
Citation: Sharma, R.P.; Burgers, E.J.;

Beltman, J.B. Development of a

Physiologically Based

Pharmacokinetic Model for

Nitrofurantoin in Rabbits, Rats, and

Humans. Pharmaceutics 2023, 15, 2199.

https://doi.org/10.3390/

pharmaceutics15092199

Academic Editor: Yu Chul Kim

Received: 30 June 2023

Revised: 19 August 2023

Accepted: 21 August 2023

Published: 25 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Article

Development of a Physiologically Based Pharmacokinetic
Model for Nitrofurantoin in Rabbits, Rats, and Humans
Raju Prasad Sharma , Elsje J. Burgers and Joost B. Beltman *

Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University,
Einsteinweg 55, 2333 CC Leiden, The Netherlands; rpsharmasysbio@gmail.com (R.P.S.);
e.j.burgers@lacdr.leidenuniv.nl (E.J.B.)
* Correspondence: j.b.beltman@lacdr.leidenuniv.nl

Abstract: Nitrofurantoin (NFT) is a commonly used antibiotic for the treatment of urinary tract
infections that can cause liver toxicity. Despite reports of hepatic adverse events associated with NFT
exposure, there is still limited understanding of the interplay between NFT exposure, its disposition,
and the risk of developing liver toxicity. In this study, we aim to develop a physiologically based
pharmacokinetic (PBPK) model for NFT in three different species (rabbits, rats, and humans) that
can be used as a standard tool for predicting drug-induced liver injury (DILI). We created several
versions of the PBPK model using previously published kinetics data from rabbits, and integrated
enterohepatic recirculation (EHR) using rat data. Our model showed that active tubular secretion
and reabsorption in the kidney are critical in explaining the non-linear renal clearance and urine
kinetics of NFT. We subsequently extrapolated the PBPK model to humans. Adapting the physiology
to humans led to predictions consistent with human kinetics data, considering a low amount of NFT
to be excreted into bile. Model simulations predicted that the liver of individuals with a moderate-to-
severe glomerular filtration rate (GFR) is exposed to two-to-three-fold higher concentrations of NFT
than individuals with a normal GFR, which coincided with a substantial reduction in the NFT urinary
concentration. In conclusion, people with renal insufficiency may be at a higher risk of developing
DILI due to NFT exposure, while at the same time having a suboptimal therapeutic effect with a
high risk of drug resistance. Our PBPK model can in the future be used to predict NFT kinetics in
individual patients on the basis of characteristics like age and GFR.

Keywords: physiologically based pharmacokinetic model; renal insufficiency; drug-induced liver
injury; nitrofurantoin

1. Introduction

Nitrofurantoin (NFT) is a commonly used oral antibiotic for treating lower urinary tract
infections (UTIs) due to its broad-spectrum activity and low resistance among pathogens.
It is used in the short term to treat acute urinary tract infections and in the long term as
prophylaxis against recurrent infections. Unfortunately, it is also associated with drug-
induced liver injury (DILI), which is the most common adverse effect of NFT exposure [1–6].
Severe fatalities due to hepatic toxicity have been reported [7,8], and autoimmune-like
hepatitis has been identified as the most common cause [9,10]. Although the mechanisms
by which NFT causes DILI are not fully resolved, in vitro studies have suggested that NFT
may cause liver injury by hyper-activation of several cellular stress pathways [11].

While several hepatic adverse events associated with NFT exposure have been re-
ported, there is still a large gap in understanding the relationship between NFT exposure,
its disposition, and the occurrence of adverse events [12]. Individual factors, such as gender,
advanced age, dosage regimen, and renal insufficiency, have been identified as increasing
the risk of developing DILI, as well as the ineffectiveness of therapy [1,2,13–16]. Despite
being on the market for almost 60 years, there are surprisingly few pharmacokinetics (PK)
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studies of NFT. Moreover, a concrete scientific basis to achieve optimal dosing of NFT is
missing, especially for application to pediatric and geriatric subpopulations. For example,
Muller et al. (2017) reported in a meta-analysis that low doses of NFT can be as effective as
high doses when used long term [2]. Understanding the drug’s disposition inside the body
represents an important first step toward understanding NFT-induced liver injury.

Nitrofurantoin has a short half-life of 2–3 h, with most of the drug eliminated through
urine clearance, representing 25–40% of the administered dose [3]. The concentration of
NFT in the urinary bladder, the main site of NFT’s antibacterial activity, determines its
therapeutic effect. A study has shown that a minimum of 30% of the administered dose
needs to reach the urinary bladder to obtain an optimal therapeutic effect. Animal studies
have shown that the pharmacokinetics of NFT exhibits dose-dependent and non-linear
kinetics, especially in the urine [17–19]. Additionally, human studies have shown that
urine PK and plasma PK are highly variable between subjects [4]. Excretion of NFT in
the urine of rats has been reported to be age dependent, and the gene ABCG2 (which
codes for breast cancer resistance protein (BCRP), an efflux transporter) could play a major
role in determining the NFT concentration in the urine [20–23]. Thus, the PK profile of
nitrofurantoin is complicated, can be influenced by several factors, and is difficult to predict.

