.L.; Bell, C.M.; Kulkarni, G.; Austin, P.C.; Fleshner, N. Metformin use and all-cause and prostate cancer-specific mortality among men with diabetes. J. Clin. Oncol. 2013, 31, 3069–3075. [Google Scholar] [CrossRef]
- Hua, Y.; Zheng, Y.; Yao, Y.; Jia, R.; Ge, S.; Zhuang, A. Metformin and cancer hallmarks: Shedding new lights on therapeutic repurposing. J. Transl. Med. 2023, 21, 403. [Google Scholar] [CrossRef]
- Saif, M.W.; Rajagopal, S.; Caplain, J.; Grimm, E.; Serebrennikova, O.; Das, M.; Tsichlis, P.N.; Martell, R. A phase I delayed-start, randomized and pharmacodynamic study of metformin and chemotherapy in patients with solid tumors. Cancer Chemother. Pharmacol. 2019, 84, 1323–1331. [Google Scholar] [CrossRef]
- Crist, M.; Yaniv, B.; Palackdharry, S.; Lehn, M.A.; Medvedovic, M.; Stone, T.; Gulati, S.; Karivedu, V.; Borchers, M.; Fuhrman, B.; et al. Metformin increases natural killer cell functions in head and neck squamous cell carcinoma through CXCL1 inhibition. J. Immunother. Cancer 2022, 10, e005632. [Google Scholar] [CrossRef]
- Grever, M.; Kopecky, K.; Foucar, M.K.; Head, D.; Bennett, J.M.; Hutchison, R.E.; Corbett, W.E.; Cassileth, P.A.; Habermann, T.; Golomb, H. Randomized comparison of pentostatin versus interferon alfa-2a in previously untreated patients with hairy cell leukemia: An intergroup study. J. Clin. Oncol. 1995, 13, 974–982. [Google Scholar] [CrossRef] [PubMed]
- Grever, M.R. How I treat hairy cell leukemia. Blood 2010, 115, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Hernandez, A.; Moturi, K.; Hanson, V.; Andritsos, L.A. Hairy Cell Leukemia: Where are we in 2023? Curr. Oncol. Rep. 2023, 25, 833–840. [Google Scholar] [CrossRef]
- Hassanzadeh, K.; Rahimmi, A.; Moloudi, M.R.; Maccarone, R.; Corbo, M.; Izadpanah, E.; Feligioni, M. Effect of lobeglitazone on motor function in rat model of Parkinson’s disease with diabetes co-morbidity. Brain Res. Bull. 2021, 173, 184–192. [Google Scholar] [CrossRef]
- Parvathaneni, V.; Kulkarni, N.S.; Muth, A.; Gupta, V. Drug repurposing: A promising tool to accelerate the drug discovery process. Drug Discov. Today 2019, 24, 2076–2085. [Google Scholar] [CrossRef]
- Colca, J.R.; VanderLugt, J.T.; Adams, W.J.; Shashlo, A.; McDonald, W.G.; Liang, J.; Zhou, R.; Orloff, D.G. Clinical proof-of-concept study with MSDC-0160, a prototype mTOT-modulating insulin sensitizer. Clin. Pharmacol. Ther. 2013, 93, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, T.; Chen, X.; Tian, W.; Ma, D.; Zhang, J.; Li, Q.; Chen, Z.; Ju, J.; Xu, H.; et al. Efficacy and Safety of Oral Anticoagulants in Older Adult Patients with Atrial Fibrillation: Pairwise and Network Meta-Analyses. J. Am. Med. Dir. Assoc. 2023, 24, 1233–1239.e26. [Google Scholar] [CrossRef] [PubMed]
- Hurtado-Ortiz, K.D.; Ortiz-Giraldo, A.F.; Vera-Camargo, D.D.; Valenzuela-Santos, C.; Cardenas-Sanchez, S.A.; Correa-Ruiz, P.A.; Ferreira-Prada, C.A.; Galvis, M.; Vargas-Pérez, O.; Serrano-Gómez, S.; et al. Comparison of clopidogrel and ticagrelor for the dual antiplatelet therapy of patients with unruptured cerebral aneurysms undergoing endovascular treatment. World Neurosurg. 2023. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, A.; Sohal, A.; Bains, K.; Chaudhry, H.; Singh, I.; Kalra, E.; Arora, K.; Dukovic, D.; Boiles, A.R. Impact of Aspirin Use on Outcomes in Patients with Hepatocellular Cancer: A Nationwide Analysis. World J. Oncol. 2023, 14, 195–204. [Google Scholar] [CrossRef]