Physiologically based pharmacokinetic (PBPK) models have been useful to predict
drug disposition in various organs, taking into account physiological information and drug
properties. In this study, we aimed to develop a PBPK model for NFT in rabbits, rats, and
humans using cross-species extrapolation. Our multi-species modeling approach allowed
to integrate data acquired for various organs in either rats or rabbits, providing valuable
mechanistic information to subsequently predict nitrofurantoin kinetics in humans. We
evaluated the role of non-linear renal clearance in NFT drug disposition and the effect
of gender, age, and renal function on this disposition in order to understand how these
factors contribute to the efficacy and safety of NFT. We developed the model following
a cross-species extrapolation approach, using rabbit experimental data to describe renal
clearance, and extended with enterohepatic recirculation (EHR) on the basis of rat data. Our
model showed that both active secretion and tubular reabsorption in the kidney are needed
to explain the non-linear urine kinetics of NFT. The extrapolated human model successfully
explained human NFT kinetics. Finally, we used the human PBPK model to explore how
the glomerular filtration rate (GFR) of an individual is expected to impact NFT disposition
and consequently the risk for NFT-induced liver injury and its therapeutic efficacy.

2. Methods
2.1. PBPK Model Structure to Describe NFT Kinetics

We developed a PBPK model to describe NFT kinetics in relevant organs of three
mammal species, i.e., rabbit, rat, and human. We kept a consistent model structure across
all species, including the following tissues: gut, liver, fat, kidney, plasma, and ‘rest of the
body’ (Restbody), with physiological blood flow between these compartments (Figure 1).
The gut compartment was further divided into two sub-compartments: gut and gut lumen.
The kidney compartment included a filtrate sub-compartment, which received NFT from
the kidney via species-specific GFRs. The filtrate then entered a ‘delay’ compartment, which
acted as a temporary storage compartment from which NFT was excreted to urine via a
first-order rate constant. The rest of the body represented all other tissues not explicitly
included in the model, and its volume was derived by subtracting the volumes of all other
compartments from the total body volume. We derived the blood flow to the rest of the
body by subtracting the blood flows of all compartments entering venous blood from the
cardiac output.

The PBPK model incorporated both intravenous (IV) and oral exposure routes. In the
oral exposure route, the drug was administered directly to the gut compartment, entering
the gut lumen at a constant rate. From the gut lumen, NFT entered the gut via first-order
rate absorption and was then transported to the liver via the portal vein. Unabsorbed drug
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in the gut was excreted to feces via a first-order rate constant. IV doses of NFT enter directly
the systemic circulation.

Pharmaceutics 2023, 15, x FOR PEER REVIEW 3 of 16 
 

 

 

Figure 1. PBPK model structure to describe NFT kinetics. The model comprises 10 compartments, 

with each compartment representing a specific organ or tissue, except for the metabolism compart-

ment, which represents the hepatic NFT clearance through metabolism. Organs that are not explic-

itly included in the model are represented by the ‘Restbody’ compartment. The model shows the 

blood flow to and from the organs, represented by solid arrows. The liver compartment can excrete 

the drug into bile, which can be reabsorbed from the gut through enterohepatic recirculation (EHR). 

The kidney, liver, and gut compartments can all clear NFT. NFT can be transported from the kidney 

to tubules through glomerular filtration and active secretion, as indicated by the dotted blue and 

violet arrows, respectively. The orange dotted arrow represents the reabsorption of NFT from tu-

bules back into the kidney. 

The PBPK model incorporated both intravenous (IV) and oral exposure routes. In the 

oral exposure route, the drug was administered directly to the gut compartment, entering 

the gut lumen at a constant rate. From the gut lumen, NFT entered the gut via first-order 

rate absorption and was then transported to the liver via the portal vein. Unabsorbed drug 

in the gut was excreted to feces via a first-order rate constant. IV doses of NFT enter di-

rectly the systemic circulation. 

To account for NFT excretion in bile, an additional biliary compartment and an en-

terohepatic recirculation (EHR) process were included in the model. We described the 

unbound NFT that was available for distribution by multiplying the fraction unbound 

drug by the total NFT plasma concentration. 

2.2. Modeling Strategy 

First, we collected physiological data from the published literature to inform the 

PBPK model, including organ volumes and blood flow in rabbits, rats, and humans. We 

used perfusion-rate-limited kinetics to describe NFT tissue distribution and modeled liver 

metabolism with Michaelis–Menten kinetics. Based on the afore-presented model struc-

ture, we created four different versions of the model (model V1 to model V4), each with a 

different renal clearance mechanism, as described in the Results section. For parameter 

calibration (details later), we used kinetics data of plasma and urine measured in rabbits 

after IV administration at different doses. We used the Berezhkovskiy method to calculate 

the tissue:plasma partition coefficient for each compartment [24], except for the 

Restbody:plasma partition coefficient, which we calibrated on the basis of the data. We 

also fitted the hepatic clearance and renal clearance parameters. 