- Zappavigna, S.; Cossu, A.M.; Grimaldi, A.; Bocchetti, M.; Ferraro, G.A.; Nicoletti, G.F.; Filosa, R.; Caraglia, M. Anti-inflammatory drugs as anticancer agents. Int. J. Mol. Sci. 2020, 21, 2605. [Google Scholar] [CrossRef] [PubMed]
- North, G.L.T. Celecoxib as adjunctive therapy for treatment of colorectal cancer. Ann. Pharmacother. 2001, 35, 1638–1643. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Qin, L. Effect of celecoxib plus standard chemotherapy on cancer prognosis: A systematic review and meta-analysis. Eur. J. Clin. Investig. 2023, 53, e13973. [Google Scholar] [CrossRef]
- Prima, V.; Kaliberova, L.N.; Kaliberov, S.; Curiel, D.T.; Kusmartsev, S. COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc. Natl. Acad. Sci. USA 2017, 114, 1117–1122. [Google Scholar] [CrossRef]
- Wang, S.J.; Khullar, K.; Kim, S.; Yegya-Raman, N.; Malhotra, J.; Groisberg, R.; Crayton, S.H.; Silk, A.W.; Nosher, J.L.; Gentile, M.A.; et al. Effect of cyclo-oxygenase inhibitor use during checkpoint blockade immunotherapy in patients with metastatic melanoma and non-small cell lung cancer. J. Immunother. Cancer 2020, 8, e000889. [Google Scholar] [CrossRef]
- Varma, M.; Bhandari, R.; Kuhad, A. Repurposing Niclosamide as a plausible neurotherapeutic in autism spectrum disorders, targeting mitochondrial dysfunction: A strong hypothesis. Metab. Brain Dis. 2023. Online ahead of print. [Google Scholar] [CrossRef]
- Balachandar, V.; Rajagopalan, K.; Jayaramayya, K.; Jeevanandam, M.; Iyer, M. Mitochondrial dysfunction: A hidden trigger of autism? Genes. Dis. 2020, 8, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Yeh, L.T.; Lin, C.W.; Lu, K.H.; Hsieh, Y.H.; Yeh, C.B.; Yang, S.F.; Yang, J.S. Niclosamide Suppresses Migration and Invasion of Human Osteosarcoma Cells by Repressing TGFBI Expression via the ERK Signaling Pathway. Int. J. Mol. Sci. 2022, 23, 484. [Google Scholar] [CrossRef] [PubMed]
- Jamshed, F.; Dashti, F.; Ouyang, X.; Mehal, W.Z.; Banini, B.A. New uses for an old remedy: Digoxin as a potential treatment for steatohepatitis and other disorders. World J. Gastroenterol. 2023, 29, 1824–1837. [Google Scholar] [CrossRef]
- Saeed, H.; Mateen, S.; Moin, S.; Khan, A.Q.; Owais, M. Cardiac glycoside digoxin ameliorates pro-inflammatory cytokines in PBMCs of rheumatoid arthritis patients in vitro. Int. Immunopharmacol. 2020, 82, 106331. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.; Amir, S.; Golan, M.; Ben-Neriah, Y.; Mabjeesh, N.J. β-TrCP upregulates HIF-1 in prostate cancer cells. Prostate 2019, 79, 403–413. [Google Scholar] [CrossRef]
- Bali, P.; Pranpat, M.; Swaby, R.; Fiskus, W.; Yamaguchi, H.; Balasis, M.; Rocha, K.; Wang, H.G.; Richon, V.; Bhalla, K. Activity of suberoylanilide hydroxamic acid against human breast cancer cells with amplification of her-2. Clin. Cancer Res. 2005, 11, 6382–6389. [Google Scholar] [CrossRef]
- Buglio, D.; Mamidipudi, V.; Khaskhely, N.M.; Brady, H.; Heise, C.; Besterman, J.; Martell, R.E.; MacBeth, K.; Younes, A. The class-I HDAC inhibitor MGCD0103 induces apoptosis in Hodgkin lymphoma cell lines and synergizes with proteasome inhibitors by an HDAC6-independent mechanism. Br. J. Haematol. 2010, 151, 387–396. [Google Scholar] [CrossRef]
- Borbely, G.; Haldosen, L.A.; Dahlman-Wright, K.; Zhao, C. Induction of USP17 by combining BET and HDAC inhibitors in breast cancer cells. Oncotarget 2015, 6, 33623–33635. [Google Scholar] [CrossRef]
- Nosengo, N. Can you teach old drugs new tricks? Nature 2016, 534, 314–316. [Google Scholar] [CrossRef]