We then extended the model by including enterohepatic recirculation (EHR), creat-

ing model V5. We modeled NFT efflux from the liver into bile using the Michaelis–Menten 

equation, considering this process to have a maximal efflux rate. We modeled the transfer 

Figure 1. PBPK model structure to describe NFT kinetics. The model comprises 10 compartments,
with each compartment representing a specific organ or tissue, except for the metabolism compart-
ment, which represents the hepatic NFT clearance through metabolism. Organs that are not explicitly
included in the model are represented by the ‘Restbody’ compartment. The model shows the blood
flow to and from the organs, represented by solid arrows. The liver compartment can excrete the
drug into bile, which can be reabsorbed from the gut through enterohepatic recirculation (EHR). The
kidney, liver, and gut compartments can all clear NFT. NFT can be transported from the kidney to
tubules through glomerular filtration and active secretion, as indicated by the dotted blue and violet
arrows, respectively. The orange dotted arrow represents the reabsorption of NFT from tubules back
into the kidney.

To account for NFT excretion in bile, an additional biliary compartment and an entero-
hepatic recirculation (EHR) process were included in the model. We described the unbound
NFT that was available for distribution by multiplying the fraction unbound drug by the
total NFT plasma concentration.

2.2. Modeling Strategy

First, we collected physiological data from the published literature to inform the
PBPK model, including organ volumes and blood flow in rabbits, rats, and humans. We
used perfusion-rate-limited kinetics to describe NFT tissue distribution and modeled liver
metabolism with Michaelis–Menten kinetics. Based on the afore-presented model struc-
ture, we created four different versions of the model (model V1 to model V4), each with
a different renal clearance mechanism, as described in the Results section. For param-
eter calibration (details later), we used kinetics data of plasma and urine measured in
rabbits after IV administration at different doses. We used the Berezhkovskiy method to
calculate the tissue:plasma partition coefficient for each compartment [24], except for the
Restbody:plasma partition coefficient, which we calibrated on the basis of the data. We also
fitted the hepatic clearance and renal clearance parameters.

We then extended the model by including enterohepatic recirculation (EHR), creating
model V5. We modeled NFT efflux from the liver into bile using the Michaelis–Menten
equation, considering this process to have a maximal efflux rate. We modeled the transfer of
NFT from bile to the gut lumen with first-order rate kinetics. To parameterize this process,
we used published rat kinetics data. Here, we kept the Restbody partition coefficient
parameter values the same and scaled the renal clearance parameters (as estimated for
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model V4) based on rat body weight. We also created a subversion of model V5 (model V5a),
where we used a hierarchical approach to fit species-specific EHR-related parameters while
keeping the other parameters the same as in model V4. Finally, we extrapolated Model V5a
to predict NFT kinetics in humans using allometric scaling [25]. Full model equations are
available in the Supplementary Materials. Model parameters, including tissue volumes
and blood flows, body weight, cardiac output, and drug-specific parameters, are also in the
Supplementary Materials (Supplementary Tables S1–S4). We used published equations to
include the dependence of such physiological parameters (body weight, cardiac output,
organ volumes, and blood flows) on age [26].

2.3. Model Parameterization and Evaluation

To estimate model parameters, we used the Markov Chain Monte Carlo (MCMC)
approach, as implemented in MCSim (ver. 6.1) [27], with input from experimental data
collected from various literature sources (see later). We considered priors for parameters
to be distributed either according to a normal distribution or a truncated normal distri-
bution. The likelihood of the data was considered to follow a normal distribution with
a coefficient of variation of 10%. Using a likelihood function, during model fitting, the
parameter values were updated to result in posterior distributions. From these posteriors,
we randomly selected 1000 parameter sets, created model simulations with each set, and
calculated the 2.5 percentile, median, and 97.5 percentile simulated value for each time
point. We compared the model-predicted plasma concentration curves with the observed
plasma concentrations from literature data. To extract the plasma concentrations from the
literature, we used WebPlotDigitizer (https://automeris.io/WebPlotDigitizer/ (accessed
on 1 November 2022)). Plasma and urine kinetics data upon single oral or IV dosing of
0.25, 1.25, 2.5, 5, 10, and 15 mg/kg to the rabbits were extracted from [17]. Rat kinetics data
upon IV or oral dosing were taken from [23,28]. We extracted human time course plasma
data upon a single oral administration of three different doses (50, 100, and 200 mg) a day
from [29]. Our strategy for model development and validation based on the independent
data sets from the three species involved the following steps: First, we calibrated the
model using IV dose kinetics data from rabbits. Second, we tested the same model using
intravenous kinetics data from rats (referred to as model V4). Third, the final version of the
model (referred to as model V5a) was tested on the basis of separate human data following
oral dosing using cross-species extrapolation. Note that additional data to validate model
predictions in multiple tissues of rats, rabbits, and humans would be highly beneficial, ide-
ally involving measurements in plasma, urine, liver, and bile within the same individuals
and within a single species.

We visually compared the model predictions with the experimental data and also
investigated the effect of parameter variation on model output. For this purpose, we used a
global sensitivity analysis (GSA) using the R package pksensi [30]. We varied all parameters
by 1% to compute the effect on NFT kinetics in plasma, and sensitivity coefficients over
time were calculated for each parameter. We considered sensitivity coefficients higher than
0.1 as highly influential parameters and lower than 0.05 as non-influential parameters.

3. Results
3.1. Glomerular Filtration Is Insufficient to Describe Rabbit Plasma and Urine NFT Kinetics

In the literature, several data sets have been published over the past decades in which
NFT was administered to rabbits [17], rats [23,28], and humans [29]. We digitized these
data from the original publications, so they could be compared to PBPK model predictions.
We started with PBPK model development on the basis of the extracted rabbit data, because
for this species, both plasma and urine kinetic data following IV exposure to various doses
of NFT were available. In order to explain these published rabbit data, we developed
a PBPK model that included both liver metabolism and renal clearance via glomerular
filtration (model V1). We calculated the tissue:plasma partition coefficients using the
Berezhkovskiy method [24]. We then calibrated the remaining model parameters related to

https://automeris.io/WebPlotDigitizer/
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liver metabolism, the Restbody:plasma partition coefficient, and the urine elimination rate
using the plasma and urine experimental data.

The model failed to explain both the plasma and urine experimental data (Figure 2).
Specifically, the plasma concentrations over time were overpredicted at all the doses.
Importantly, the model also failed to predict the dose-dependent decrease in the percentage
of elimination observed in the experimental data. For example, the model predicted that
approximately 35% of the dose would be excreted regardless of the dose administered,
while the experimental data showed a decrease from 60% to approximately 10%, with a
30-fold dose increase. In conclusion, the clearance mechanism does not linearly depend
on the dose, and a simple model with glomerular filtration is insufficient to describe
NFT kinetics.

Pharmaceutics 2023, 15, x FOR PEER REVIEW 5 of 16 
 

 

3. Results 

3.1. Glomerular Filtration Is Insufficient to Describe Rabbit Plasma and Urine NFT Kinetics 

In the literature, several data sets have been published over the past decades in which 

NFT was administered to rabbits [17], rats [23,28], and humans [29]. We digitized these 

data from the original publications, so they could be compared to PBPK model predic-

tions. We started with PBPK model development on the basis of the extracted rabbit data, 

because for this species, both plasma and urine kinetic data following IV exposure to var-

ious doses of NFT were available. In order to explain these published rabbit data, we de-

veloped a PBPK model that included both liver metabolism and renal clearance via glo-

merular filtration (model V1). We calculated the tissue:plasma partition coefficients using 

the Berezhkovskiy method [24]. We then calibrated the remaining model parameters re-

lated to liver metabolism, the Restbody:plasma partition coefficient, and the urine elimi-

nation rate using the plasma and urine experimental data. 

The model failed to explain both the plasma and urine experimental data (Figure 2). 

Specifically, the plasma concentrations over time were overpredicted at all the doses. Im-

portantly, the model also failed to predict the dose-dependent decrease in the percentage 

of elimination observed in the experimental data. For example, the model predicted that 

approximately 35% of the dose would be excreted regardless of the dose administered, 

while the experimental data showed a decrease from 60% to approximately 10%, with a 

30-fold dose increase. In conclusion, the clearance mechanism does not linearly depend 

on the dose, and a simple model with glomerular filtration is insufficient to describe NFT 

kinetics. 

 

Figure 2. Model with only glomerular filtration (model V1) does not accurately describe NFT kinet-

ics in plasma and urine. Plots show model simulations of the 2.5th (green), median (blue), and 97.5th 

(red) percentiles. The simulations were calculated based on 2000 randomly sampled parameter sets 

from the posterior distribution. Blue dots represent the mean of the experimental data. The top row 

corresponds to plasma, and the bottom row corresponds to urine, with exposure levels indicated 

above the panels in mg/kg. 

  

Figure 2. Model with only glomerular filtration (model V1) does not accurately describe NFT
kinetics in plasma and urine. Plots show model simulations of the 2.5th (green), median (blue), and
97.5th (red) percentiles. The simulations were calculated based on 2000 randomly sampled parameter
sets from the posterior distribution. Blue dots represent the mean of the experimental data. The top
row corresponds to plasma, and the bottom row corresponds to urine, with exposure levels indicated
above the panels in mg/kg.