- Coughlin, S.S.; Calle, E.E.; Teras, L.R.; Petrelli, J.; Thun, M.J. Diabetes mellitus as a predictor of cancer mortality in a large cohort of US adults. Am. J. Epidemiol. 2004, 159, 1160–1167. [Google Scholar] [CrossRef]
- Adami, H.O.; McLaughlin, J.; Ekbom, A.; Berne, C.; Silverman, D.; Hacker, D.; Persson, I. Cancer risk in patients with diabetes mellitus. Cancer Causes Control 1991, 2, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, F.; Ghidini, M.; Rausa, E.; Ghidini, A.; Cabiddu, M.; Borgonovo, K.; Ghilardi, M.; Parati, M.C.; Pietrantonio, F.; Sganzerla, P.; et al. Survival of Colorectal Cancer Patients with Diabetes Mellitus: A Meta-Analysis. Can. J. Diabetes 2021, 45, 186–197.e2. [Google Scholar] [CrossRef]
- Miao, Z.F.; Xu, H.; Xu, Y.Y.; Wang, Z.N.; Zhao, T.T.; Song, Y.X.; Xu, H.M. Diabetes mellitus and the risk of gastric cancer: A meta-analysis of cohort studies. Oncotarget 2017, 8, 44881–44892. [Google Scholar] [CrossRef] [PubMed]
- El-Serag, H.B.; Hampel, H.; Javadi, F. The association between diabetes and hepatocellular carcinoma: A systematic review of epidemiologic evidence. Clin. Gastroenterol. Hepatol. 2006, 4, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.H.; Luther, Y.; Xiong, G.H.; Ni, Y.L.; Yun, F.; Chen, J.; Yang, Z.; Zhang, Q.; Kuang, Y.M.; Zhu, Y.C. Association between diabetes mellitus and lung cancer: Meta-analysis. Eur. J. Clin. Investig. 2020, 50, e13332. [Google Scholar] [CrossRef]
- Yan, P.; Wang, Y.; Fu, T.; Liu, Y.; Zhang, Z.J. The association between type 1 and 2 diabetes mellitus and the risk of leukemia: A systematic review and meta-analysis of 18 cohort studies. Endocr. J. 2021, 68, 281–289. [Google Scholar] [CrossRef]
- Shi, D.; Ao, L.; Yu, H.; Li, J.; Xia, Y.; Wu, X.; He, D.; Zhong, W.; Xia, H. Diabetes increases the risk of meningioma: A systematic review and meta-analysis of observational studies. Cancer Epidemiol. 2021, 73, 101946. [Google Scholar] [CrossRef]
- Wang, L.; Zhong, L.; Xu, B.; Chen, M.; Huang, H. Diabetes mellitus and the risk of ovarian cancer: A systematic review and meta-analysis of cohort and case-control studies. BMJ Open 2020, 10, e040137. [Google Scholar] [CrossRef]
- Tobe, A.; Horimoto, Y.; Kobayashi, K.; Kamisada, N.; Hirano, M. Impact of diabetes on patient outcomes in breast cancer patients. Breast Care 2022, 17, 480–485. [Google Scholar] [CrossRef]
- Bowker, S.L.; Majumdar, S.R.; Veugelers, P.; Johnson, J.A. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 2006, 29, 254–258. [Google Scholar] [CrossRef]
- Hershman, D.L.; Chen, B.E.; Sathe, C.; Parulekar, W.R.; Lemieux, J.; Ligibel, J.A.; Gelmon, K.A.; Whelan, T.J.; Goodwin, P.J. Metformin, placebo, and endocrine therapy discontinuation among participants in a randomized double-blind trial of metformin vs placebo in hormone receptor-positive early-stage breast cancer (CCTG MA32). Breast Cancer Res. Treat. 2023, 200, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Alruhaili, M.H.; Almuhayawi, M.S.; Gattan, H.S.; Alharbi, M.T.; Nagshabandi, M.K.; Jaouni, S.K.A.; Selim, S.; AbdElgawad, H. Insight into the phytochemical profile and antimicrobial activities of Amomum subulatum and amomum xanthioides: An in vitro and in silico study. Front. Plant Sci. 2023, 14, 1136961. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Li, Y.; Wang, X.; Huang, Y.; Mao, J. Investigation of the mechanism of Prunella vulgaris in treatment of papillary thyroid carcinoma based on network pharmacology integrated molecular docking and experimental verification. Medicine 2023, 102, e33360. [Google Scholar] [CrossRef] [PubMed]