3.2. Tubular Secretion and Reabsorption Jointly Explaining Dose-Dependent NFT Kinetics

Additional important processes in the kidney include active secretion and reabsorp-
tion, which can also be of relevance for administered drugs. To improve the description
of the data, we created two modified models (model V2 and model V3). Model V2 in-
cluded a saturated active secretion process, whereas model V3 instead added a first-order
reabsorption process, in both cases on top of glomerular filtration. We hypothesized that
increasing concentrations would lead to a saturation of active secretion and thus low rela-
tive excretion at high doses for model V2. For model V3, we expected a dose-dependent
increase in reabsorption from the tubules back into the systemic circulation, resulting in
a low amount of NFT available for excretion. Model V2 with active secretion resulted in
better prediction, capturing the dose-dependent decrease in urine excretion compared to
model V1. Nevertheless, at high doses, the model still underpredicted and overpredicted
the plasma and urine kinetics, respectively (Figure S1A). Model V3 failed to improve the
description of experimental data compared to model 1 (Figure S1B).
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We then hypothesized that both active tubular secretion and reabsorption could be
important for renal clearance of NFT. Therefore, we extended the base model with both pro-
cesses (referred to as model V4) and calibrated the parameters of both processes. The fitted
model explained the dose-dependent urine and plasma kinetics quite well, outperforming
the model with only active tubular secretion (Figure 3), with a slight underprediction
of plasma concentrations and overprediction of urine kinetic data at the highest dose
(maximally a 2-fold difference).
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Figure 3. Model with active tubular secretion and reabsorption (model V4) describes plasma and
urine NFT kinetics well. Plots show model simulations of the 2.5th (green), median (blue), and
97.5th (red) percentiles. The simulations were calculated based on 2000 randomly sampled parameter
sets from the posterior distribution. Blue dots represent the mean of the experimental data. The top
row corresponds to plasma, and the bottom row corresponds to urine, with exposure levels indicated
above the panels in mg/kg.

To further investigate the dose- and time-dependent relationship between the GFR
and active secretion, we plotted the glomerular filtration rate and active tubular secretion
rate against the maximal plasma concentration at each dose (Figure 4A). As expected,
clearance via the GFR increased linearly with increasing concentration. In contrast, active
secretion saturated at low concentrations, thus contributing to the dose dependency of
NFT arrival in the urine. Consistently, the relative contribution of the GFR to the total renal
clearance increased with the maximal plasma concentration and the relative contribution of
active tubular secretion (ATS) decreased (Figure 4B). These results suggest that even at low
plasma NFT concentrations, active secretion of NFT saturates already (i.e., the Km value is
low), limiting NFT elimination from the body. The saturation of the active secretion rate
with increasing dose was also visible from a time course plot of the tubular secretion rate
and was especially clear at early time points (Figure 4C). In conclusion, saturation of active
secretion at low NFT concentrations is necessary to explain the non-linear, dose-dependent
kinetics in urine.

3.3. Renal Clearance and EHR Successfully Describe NFT Kinetics in Rats and Rabbits

We next asked whether the aforementioned PBPK model (model V4, fitted with rabbit
data) could also be applied to rats following allometric scaling, for which only a limited
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number of time course measurements in plasma and urine were available from published
data. The model was nicely able to explain the observed plasma concentrations and the
dose-dependent decrease in the percentage excreted in urine at different IV doses (Figure
S2). Specifically, both the model and the experimental data showed that at the lowest dose
(3 mg/kg), around 40% was excreted, and this percentage decreased to around 25% at
the highest dose of 25 mg/kg (Figure S2). The fact that the model was extrapolated from
rabbits by adapting to known rat physiology and that biochemical parameters were scaled
just based on rat body weight provides strong confidence in the developed PBPK model.
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Figure 4. Concentration dependence of renal clearance after IV NFT dosing in rabbits. (A) The
glomerular filtration rate (GFR, left) and the active tubular secretion rate (right) at the maximum
plasma concentrations for six different IV doses: 0.5, 1.25, 2.5, 5, 10, and 15 mg/kg. (B) The percentage
of total renal clearance contributed by the GFR and active tubular secretion (ATS) at the maximal
plasma concentration for each of the six doses. In (A,B), the bars are arranged from left to right in
increasing order of dose, with the first bar corresponding to the lowest dose of 0.5 mg/kg on the left
and the sixth bar corresponding to the highest dose of 15 mg/kg on the right. (C) The active tubular
secretion rate over time (x-axis) for six different IV doses (in mg/kg; colors indicated in the legend).

Nevertheless, the rat kinetics study from which we extracted the NFT data [23] showed
that NFT is also excreted via bile. Therefore, we created another version of the model,
where we included bile as a compartment, and we included EHR in the model, leading
to model V5. We used both plasma and biliary excretion data upon IV dosing as inputs,
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and calibrated EHR-related parameters, while keeping the other parameters the same. The
model extended with EHR could describe the biliary excretion data well and also resulted
in a slight improvement in urine kinetics data (Figure S3). Interestingly, the simulated
plasma kinetics data now exhibited biphasic kinetics due to recirculation between gut, bile,
and liver. However, this cannot be validated in the absence of data at late time points.

With model V5 (extended with EHR), we then revisited the plasma and urine kinetics
data upon IV dosing in rabbits. We incorporated the fitted EHR parameters based on rats
into the simulations for rabbits, while keeping the other rabbit-specific parameters the
same. The model nicely explained the plasma kinetics, but the percentage of dose excreted
via urine especially was underpredicted at a low dose and overpredicted at a high dose
(Figure S4). One factor determining this mismatch could be that due to the excretion of
NFT into bile, the drug circulates systemically at lower concentrations than without EHR,
leading to less urine excretion at low doses. Moreover, the limited data availability with
respect to biliary excretion in rats (only for one dose) and the absence of such data in rabbits
might have led to poorly predicted urine data. Finally, biliary excretion may be species
specific, e.g., due to the distinct expression of specific transporters [31]. To overcome these
limitations, we applied hierarchical modeling to the EHR-related parameters on the basis
of both rat and rabbit experimental data (including both IV and oral dosing data). This
improved the prediction of the IV dosing data for both species (Figure 5). The model
predicted a dose-dependent relative decrease in biliary excretion in both rats and rabbits,
with low relative biliary excretion in rabbits. Moreover, the model prediction of plasma
concentrations over time also reasonably agreed with the experimental data following
oral dosing, although the model predicted slightly too fast uptake and underestimated
the late time points for rat kinetics (Figures S5 and S6). In addition, we performed an in
silico knockout of the EHR process (no efflux from the liver to bile) in both rabbits and
rats (Figure S7). This resulted in linear plasma elimination kinetics (losing the property of
biphasic kinetics), with little or no effect on urine kinetics. A global sensitivity analysis
of rabbit model 5a upon IV dosing of 15 mg/kg showed all parameters to be sensitive for
all the compartments (Figure S8). In conclusion, by including EHR into our PBPK model
on the basis of rat measurements, we obtained acceptable descriptions of both rat and
rabbit NFT kinetics data for both IV and oral dosing, suggesting that the most important
processes for NFT absorption, distribution, metabolism, and excretion (ADME) are covered
by the PBPK model.

3.4. Extrapolation of PBPK Model from Rats and Rabbits to Humans

Having a PBPK model for NFT that integrated both renal clearance and EHR, we
next extrapolated this model to humans. We implemented this by using human-specific
physiology and by allometric scaling of renal clearance parameters, as estimated from the
rabbit data, and of EHR and gut absorption parameters, as estimated from the rat data.
To account for parameter variability, we ran 2000 simulations using individual parameter
values drawn randomly around their fitted mean value, with a standard deviation of 1.17
(on a log scale), equivalent to a coefficient of variation (CoV) of 16%. This choice of CoV
was informed by the estimated range of the posterior parameters and offers a reasonable
range of variability around the mean. Note that detailed NFT measurements amongst
multiple individuals would allow for a more data-informed choice of the CoV across
individuals. We also varied age from 25 to 40 using a uniform distribution and scaled the
human physiological parameters based on age (see Section 2).
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Figure 5. Model with both renal clearance and enterohepatic recirculation (model V5a) describes
NFT kinetics in rats and rabbits after IV dosing. (A,B) Plots show model simulations of the 2.5th
(green), median (blue), and 97.5th (red) percentiles for rats (A) and rabbits (B). The simulations were
calculated based on 2000 randomly sampled parameter sets from the posterior distribution. Blue dots
represent the mean of the experimental data. The top rows correspond to plasma, the middle rows to
urine, and the bottom rows to bile, with exposure levels indicated above the panels in mg/kg.
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Based on the extrapolated model (i.e., without further model calibration) and using
oral doses as input, we predicted the kinetics of NFT in human plasma and compared these
to published measurements from [29] (Figure 6). The model captured the dose-dependent
increase in the plasma concentration well. The close agreement between experimental data
and model prediction provided strong confidence in the PBPK model. We observed only a
minor dose-dependent decrease in the percentage of the dose excreted into urine in human
PBPK simulations (Figure S9). Moreover, for the applied dose range, only a low amount of
NFT was excreted into bile (between 0.2 and 1.5%) (Figure S9). NFT was thus predicted to
be quickly eliminated from all organs (within 12 h), and NFT maximal concentrations in
the various organs followed this order: liver > kidney > tubules > plasma > rest of the body
> fat (Figure S10).
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Figure 6. Cross-species extrapolated human PBPK model that describes nitrofurantoin concentration
after a single oral dose. Plots display simulated NFT concentrations with 95% confidence intervals
of the 2.5th (green), median (blue), and 97.5th (red) percentiles. The simulated data are based on
2000 iterations using individual parameter values drawn randomly around their fitted mean value,
with a standard deviation of 1.17. Experimental mean data are represented by blue dots in plasma at
different doses, indicated above the panels in mg.

3.5. Influence of GFR on Excretion and Build-Up of Systemic NFT Concentration

NFT is used as an antimicrobial agent for UTIs; hence, after oral administration, it is
aimed to act against microbial infections in the bladder. The arrival of NFT at that antici-
pated location could be influenced by the exact physiological parameters of individuals.
One important factor could be the GFR, which is known to decrease with age [32,33], and
this could lead to potentially toxic concentrations within organs, such as the liver. Therefore,
we used our extrapolated human PBPK model to investigate the effect of the GFR on NFT
concentrations in various organs.