- Ekins, S.; Johnston, J.S.; Bahadduri, P.; D’Souza, V.M.; Ray, A.; Chang, C.; Swaan, P.W. In vitro and pharmacophore-based discovery of novel hPEPT1 inhibitors. Pharm. Res. 2005, 22, 512–517. [Google Scholar] [CrossRef]
- Chang, C.; Bahadduri, P.M.; Polli, J.E.; Swaan, P.W.; Ekins, S. Rapid identification of P-glycoprotein substrates and inhibitors. Drug Metab. Dispos. 2006, 34, 1976–1984. [Google Scholar] [CrossRef]
- Diao, L.; Ekins, S.; Polli, J.E. Quantitative structure activity relationship for inhibition of human organic cation/carnitine transporter. Mol. Pharm. 2010, 7, 2120–2131. [Google Scholar] [CrossRef]
- Diao, L.; Ekins, S.; Polli, J.E. Novel inhibitors of human organic cation/carnitine transporter (hOCTN2) via computational modeling and in vitro testing. Pharm. Res. 2009, 26, 1890–1900. [Google Scholar] [CrossRef]
- Zheng, X.; Ekins, S.; Raufman, J.P.; Polli, J.E. Computational models for drug inhibition of the human apical sodium-dependent bile acid transporter. Mol. Pharm. 2009, 6, 1591–1603. [Google Scholar] [CrossRef]
- Lamichhane, G.; Freundlich, J.S.; Ekins, S.; Wickramaratne, N.; Nolan, S.T.; Bishai, W.R. Essential metabolites of Mycobacterium tuberculosis and their mimics. mBio 2011, 2, e00301–e00310. [Google Scholar] [CrossRef]
- Krasowski, M.D.; Siam, M.G.; Iyer, M.; Ekins, S. Molecular similarity methods for predicting cross-reactivity with therapeutic drug monitoring immunoassays. Ther. Drug Monit. 2009, 31, 337–344. [Google Scholar] [CrossRef]
- Li, Y.Y.; An, J.; Jones, S.J. A large-scale computational approach to drug repositioning. Genome Inform. 2006, 17, 239–247. [Google Scholar]
- Spitschak, A.; Gupta, S.; Singh, K.P.; Logotheti, S.; Pützer, B.M. Drug repurposing at the interface of melanoma immunotherapy and autoimmune disease. Pharmaceutics 2022, 15, 83. [Google Scholar] [CrossRef] [PubMed]
- Dilara Fatma, A.; Özkan, D. Molecular profiling of TAM tyrosine kinase receptors and ligands in endometrial carcinoma: An in silico-study. Taiwan. J. Obstet. Gynecol. 2023, 62, 311–324. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, J. Correlation of tumor mutational burden with prognosis and immune infiltration in lung adenocarcinoma. Front. Oncol. 2023, 13, 1128785. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.X.; Chen, D.M.; Wang, D.; Xiao, Y.; Zhu, S.; Xu, X.L. METTL3/YTHDF2 m6A axis promotes the malignant progression of bladder cancer by epigenetically suppressing, RRAS. Oncol. Rep. 2023, 49, 94. [Google Scholar] [CrossRef]
- Katarzyna, T. The cancer genome atlas (TCGA): An immeasurable source of knowledge. Contemp. Oncol. 2015, 19, A68–A77. [Google Scholar]
- Horiuchi, S.; Kuroda, Y.; Komizu, Y.; Ishida, S. Consideration of commercially available hepatocytes as cell sources for liver-microphysiological systems by comparing liver characteristics. Pharmaceutics 2022, 15, 55. [Google Scholar] [CrossRef]
- Napoli, J.L. Physiological insights into all-trans-retinoic acid biosynthesis. Biochim. Biophys. Acta 2012, 1821, 152–167. [Google Scholar] [CrossRef]
- Shimizu, H.; Tsubota, T.; Kanki, K.; Shiota, G. All-trans retinoic acid ameliorates hepatic stellate cell activation via suppression of thioredoxin interacting protein expression. J. Cell Physiol. 2018, 233, 607–616. [Google Scholar] [CrossRef]
- Su, W.; Wang, Y.; Jia, X.; Wu, W.; Li, L.; Tian, X.; Li, S.; Wang, C.; Xu, H.; Cao, J.; et al. Comparative proteomic study reveals 17β-HSD13 as a pathogenic protein in nonalcoholic fatty liver disease. Proc. Natl. Acad. Sci. USA 2014, 111, 11437–11442. [Google Scholar] [CrossRef]