We considered a typical oral dosage regimen of 50 mg administered four times a day
for five days. We calculated the maximal concentration (Cmax), minimal concentration
(Ctrough), and AUC for each day using the simulated NFT concentrations in the plasma
over time and plotted them at three time points (day 1, day 2, and day 5) (Figure 7). A de-
crease in the GFR (from normal to severe GFR compromised) resulted in an approximately
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1.3-fold increase in Cmax and a 2-fold increase in Ctrough, i.e., the entire Cmax–Ctrough
window shifted to a higher level. Moreover, effective exposure to the plasma also increased,
as shown by approx. a 1.3-fold difference in the AUC when comparing normal and severe
GFR conditions. We observed similar results for the liver (Figure S11). As expected, the
compromised GFR conditions resulted in substantial reductions in the percentage of dose
excreted in urine (Figure S12). In conclusion, our PBPK model predicts that in people with
a compromised GFR, treatment with NFT might not be effective due to the low arrival of
NFT in the bladder. Moreover, in such individuals, NFT concentrations in the liver rise to
levels that may be toxic.
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Figure 7. Predicted influence of GFR condition on NFT plasma concentrations. The human PBPK
model V5a was simulated with oral NFT dosing (50 mg) four times a day. Each row represents one
PK parameter (Cmax, Ctrough, and AUC) determined from time course simulations and is plotted
at three different time points (24 h, 48 h, and 120 h). GFR conditions used (indicated above panels):
normal GFR (>90 mL/min), moderate GFR (70 mL/min), mild GFR (45 mL/min), and severe GFR
(20 mL/min). The shapes correspond to minimal (blue triangle), maximal (red triangle), and mean
(green triangle) calculated based on 2000 simulations using individual parameter values drawn
randomly from a Gaussian distribution centered around the fitted mean value per parameter (with a
standard deviation of 1.17 on a log scale). Note that the predicted impact of GFR conditions on NFT
concentrations in the liver and urine are shown in Figures S11 and S12.

4. Discussion

In this study we developed a PBPK model for NFT kinetics using published data from
rabbits and rats and extrapolated the model to predict human kinetics. NFT is a commonly
used oral antibiotic for treating low UTIs, but it is associated with the occurrence of drug-
induced liver injury (DILI), which is the most common adverse effect of NFT exposure.
The mechanisms leading to DILI are not completely clear, and severe fatalities due to
hepatic toxicity have been reported for NFT. Animal PK studies have indicated that NFT
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kinetics are not linearly proportional to the administered dose [12,17,19]. At the same time,
human PK exhibits high variability [2,29,34]. Thus, there is a strong need to understand
the relationship between physiological factors, NFT exposure, and its disposition, as this
might help us to understand the quantitative contribution of kinetics to the risk of hepatic
adverse events.

We created a series of PBPK models of increasing complexity to capture NFT kinetics
in the body as realistically as possible on the basis of available data. Our initial model
included only liver metabolism and renal clearance via glomerular filtration. To improve
the prediction of dose-dependent effects, we created various modified models, including
active tubular secretion and/or reabsorption. A PBPK model with both these processes
included described the plasma and urine kinetics data much better than models with
none or only one of these processes included. Mechanistic analysis of the resulting model
suggested that active secretion of NFT saturates already at low plasma concentrations,
limiting NFT elimination from the body primarily via such active secretion. Together
with a high rate of reabsorption, this saturated active secretion at low concentrations was
necessary to explain the non-linear, dose-dependent kinetics in urine. These findings are in
line with classical dog studies in which NFT tubular secretion saturated and reabsorption
occurred at a high rate [19,35].

Excretion of NFT is not only mediated by the kidney but also by hepatobiliary elimi-
nation. In mice and rats, the ABC transporter BCRP1 is involved in the latter elimination
route [20]. Oo et al. (2001) showed that BCRP1 plays a role in humans as well (specif-
ically for secretion of NFT into human milk), suggesting that this transporter promotes
hepatobiliary excretion in humans [36]. Therefore, we extended our PBPK model with bile
as an additional bile compartment, which could also describe kinetics data in all species.
Calibration of our PBPK model with EHR predicted a dose-dependent relative decrease
in biliary excretion in both rats and rabbits; however, in rabbits this excretion appears to
be low (less than 1%), suggesting that EHR is species specific. However, further data are
needed to support this result.

Our extrapolated human PBPK model (model V5a) nicely captured the dose-dependent
increase in human plasma kinetics data for three different doses. The model predicted
NFT to be quickly eliminated from all organs (Figure S10), which is in line with the NFT
half-life [35]. However, the model predicted less than 2% of administered NFT was ex-
creted into bile, indicating that this excretion route is not so relevant in humans (as in
rabbits). Consistently, C421A polymorphism in ABCG2 (gene name for BCRP1) had no
effect on NFT plasma and urine PK parameters, at least in healthy subjects [37]. Further,
in silico knockout of EHR showed no effect on urine excretion (Figure S7), and this is in
line with experiments with BCRP1-knockout mice, showing that such knockout does not
affect urine NFT excretion [12]. However, the role of BCRP1 in both intestinal absorption
and biliary excretion needs further study because BCRP1 expression is population and age
dependent [38].

To arrive at the prediction of NFT kinetics in individual humans, variability in enzymes
involved in drug metabolism, such as CYP enzymes, transporters (like the mentioned
BCRP1), and physiological parameters need to be taken into account, factors that are
typically also age dependent. Such an approach could provide individualized dosing
advice and predict effectivity and potential adverse outcomes. Here, we took a simpler
approach by studying various scenarios of patients with compromised GFRs based on
our human PBPK model, i.e., by varying this important age-dependent parameter across
patient subgroups. This analysis indicated that individuals with a moderate-to-severe GFR
are expected to be exposed to a 1.3-to-2-fold higher concentration of NFT than people with
a normal GFR. Moreover, our model predicted a substantial reduction in NFT excreted into
urine (approximately 30% less) in GFR-compromised individuals. Collectively, these results
have important clinical implications, because individuals with renal insufficiency may be
at a high risk of developing DILI due to increased exposure to NFT. At the same time,
NFT treatment of UTIs in GFR-compromised individuals may well result in a suboptimal
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therapeutic effect and is thus associated with a high risk for drug resistance. This finding is
in line with the contraindication for usage of NFT in individual with a GFR of less than 60
mL/min [14,16].

One limitation of this study is the lack of information in humans regarding the role of
transporters in NFT renal and biliary clearance. Furthermore, we simplified the oral absorp-
tion process by not taking into account the gastric emptying time, and drug formulation
characteristics, such as tablets with sustained release, that could result in PK variability [34].
In addition, studies in mice and rats have shown that BCRP could also play a role in
intestinal absorption, which might result in non-linear PK absorption [22,23]. This could
be one reason why the model did predict rat and rabbit oral kinetics well. Finally, in vitro
data on liver metabolism, intestinal absorption, and renal elimination were not available.
Instead, we determined the values for a subset of the parameters with top-down-approach
PBPK (i.e., by parameter calibration), which led to good fitting and mechanistic insight.
Nevertheless, future in vitro data on the mentioned processes would likely further improve
our model and ameliorate parameter uncertainty.

In conclusion, our developed PBPK model for NFT provides a valuable tool to predict
the consequences of NFT exposure and demonstrates the utility of PBPK modeling in
understanding NFT pharmacokinetics, especially in patients with renal impairments. Our
work highlights the probable importance of active tubular secretion and reabsorption in
explaining the dose-dependent effects of NFT, and they have important clinical implica-
tions for the safe and effective use of the drug. This improves our understanding of the
relationship between NFT exposure, its disposition, and the occurrence of adverse events,
such as DILI and lung toxicity. Note that to arrive at predictions for lung toxicity, the PBPK
model should first be extended with a lung compartment. Future studies could furthermore
focus on refining the model further by incorporating additional data on biliary excretion
and other factors that could impact NFT disposition, particularly in specific populations.
The model can also be further coupled with computational models describing various
downstream effects, such as NFT-induced stress pathway activity within the liver. Such
stress pathway activity is known to vary strongly amongst individuals [39,40], which may
contribute to liver toxicity in specific subpopulations independent of renal impairment. In
the case of NFT exposure, this concerns especially NRF2- and ATF4-mediated signaling [11];
hence, the expression of proteins involved in these pathways might represent additional
risk factors. Future integration of our PBPK model with stress pathway models may allow
the prediction of the effect of interindividual variability, renal function, and various dosage
regimens on NFT disposition, stress biomarkers, and potential liver injury.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/pharmaceutics15092199/s1, Figure S1: Model with ei-
ther active tubular secretion (Model V2) or tubular reabsorption (Model V3) does not accurately
describe NFT kinetics in plasma and urine; Figure S2: Measured and simulated NFT concentrations in
rats after IV dosing; Figure S3: Measurements and simulations of NFT concentrations in rats after IV
dosing using Model V5; Figure S4: Measurements and simulations of NFT concentrations in rabbits
after IV dosing using Model V5; Figure S5: Measurements and simulations of NFT concentrations
in rabbits after oral dosing using Model V5a; Figure S6: Measurements and simulations of NFT
concentrations in rats after oral dosing using Model V5a; Figure S7: In-silico knock out of EHR
process in (Model V5a) in rats and rabbits after IV dosing; Figure S8: Sensitivity of PBPK model
parameters; Figure S9: Simulations of excreted NFT in humans after oral dosing using extrapolated
ModelV5a; Figure S10: Simulations of NFT concentrations in various human tissues after oral dos-
ing using extrapolated ModelV5a; Figure S11: Predicted influence of GFR condition on NFT liver
concentrations; Figure S12: Predicted influence of GFR condition on NFT plasma, liver, and urine
concentrations; Table S1: Rat physiological parameters; Table S2: Rabbit physiological parameters;
Table S3: Human adult physiological parameters; Table S4: PBPK biochemical parameters for three
different species. References [17,41–46] are cited in the supplementary materials.
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