No. | Drug Name | Original Indication | New Indication | Mechanism | Status | Method of Discovery | Refs |
---|---|---|---|---|---|---|---|
1 | Rapamycin | Prevents organ transplant rejection | Autoimmune lymphoproliferative syndrome | Immunosuppression, decreases ds-DNA IgG | Approved | in vitro and in vivo | [14,15] |
2 | Metformin | Type 2 diabetes | Advanced prostate cancer | Inhibits the mTORC1 pathway, up-regulates AMPK | Phase II | Big data | [16,17,18] |
3 | Pentostatin | Chemotherapy for specific types of leukemia T-cell related | B-cell-related, called hairy cell leukemia | Immunosuppression, adenosine deaminase inhibitor | Approved | Clinical data | [19,20] |
4 | MSDC-0160 | Type 2 diabetes | Parkinson’s disease | Inhibits inflammation and nerve death | Phase II completed | Pathological similarities (serendipity) | [21,22] |
5 | Aspirin | Pain and inflammatory disorders | Cervical and uterine cancer | Enhances PD-1 inhibition | Phase II | Big data | [23,24,25] |
6 | Celecoxib | Osteoarthritis | Colon tumor | Inhibits COX-2 receptors, NF-kB activity and interferes PPAR to DNA. | Approved | Big data | [26,27] |
7 | Niclosamide | Helminthic | Colorectal cancer | Inhibits PI3K/Akt, Wnt/β-catenin, JAK/STAT, NF-kB signaling, PD-L1 expression | Phase II | Gene expression analysis | [28,29,30,31,32] |
8 | Denosumab | Skeletal-related events in patient with solid tumors and multiple myeloma | Giant cell tumor of bone | Modulates RANK-RANKL signaling | Approved | In vitro and in vivo | [33,34] |
9 | Riluzole | Amyotrophic lateral sclerosis | Advanced solid tumor | Inhibits glutamate release | Phase I | In vitro and in vivo | [35,36,37,38,39] |
10 | Digoxin | Congestive heart failure and arrhythmia | Cancer | Inhibits Src and HIF-1 | Phase I completed | In vitro and in vivo | [40,41,42] |
No. | Drug Name | Original Indication | New Indication | Mechanism | Status | Method of Discovery | Refs |
---|---|---|---|---|---|---|---|
1 | Vorinostat | Cutaneous T-cell lymphoma | HER2-positive breast cancer | HSP90 acetylation | Before clinical trials | Gene expression microarray | [43,44] |
2 | Mocetinostat (MGCD0103) | Hodgkin’s lymphoma | HER2-positive breast cancer | Induces USP-17 | Before clinical trials | Gene expression microarray | [44,45,46] |
3 | Menadione | Vitamin K supplementation | Breast cancer | Affects F10 and EGFR genes and has an anti-proliferative action on breast cancer cells | Before clinical trials | Gene expression microarray | [46,47,48] |
4 | Letrozole | Chemotherapy for breast cancer | Liver fibrosis | Inhibits the YAP-CTGF pathway and regulation of retinoic acid metabolism | Before clinical trials | Gene expression microarray | [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakai, N.; Kamimura, K.; Terai, S. Repurposable Drugs for Immunotherapy and Strategies to Find Candidate Drugs. Pharmaceutics 2023, 15, 2190. https://doi.org/10.3390/pharmaceutics15092190
Sakai N, Kamimura K, Terai S. Repurposable Drugs for Immunotherapy and Strategies to Find Candidate Drugs. Pharmaceutics. 2023; 15(9):2190. https://doi.org/10.3390/pharmaceutics15092190
Chicago/Turabian StyleSakai, Norihiro, Kenya Kamimura, and Shuji Terai. 2023. "Repurposable Drugs for Immunotherapy and Strategies to Find Candidate Drugs" Pharmaceutics 15, no. 9: 2190. https://doi.org/10.3390/pharmaceutics15092190
APA StyleSakai, N., Kamimura, K., & Terai, S. (2023). Repurposable Drugs for Immunotherapy and Strategies to Find Candidate Drugs. Pharmaceutics, 15(9), 2190. https://doi.org/10.3390/pharmaceutics15092190